Mutational Landscape Differences Between Young-Onset and Older-Onset Breast Cancer Patients Nicole E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thesis Template
Functional and Structural Characterization Reveals Novel FBXW7 Biology by Tonny Chao Huang A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Medical Biophysics University of Toronto © Copyright by Tonny Chao Huang 2018 Functional and Structural Characterization Reveals Novel FBXW7 Biology Tonny Chao Huang Master of Science Department of Medical Biophysics University of Toronto 2018 Abstract This thesis aims to examine aspects of FBXW7 biology, a protein that is frequently mutated in a variety of cancers. The first part of this thesis describes the characterization of FBXW7 isoform and mutant substrate profiles using a proximity-dependent biotinylation assay. Isoform-specific substrates were validated, revealing the involvement of FBXW7 in the regulation of several protein complexes. Characterization of FBXW7 mutants also revealed site- and residue-specific consequences on the binding of substrates and, surprisingly, possible neo-substrates. In the second part of this thesis, we utilize high-throughput peptide binding assays and statistical modelling to discover novel features of the FBXW7-binding phosphodegron. In contrast to the canonical motif, a possible preference of FBXW7 for arginine residues at the +4 position was discovered. I then attempted to validate this feature in vivo and in vitro on a novel substrate discovered through BioID. ii Acknowledgments The past three years in the Department of Medical Biophysics have defied expectations. I not only had the opportunity to conduct my own independent research, but also to work with distinguished collaborators and to explore exciting complementary fields. I experienced the freedom to guide my own academic development, as well as to pursue my extracurricular interests. -
ENSG Gene Encodes Effector TCR Pathway Costimulation Inhibitory/Exhaustion Synapse/Adhesion Chemokines/Receptors
ENSG Gene Encodes Effector TCR pathway Costimulation Inhibitory/exhaustion Synapse/adhesion Chemokines/receptors ENSG00000111537 IFNG IFNg x ENSG00000109471 IL2 IL-2 x ENSG00000232810 TNF TNFa x ENSG00000271503 CCL5 CCL5 x x ENSG00000139187 KLRG1 Klrg1 x ENSG00000117560 FASLG Fas ligand x ENSG00000121858 TNFSF10 TRAIL x ENSG00000134545 KLRC1 Klrc1 / NKG2A x ENSG00000213809 KLRK1 Klrk1 / NKG2D x ENSG00000188389 PDCD1 PD-1 x x ENSG00000117281 CD160 CD160 x x ENSG00000134460 IL2RA IL-2 receptor x subunit alpha ENSG00000110324 IL10RA IL-10 receptor x subunit alpha ENSG00000115604 IL18R1 IL-18 receptor 1 x ENSG00000115607 IL18RAP IL-18 receptor x accessory protein ENSG00000081985 IL12RB2 IL-12 receptor x beta 2 ENSG00000186810 CXCR3 CXCR3 x x ENSG00000005844 ITGAL CD11a x ENSG00000160255 ITGB2 CD18; Integrin x x beta-2 ENSG00000156886 ITGAD CD11d x ENSG00000140678 ITGAX; CD11c x x Integrin alpha-X ENSG00000115232 ITGA4 CD49d; Integrin x x alpha-4 ENSG00000169896 ITGAM CD11b; Integrin x x alpha-M ENSG00000138378 STAT4 Stat4 x ENSG00000115415 STAT1 Stat1 x ENSG00000170581 STAT2 Stat2 x ENSG00000126561 STAT5a Stat5a x ENSG00000162434 JAK1 Jak1 x ENSG00000100453 GZMB Granzyme B x ENSG00000145649 GZMA Granzyme A x ENSG00000180644 PRF1 Perforin 1 x ENSG00000115523 GNLY Granulysin x ENSG00000100450 GZMH Granzyme H x ENSG00000113088 GZMK Granzyme K x ENSG00000057657 PRDM1 Blimp-1 x ENSG00000073861 TBX21 T-bet x ENSG00000115738 ID2 ID2 x ENSG00000176083 ZNF683 Hobit x ENSG00000137265 IRF4 Interferon x regulatory factor 4 ENSG00000140968 IRF8 Interferon -
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
SUPPLEMENTARY DATA Supplementary Tables Table S1
1 SUPPLEMENTARY DATA 2 3 Supplementary Tables 4 Table S1. Gene signatures Gene signature Genes Cytolytic GNLY, KLRK1, KLRB1, GZMH, GZMA, KLRD1, NKG7 Cytotoxic CD8+ T cells CD8A, GZMA, GZMB, IFNG, EOMES, PRF1 Activated CD4+ T cells CD4, IL2RA, CD69 CD4+ Treg cells FOXP3, CTLA4, ICOS Immune checkpoints—T cells BTLA, LAG3, HAVCR2, PDCD1, TIGIT, CTLA4 T cells CD2, CD3D, CD3E, CD3G, CD6, TRAT1, CD28, LCK B cells CD79A, MS4A1, CD19, STAP1, KIAA0125, POU2AF1, FCRL5 NK cells SLAMF7, KLRC3, KLRK1, KLRC2, KLRD1 Monocytes CD14, CD16, CD163, CSF1R, HLA-DR LAPTM5, LAIR1, CD4, CSF1R, CD163, ADAP2, CD68, MRC1, M2 macrophages PTPRC, SLA, SEPSECS, MSR1, FPR3, FCGR2A, FCGR3A, IDO1, RERE, ABL2, CD163L1, STAT3, SBNO2, CSF1, CSF2 FAP, FN1, MMP2, BGN, LOXL2, PDPN, PDGFRB, COL12a1, Active fibroblasts COL5A1, COL8A2, THY1, PALLD Antigen processing TAPBP, TAP1, TAP2, PSMB9, PSMB8 Immune checkpoints—APC CD274, PDCD1LG2, IDO1 Costimulatory ligands CD40, CD80, CD86, CD70, TNFRSF18 CD27, CD28, ICOS, TNFRSF4, TNFRSF14, TNFRSF18, Costimulatory receptors TNFSF14, CD226 Myeloid inflammation CCL2, IL1B, CXCL8, IL6, PTGS2 1 DERL1, DERL2, DNAJB11, DNAJB9, DNAJC10, DNAJC3, ER stress EDEM1, EDEM2, EDEM3, EIF2AK3, ERO1L, HERPUD1, PDIA3, PDIA6, SEC61A1, SERP1, SYVN1 RRM2, UBE2C, BIRC5, CEP55, CCNB1, NUF2, NDC80, Proliferation MKI67, CDC20, TYMS 5 ER, endoplasmic reticulum; NK, natural killer. 6 7 2 8 Table S2. Most common all-cause and treatment-related AEs Patients (N = 45) All cause Treatment related Eventa Any grade Grade 3/4 Any grade Grade 3/4 Any AE 45 (100.0) 20 (44.4) -
Xio Is a Component of the Drosophila Sex Determination Pathway and RNA N6-Methyladenosine Methyltransferase Complex
Xio is a component of the Drosophila sex determination pathway and RNA N6-methyladenosine methyltransferase complex Jian Guoa,b, Hong-Wen Tangc, Jing Lia,b, Norbert Perrimonc,d,1, and Dong Yana,1 aKey Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China; bUniversity of Chinese Academy of Sciences, 100049 Beijing, China; cDepartment of Genetics, Harvard Medical School, Boston, MA 02115; and dHoward Hughes Medical Institute, Harvard Medical School, Boston, MA 02115 Contributed by Norbert Perrimon, February 14, 2018 (sent for review December 6, 2017; reviewed by James W. Erickson and Helen Salz) N6-methyladenosine (m6A), the most abundant chemical modifica- reader YT521-B, are required for Drosophila sex determination 6 tion in eukaryotic mRNA, has been implicated in Drosophila sex and Sxl splicing regulation. Further, m A modification sites have determination by modifying Sex-lethal (Sxl) pre-mRNA and facili- been mapped to Sxl introns, thus facilitating Sxl pre-mRNA al- 6 tating its alternative splicing. Here, we identify a sex determina- ternative splicing. Importantly, m A methylation is required in CG7358 xio human dosage compensation by modifying the long noncoding tion gene, , and rename it according to its loss-of- 6 function female-to-male transformation phenotype. xio encodes RNA XIST,suggestingthatmA-mediated gene regulation is an ancient -
CD200, Human Recombinant Recombinant Human CD200, : 408-493-1800 | Fax: 408-493-1801 408-493-1801 Fax: | 408-493-1800
BioVision 1/14 For research use only CD200, human recombinant CATALOG #: 7309-50 50 µg ALTERNATE NAMES: CD200 molecule, MOX1, MOX2, MRC, OX-2 SOURCE: E. coli PURITY: > 90% by SDS-PAGE MOL. WEIGHT: 24.8 kDa (225 aa, 31-232 aa + His tag), confirmed by MALDI-TOF. ENDOTOXIN LEVEL: < 1.0 EU per 1 µg of protein FORM: Liquid FORMULATION: 1 mg/ml in 20 mM Tris-HCl buffer (pH 8.0) containing 0.4M Urea. CD200, human recombinant STORAGE CONDITIONS: Can be stored at 4°C short term (1-2 weeks). For long term storage, aliquot and store at -20°C or - 70°C. Avoid repeated freezing and thawing RELATED PRODUCTS: cycles. • CD1E, human recombinant (Cat. No. 7308-100) • CD226, human recombinant (Cat. No. 7310-100) DESCRIPTION : CD200 is a type-1 membrane glycoprotein, which contains two • CD274, mouse recombinant (Cat. No. 7311-100) immunoglobulin domains, and thus belongs to the immunoglobulin superfamily. Studies of • CD300C, human recombinant (Cat. No. 7312-100) the related genes in mouse and rat suggest that this gene may regulate myeloid cell • CD3G, human recombinant (Cat. No. 7313-100) activity and delivers an inhibitory signal for the macrophage lineage in diverse tissues. • CD46, human recombinant (Cat. No. 7314-100) Multiple alternatively spliced transcript variants that encode different isoforms have been • CD5, human recombinant (Cat. No. 7315-100) • CD7, human recombinant (Cat. No. 7316-100) found for this gene. Recombinant human CD200 protein, fused to His-tag at N-terminus, • CD74, human recombinant (Cat. No. 7317-100) was expressed in E.coli. • CD79B, human recombinant (Cat. -
Inactivation of Fbxw7 Impairs Dsrna Sensing and Confers Resistance to PD-1 Blockade
Published OnlineFirst May 5, 2020; DOI: 10.1158/2159-8290.CD-19-1416 RESEARCH ARTICLE Inactivation of Fbxw7 Impairs dsRNA Sensing and Confers Resistance to PD-1 Blockade Cécile Gstalder1,2, David Liu1,3, Diana Miao1, Bart Lutterbach1,2, Alexander L. DeVine1,2, Chenyu Lin4, Megha Shettigar1,2, Priya Pancholi1,2, Elizabeth I. Buchbinder1, Scott L. Carter5,6, Michael P. Manos1, Vanesa Rojas-Rudilla7, Ryan Brennick1, Evisa Gjini8, Pei-Hsuan Chen8, Ana Lako8, Scott Rodig8,9, Charles H. Yoon10, Gordon J. Freeman1, David A. Barbie1, F. Stephen Hodi1, Wayne Miles4, Eliezer M. Van Allen1, and Rizwan Haq1,2 Downloaded from cancerdiscovery.aacrjournals.org on September 26, 2021. © 2020 American Association for Cancer Research. Published OnlineFirst May 5, 2020; DOI: 10.1158/2159-8290.CD-19-1416 ABSTRACT The molecular mechanisms leading to resistance to PD-1 blockade are largely unknown. Here, we characterize tumor biopsies from a patient with melanoma who displayed heterogeneous responses to anti–PD-1 therapy. We observe that a resistant tumor exhibited a loss-of-function mutation in the tumor suppressor gene FBXW7, whereas a sensitive tumor from the same patient did not. Consistent with a functional role in immunotherapy response, inactivation of Fbxw7 in murine tumor cell lines caused resistance to anti–PD-1 in immunocompetent animals. Loss of Fbxw7 was associated with altered immune microenvironment, decreased tumor-intrinsic expression of the double-stranded RNA (dsRNA) sensors MDA5 and RIG1, and diminished induction of type I IFN and MHC-I expression. In contrast, restoration of dsRNA sensing in Fbxw7-deficient cells was suffi- cient to sensitize them to anti–PD-1. -
ARID5B As a Critical Downstream Target of the TAL1 Complex That Activates the Oncogenic Transcriptional Program and Promotes T-Cell Leukemogenesis
Downloaded from genesdev.cshlp.org on October 10, 2021 - Published by Cold Spring Harbor Laboratory Press ARID5B as a critical downstream target of the TAL1 complex that activates the oncogenic transcriptional program and promotes T-cell leukemogenesis Wei Zhong Leong,1 Shi Hao Tan,1 Phuong Cao Thi Ngoc,1 Stella Amanda,1 Alice Wei Yee Yam,1 Wei-Siang Liau,1 Zhiyuan Gong,2 Lee N. Lawton,1 Daniel G. Tenen,1,3,4 and Takaomi Sanda1,4 1Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore; 2Department of Biological Sciences, National University of Singapore, 117543 Singapore; 3Harvard Medical School, Boston, Massachusetts 02215, USA; 4Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore The oncogenic transcription factor TAL1/SCL induces an aberrant transcriptional program in T-cell acute lym- phoblastic leukemia (T-ALL) cells. However, the critical factors that are directly activated by TAL1 and contribute to T-ALL pathogenesis are largely unknown. Here, we identified AT-rich interactive domain 5B (ARID5B) as a col- laborating oncogenic factor involved in the transcriptional program in T-ALL. ARID5B expression is down-regulated at the double-negative 2–4 stages in normal thymocytes, while it is induced by the TAL1 complex in human T-ALL cells. The enhancer located 135 kb upstream of the ARID5B gene locus is activated under a superenhancer in T-ALL cells but not in normal T cells. Notably, ARID5B-bound regions are associated predominantly with active tran- scription. ARID5B and TAL1 frequently co-occupy target genes and coordinately control their expression. -
ARID5B Influences Anti-Metabolite Drug Sensitivity and Prognosis of Acute Lymphoblastic Leukemia
Author Manuscript Published OnlineFirst on October 1, 2019; DOI: 10.1158/1078-0432.CCR-19-0190 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ARID5B influences antimetabolite drug sensitivity and prognosis of acute lymphoblastic leukemia Heng Xu1,2*, Xujie Zhao2*, Deepa Bhojwani3, Shuyu E2, Charnise Goodings2, Hui Zhang4,2, Nita L. Seibel5, Wentao Yang2, Chunliang Li6, William L. Carroll7, William Evans2,8, Jun J. Yang2,8 1Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China. 2Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA. 3Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, California, USA. 4Department of Pediatric Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China. 5Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA. 6Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA. 7Departments of Pediatrics and Pathology, New York University Langone Medical Center, New York, New York, USA. 8Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA Running title: ARID5B and drug resistance in ALL Keywords: acute lymphoblastic leukemia, ARID5B, p21, relapse, antimetabolite drug resistance *these authors contributed equally to this work. Financial support: This work was supported by the National Institutes of Health (GM118578, CA021765 and GM115279), the American Lebanese Syrian Associated Charities of St. Jude Children’s Research Hospital, and the Specialized Center of Research of Leukemia and Lymphoma Society (7010-14). Corresponding author: Jun J. -
Genetic and Bioinformatic Analyses of the Expression and Function of PI3K
Zhou et al. BMC Medical Genomics 2012, 5:34 http://www.biomedcentral.com/1755-8794/5/34 RESEARCH ARTICLE Open Access Genetic and bioinformatic analyses of the expression and function of PI3K regulatory subunit PIK3R3 in an Asian patient gastric cancer library Jin Zhou1, Geng Bo Chen3, Yew Chung Tang4, Rohit Anthony Sinha1, Yonghui Wu8, Chui Sun Yap1, Guihua Wang5, Junbo Hu5, Xianmin Xia5, Patrick Tan2,8,9,10, Liang Kee Goh3,6,7 and Paul Michael Yen1* Abstract Background: While there is strong evidence for phosphatidylinositol 3-kinase (PI3K) involvement in cancer development, there is limited information about the role of PI3K regulatory subunits. PIK3R3, the gene that encodes the PI3K regulatory subunit p55γ, is over-expressed in glioblastoma and ovarian cancers, but its expression in gastric cancer (GC) is not known. We thus used genetic and bioinformatic approaches to examine PIK3R3 expression and function in GC, the second leading cause of cancer mortality world-wide and highly prevalent among Asians. Methods: Primary GC and matched non-neoplastic mucosa tissue specimens from a unique Asian patient gastric cancer library were comprehensively profiled with platforms that measured genome-wide mRNA expression, DNA copy number variation, and DNA methylation status. Function of PIK3R3 was predicted by IPA pathway analysis of co-regulated genes with PIK3R3, and further investigated by siRNA knockdown studies. Cell proliferation was estimated by crystal violet dye elution and BrdU incorporation assay. Cell cycle distribution was analysed by FACS. Results: PIK3R3 was significantly up-regulated in GC specimens (n = 126, p < 0.05), and 9.5 to 15% tumors showed more than 2 fold increase compare to the paired mucosa tissues. -
CCAR1 Polyclonal Antibody
PRODUCT DATA SHEET Bioworld Technology,Inc. CCAR1 polyclonal antibody Catalog: BS8140 Host: Rabbit Reactivity: Human BackGround: by affinity-chromatography using epitope-specific im- CARP-1 (cell division cycle and apoptosis regulator 1), munogen and the purity is > 95% (by SDS-PAGE). also known as CCAR1 or DIS, is a 1,150 amino acid pro- Applications: tein that localizes to the perinuclear region of the cyto- WB 1:500 - 1:2000 plasm and contains one SAP domain. Expressed in sever- IF 1:50 - 1:200 al epithelial cancer cell lines, including breast, colon, IP 1:50 - 1:100 prostate and leukemia, CARP-1 is involved in apoptotic Storage&Stability: signaling, as well as in cell cycle progression and cell Store at 4°C short term. Aliquot and store at -20°C long proliferation via interaction with c-Myc and cyclin B1. term. Avoid freeze-thaw cycles. CARP-1 is subject to DNA damage-induced phosphory- Specificity: lation, probably by ATM or ATR. The gene encoding CCAR1 polyclonal antibody detects endogenous levels of CARP-1 maps to human chromosome 10, which houses CCAR1 protein. over 1,200 genes and comprises nearly 4.5% of the hu- DATA: man genome. Defects in some of the genes that map to chromosome 10 are associated with Charcot-Marie Tooth disease, Jackson-Weiss syndrome, Usher syndrome, non- syndromatic deafness, Wolman’s syndrome, Cowden syndrome, multiple endocrine neoplasia type 2 and por- phyria. Product: Rabbit IgG, 1mg/ml in PBS with 0.02% sodium azide, WesternBlot (WB) analysis of CCAR1 polyclonal antibody 50% glycerol, pH7.2 Note: Molecular Weight: For research use only, not for use in diagnostic procedure. -
Decreased Expression of the SPOP Gene Is Associated with Poor Prognosis in Glioma
INTERNATIONAL JOURNAL OF ONCOLOGY 46: 333-341, 2015 Decreased expression of the SPOP gene is associated with poor prognosis in glioma DACHENG DING, tao SONG, WU JUN, ZEMING TAN and JIASHENG FANG Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China Received August 23, 2014; Accepted October 3, 2014 DOI: 10.3892/ijo.2014.2729 Abstract. This study suggests that speckle-type POZ protein survival rates of patients with high-grade gliomas are <10% (SPOP) may be a tumor suppressor gene and its prognostic value at 5 years (2). Since current treatment gained little benefit in in human glioma. Real-time quantitative RT-PCR (qRT-PCR), the setting of glioma, greater attention has been paid to the western blotting, and immunohistochemical staining were expression of specific molecular markers with the goal of used to examine SPOP expression in glioma tissues and understanding the main molecular mechanisms of this malig- normal brain (NB) tissues. The relationships between the nancy and determining their possible prognostic significance. SPOP expression levels, the clinicopathological factors, and The speckle-type POZ protein (SPOP) has been identified patient survival were investigated. The molecular mechanisms as an autoantigen in scleroderma patients and a constituent of SPOP expression and its effects on cell viability, migration of nuclear speckles in human cells. SPOP is a 374-amino and invasion were also explored by MTT assay, wound-healing acid protein that contains a C-terminal POZ (poxvirus and assays and Transwell assay. SPOP mRNA and protein levels zinc finger) domain (also known as a BTB domain) and were downregulated in glioma tissues compared to NB.