Analysis of Diet-Induced Differential Methylation, Expression, And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Xio Is a Component of the Drosophila Sex Determination Pathway and RNA N6-Methyladenosine Methyltransferase Complex
Xio is a component of the Drosophila sex determination pathway and RNA N6-methyladenosine methyltransferase complex Jian Guoa,b, Hong-Wen Tangc, Jing Lia,b, Norbert Perrimonc,d,1, and Dong Yana,1 aKey Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China; bUniversity of Chinese Academy of Sciences, 100049 Beijing, China; cDepartment of Genetics, Harvard Medical School, Boston, MA 02115; and dHoward Hughes Medical Institute, Harvard Medical School, Boston, MA 02115 Contributed by Norbert Perrimon, February 14, 2018 (sent for review December 6, 2017; reviewed by James W. Erickson and Helen Salz) N6-methyladenosine (m6A), the most abundant chemical modifica- reader YT521-B, are required for Drosophila sex determination 6 tion in eukaryotic mRNA, has been implicated in Drosophila sex and Sxl splicing regulation. Further, m A modification sites have determination by modifying Sex-lethal (Sxl) pre-mRNA and facili- been mapped to Sxl introns, thus facilitating Sxl pre-mRNA al- 6 tating its alternative splicing. Here, we identify a sex determina- ternative splicing. Importantly, m A methylation is required in CG7358 xio human dosage compensation by modifying the long noncoding tion gene, , and rename it according to its loss-of- 6 function female-to-male transformation phenotype. xio encodes RNA XIST,suggestingthatmA-mediated gene regulation is an ancient -
Mutational Landscape Differences Between Young-Onset and Older-Onset Breast Cancer Patients Nicole E
Mealey et al. BMC Cancer (2020) 20:212 https://doi.org/10.1186/s12885-020-6684-z RESEARCH ARTICLE Open Access Mutational landscape differences between young-onset and older-onset breast cancer patients Nicole E. Mealey1 , Dylan E. O’Sullivan2 , Joy Pader3 , Yibing Ruan3 , Edwin Wang4 , May Lynn Quan1,5,6 and Darren R. Brenner1,3,5* Abstract Background: The incidence of breast cancer among young women (aged ≤40 years) has increased in North America and Europe. Fewer than 10% of cases among young women are attributable to inherited BRCA1 or BRCA2 mutations, suggesting an important role for somatic mutations. This study investigated genomic differences between young- and older-onset breast tumours. Methods: In this study we characterized the mutational landscape of 89 young-onset breast tumours (≤40 years) and examined differences with 949 older-onset tumours (> 40 years) using data from The Cancer Genome Atlas. We examined mutated genes, mutational load, and types of mutations. We used complementary R packages “deconstructSigs” and “SomaticSignatures” to extract mutational signatures. A recursively partitioned mixture model was used to identify whether combinations of mutational signatures were related to age of onset. Results: Older patients had a higher proportion of mutations in PIK3CA, CDH1, and MAP3K1 genes, while young- onset patients had a higher proportion of mutations in GATA3 and CTNNB1. Mutational load was lower for young- onset tumours, and a higher proportion of these mutations were C > A mutations, but a lower proportion were C > T mutations compared to older-onset tumours. The most common mutational signatures identified in both age groups were signatures 1 and 3 from the COSMIC database. -
A Class of Circadian Long Non-Coding Rnas Mark Enhancers Modulating Long-Range Circadian Gene Regulation Zenghua Fan1,2, Meng Zhao3, Parth D
5720–5738 Nucleic Acids Research, 2017, Vol. 45, No. 10 Published online 8 March 2017 doi: 10.1093/nar/gkx156 A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation Zenghua Fan1,2, Meng Zhao3, Parth D. Joshi4,PingLi5, Yan Zhang5, Weimin Guo3, Yichi Xu1,2, Haifang Wang3, Zhihu Zhao5 and Jun Yan3,* 1 CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Downloaded from https://academic.oup.com/nar/article-abstract/45/10/5720/3063381 by guest on 06 March 2019 Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, 2University of Chinese Academy of Sciences, Shanghai 200031, China, 3Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, 4Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen,¨ Germany and 5Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China Received February 04, 2017; Editorial Decision February 23, 2017; Accepted February 24, 2017 ABSTRACT regulation and shed new lights on the evolutionary origin of lncRNAs. Circadian rhythm exerts its influence on animal physiology and behavior by regulating gene expres- sion at various levels. Here we systematically ex- INTRODUCTION plored circadian long non-coding RNAs (lncRNAs) Circadian rhythm is an intrinsic 24 h oscillation of var- in mouse liver and examined their circadian reg- ious physiological processes and behaviors synchronized ulation. We found that a significant proportion of with daily light/dark cycle in a wide-range of species. -
A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase. -
Mir-33A/B Contribute to the Regulation of Fatty Acid Metabolism and Insulin Signaling
miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling Alberto Dávalosa,1, Leigh Goedekea,1, Peter Smibertb, Cristina M. Ramíreza, Nikhil P. Warriera, Ursula Andreoa, Daniel Cirera-Salinasa,c,d, Katey Raynera, Uthra Sureshe, José Carlos Pastor-Parejaf, Enric Espluguesc,d,g, Edward A. Fishera, Luiz O. F. Penalvae, Kathryn J. Moorea, Yajaira Suáreza,EricC.Laib, and Carlos Fernández-Hernandoa,2 aDepartments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016; bDepartment of Developmental Biology, Sloan–Kettering Institute, New York, NY 10065; cGerman Rheumatism Research Center (DRFZ), A. Leibniz Institute, 10117 Berlin, Germany; dCluster of Excellence NeuroCure, Charite-Universitatsmedizin, 10117 Berlin, Germany; eChildren’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229; fDepartment of Genetics, Yale University School of Medicine, New Haven, CT 06519; and gDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Edited by Joseph L. Witztum, University of California at San Diego, La Jolla, CA, and accepted by the Editorial Board April 22, 2011 (received for review February 9, 2011) Cellular imbalances of cholesterol and fatty acid metabolism result stranded regulatory noncoding RNAs are encoded in the ge- in pathological processes, including atherosclerosis and metabolic nome, and most are processed from primary transcripts by the syndrome. Recent work from our group and others has shown sequential actions of Drosha and Dicer enzymes (8–10). In the that the intronic microRNAs hsa-miR-33a and hsa-miR-33b are lo- cytoplasm, mature miRNAs are incorporated into the cytoplas- cated within the sterol regulatory element-binding protein-2 and mic RNA-induced silencing complex (RISC) and bind to par- -1 genes, respectively, and regulate cholesterol homeostasis in tially complementary target sites in the 3′ UTRs of mRNA. -
Genomic Analysis of Follicular Dendritic Cell Sarcoma by Molecular
Modern Pathology (2017) 30, 1321–1334 © 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 1321 Genomic analysis of follicular dendritic cell sarcoma by molecular inversion probe array reveals tumor suppressor-driven biology Erica F Andersen1,2, Christian N Paxton2, Dennis P O’Malley3,4, Abner Louissaint Jr5, Jason L Hornick6, Gabriel K Griffin6, Yuri Fedoriw7, Young S Kim8, Lawrence M Weiss3, Sherrie L Perkins1,2 and Sarah T South1,2,9 1Department of Pathology, University of Utah, Salt Lake City, UT, USA; 2Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USA; 3Department of Pathology, Clarient/ Neogenomics, Aliso Viejo, CA, USA; 4Department of Pathology, M.D. Anderson Cancer Center/University of Texas, Houston, TX, USA; 5Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; 6Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; 7Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA and 8Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA Follicular dendritic cell sarcoma is a rare malignant neoplasm of dendritic cell origin that is currently poorly characterized by genetic studies. To investigate whether recurrent genomic alterations may underlie the biology of follicular dendritic cell sarcoma and to identify potential contributory regions and genes, molecular inversion probe array analysis was performed on 14 independent formalin-fixed, paraffin-embedded samples. Abnormal genomic profiles were observed in 11 out of 14 (79%) cases. The majority showed extensive genomic complexity that was predominantly represented by hemizygous losses affecting multiple chromosomes. Alterations of chromosomal regions 1p (55%), 2p (55%), 3p (82%), 3q (45%), 6q (55%), 7q (73%), 8p (45%), 9p (64%), 11q (64%), 13q (91%), 14q (82%), 15q (64%), 17p (55%), 18q (64%), and 22q (55%) were recurrent across the 11 samples showing abnormal genomic profiles. -
Rare Deletions at 16P13.11 Predispose to a Diverse Spectrum of Sporadic Epilepsy Syndromes
ARTICLE Rare Deletions at 16p13.11 Predispose to a Diverse Spectrum of Sporadic Epilepsy Syndromes Erin L. Heinzen,1,23 Rodney A. Radtke,2,23 Thomas J. Urban,1,23 Gianpiero L. Cavalleri,5 Chantal Depondt,8 Anna C. Need,1 Nicole M. Walley,1 Paola Nicoletti,1 Dongliang Ge,1 Claudia B. Catarino,9,11 John S. Duncan,9,11 Dalia Kasperaviciute ˙ ,9 Sarah K. Tate,9 Luis O. Caboclo,9 Josemir W. Sander,9,11,12 Lisa Clayton,9 Kristen N. Linney,1 Kevin V. Shianna,1 Curtis E. Gumbs,1 Jason Smith,1 Kenneth D. Cronin,1 Jessica M. Maia,1 Colin P. Doherty,6 Massimo Pandolfo,8 David Leppert,13,15 Lefkos T. Middleton,16 Rachel A. Gibson,13 Michael R. Johnson,13,17 Paul M. Matthews,13,17 David Hosford,2 Reetta Ka¨lvia¨inen,18 Kai Eriksson,19 Anne-Mari Kantanen,18 Thomas Dorn,20 Jo¨rg Hansen,20 Gu¨nter Kra¨mer,20 Bernhard J. Steinhoff,21 Heinz-Gregor Wieser,22 Dominik Zumsteg,22 Marcos Ortega,22 Nicholas W. Wood,10 Julie Huxley-Jones,14 Mohamad Mikati,3 William B. Gallentine,3 Aatif M. Husain,2 Patrick G. Buckley,7 Ray L. Stallings,7 Mihai V. Podgoreanu,4 Norman Delanty,5 Sanjay M. Sisodiya,9,11,* and David B. Goldstein1,* Deletions at 16p13.11 are associated with schizophrenia, mental retardation, and most recently idiopathic generalized epilepsy. To evaluate the role of 16p13.11 deletions, as well as other structural variation, in epilepsy disorders, we used genome-wide screens to identify copy number variation in 3812 patients with a diverse spectrum of epilepsy syndromes and in 1299 neurologically-normal controls. -
The Stepwise Evolution of the Exome During Acquisition of Docetaxel
Hansen et al. BMC Genomics (2016) 17:442 DOI 10.1186/s12864-016-2749-4 RESEARCH ARTICLE Open Access The stepwise evolution of the exome during acquisition of docetaxel resistance in breast cancer cells Stine Ninel Hansen1,3†, Natasja Spring Ehlers1,2†, Shida Zhu1,4, Mathilde Borg Houlberg Thomsen1,5, Rikke Linnemann Nielsen1,2, Dongbing Liu1,4, Guangbiao Wang1,4, Yong Hou1,4, Xiuqing Zhang1,4, Xun Xu1,4, Lars Bolund1,6, Huanming Yang1,4, Jun Wang1,4,9,10,11,12, Jose Moreira1,3, Henrik J Ditzel1,7,8, Nils Brünner1,3, Anne-Sofie Schrohl1,3†, Jan Stenvang1,3*† and Ramneek Gupta1,2*† Abstract Background: Resistance to taxane-based therapy in breast cancer patients is a major clinical problem that may be addressed through insight of the genomic alterations leading to taxane resistance in breast cancer cells. In the current study we used whole exome sequencing to discover somatic genomic alterations, evolving across evolutionary stages during the acquisition of docetaxel resistance in breast cancer cell lines. Results: Two human breast cancer in vitro models (MCF-7 and MDA-MB-231) of the step-wise acquisition of docetaxel resistance were developed by exposing cells to 18 gradually increasing concentrations of docetaxel. Whole exome sequencing performed at five successive stages during this process was used to identify single point mutational events, insertions/deletions and copy number alterations associated with the acquisition of docetaxel resistance. Acquired coding variation undergoing positive selection and harboring characteristics likely to be functional were further prioritized using network-based approaches. A number of genomic changes were found to be undergoing evolutionary selection, some of which were likely to be functional. -
ZC3H13 Polyclonal Antibody Product Information
ZC3H13 Polyclonal Antibody Cat #: ABP52728 Size: 30μl /100μl /200μl Product Information Product Name: ZC3H13 Polyclonal Antibody Applications: WB, ELISA Isotype: Rabbit IgG Reactivity: Human, Mouse Catalog Number: ABP52728 Lot Number: Refer to product label Formulation: Liquid Concentration: 1 mg/ml Storage: Store at -20°C. Avoid repeated Note: Contain sodium azide. freeze / thaw cycles. Background: The zinc finger CCCH domain-containing protein 13 (ZC3H13) is a 1668 amino acid protein that contains one C3H1-type zinc finger. ZC3H13 is phosphorylated upon DNA damage, most likely by ATM or ATR. Two isoforms of ZC3H13 exists as a result of alternative splicing events. The gene encoding ZC3H13 maps to chromosome 13, which contains around 114 million base pairs and 400 genes. Key tumor suppressor genes on chromosome 13 include the breast cancer susceptibility gene, BRCA2, and the RB1 (retinoblastoma) gene. As with most chromosomes, polysomy of part or all of chromosome 13 is deleterious to development and decreases the odds of survival. Trisomy 13, also known as Patau syndrome, is quite deadly and the few who survive past one year suffer from permanent neurologic defects, difficulty eating and vulnerability to serious respiratory infections. Application Notes: Optimal working dilutions should be determined experimentally by the investigator. Suggested starting dilutions are as follows: WB (1:500-1:2000), ELISA (1:10000). Not yet tested in other applications. Storage Buffer: PBS containing 50% Glycerol, 0.5% BSA and 0.02% Sodium Azide. Storage Instructions: Stable for one year at -20°C from date of shipment. For maximum recovery of product, centrifuge the original vial after thawing and prior to removing the cap. -
AAV-Mediated Direct in Vivo CRISPR Screen Identifies Functional Suppressors in Glioblastoma
View metadata, citation and similar papers at core.ac.uk brought to you by CORE HHS Public Access provided by DSpace@MIT Author manuscript Author ManuscriptAuthor Manuscript Author Nat Neurosci Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 February 14. Published in final edited form as: Nat Neurosci. 2017 October ; 20(10): 1329–1341. doi:10.1038/nn.4620. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma Ryan D. Chow*,1,2,3, Christopher D. Guzman*,1,2,4,5,6, Guangchuan Wang*,1,2, Florian Schmidt*,7,8, Mark W. Youngblood**,1,3,9, Lupeng Ye**,1,2, Youssef Errami1,2, Matthew B. Dong1,2,3, Michael A. Martinez1,2, Sensen Zhang1,2, Paul Renauer, Kaya Bilguvar1,10, Murat Gunel1,3,9,10, Phillip A. Sharp11,12, Feng Zhang13,14, Randall J. Platt7,8,#, and Sidi Chen1,2,3,4,5,6,15,16,# 1Department of Genetics, Yale University School of Medicine, 333 Cedar Street, SHM I-308, New Haven, CT 06520, USA 2System Biology Institute, Yale University School of Medicine, 333 Cedar Street, SHM I-308, New Haven, CT 06520, USA 3Medical Scientist Training Program, Yale University School of Medicine, 333 Cedar Street, SHM I-308, New Haven, CT 06520, USA 4Biological and Biomedical Sciences Program, Yale University School of Medicine, 333 Cedar Street, SHM I-308, New Haven, CT 06520, USA 5Immunobiology Program, Yale University School of Medicine, 333 Cedar Street, SHM I-308, New Haven, CT 06520, USA 6Department of Immunobiology, Yale University School of Medicine, 333 Cedar Street, SHM I-308, -
Familial Bilateral Cryptorchidism Is
Developmental defects J Med Genet: first published as 10.1136/jmedgenet-2019-106203 on 5 June 2019. Downloaded from ORIGINAL RESEARCH Familial bilateral cryptorchidism is caused by recessive variants in RXFP2 Katie Ayers ,1,2 Rakesh Kumar,3 Gorjana Robevska,2 Shoni Bruell,4,5 Katrina Bell,2 Muneer A Malik,6 Ross A Bathgate,4,5 Andrew Sinclair1,2 3 ► Additional material is ABSTRact structure derived from the primitive mesenchyme. published online only. To view Background Cryptorchidism or failure of testicular During the transabdominal phase, the hypertrophy please visit the journal online (http:// dx. doi. org/ 10. 1136/ descent is the most common genitourinary birth defect in and growth of the gubernaculum steers the testis jmedgenet- 2019- 106203). males. While both the insulin-like peptide 3 (INSL3) and to the caudal part of abdomen. The descent of its receptor, relaxin family peptide receptor 2 (RXFP2), the testis requires hormonal factors produced by For numbered affiliations see have been demonstrated to control testicular descent in the fetal testis itself, such as INSL3 and androgens end of article. mice, their link to human cryptorchidism is weak, with no (see Mäkelä et al4 for a review). Several genes and clear cause–effect demonstrated. pathways have been implicated in testicular descent Correspondence to Dr Katie Ayers, Murdoch Objective To identify the genetic cause of a case of and cryptorchidism, mainly from work in mouse 4 Children’s Research Institute, familial cryptorchidism. models. This includes the insulin-like peptide 3 Parkville, VIC 3052, Australia; Methods We recruited a family in which four boys (INSL3) hormone and its receptor, relaxin family katie. -
Zc3h13/Flacc Is Required for Adenosine Methylation by Bridging the Mrna- Binding Factor Rbm15/Spenito to the M6a Machinery Component Wtap/Fl(2)D
Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA- binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d Philip Knuckles,1,2,12 Tina Lence,3,12 Irmgard U. Haussmann,4,5 Dominik Jacob,6 Nastasja Kreim,7 Sarah H. Carl,1,8 Irene Masiello,3,9 Tina Hares,3 Rodrigo Villaseñor,1,2,11 Daniel Hess,1 Miguel A. Andrade-Navarro,3,10 Marco Biggiogera,9 Mark Helm,6 Matthias Soller,4 Marc Bühler,1,2 and Jean-Yves Roignant3 1Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; 2University of Basel, Basel 4002, Switzerland; 3Institute of Molecular Biology, 55128 Mainz, Germany; 4School of Life Science, Faculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, United Kingdom; 5School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; 6Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany; 7Bioinformatics Core Facility, Institute of Molecular Biology, 55128 Mainz, Germany; 8Swiss Institute of Bioinformatics, Basel 4058, Switzerland; 9Laboratory of Cell Biology and Neurobiology, Department of Animal Biology, University of Pavia, Pavia 27100, Italy; 10Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany N6-methyladenosine (m6A) is the most abundant mRNA modification in eukaryotes, playing crucial roles in mul- tiple biological processes. m6A is catalyzed by the activity of methyltransferase-like 3 (Mettl3), which depends on additional proteins whose precise functions remain poorly understood. Here we identified Zc3h13 (zinc finger CCCH domain-containing protein 13)/Flacc [Fl(2)d-associated complex component] as a novel interactor of m6A methyltransferase complex components in Drosophila and mice.