Rare Deletions at 16P13.11 Predispose to a Diverse Spectrum of Sporadic Epilepsy Syndromes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gpr161 Anchoring of PKA Consolidates GPCR and Camp Signaling
Gpr161 anchoring of PKA consolidates GPCR and cAMP signaling Verena A. Bachmanna,1, Johanna E. Mayrhofera,1, Ronit Ilouzb, Philipp Tschaiknerc, Philipp Raffeinera, Ruth Röcka, Mathieu Courcellesd,e, Federico Apeltf, Tsan-Wen Lub,g, George S. Baillieh, Pierre Thibaultd,i, Pia Aanstadc, Ulrich Stelzlf,j, Susan S. Taylorb,g,2, and Eduard Stefana,2 aInstitute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria; bDepartment of Chemistry and Biochemistry, University of California, San Diego, CA 92093; cInstitute of Molecular Biology, University of Innsbruck, 6020 Innsbruck, Austria; dInstitute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada H3C 3J7; eDépartement de Biochimie, Université de Montréal, Montreal, QC, Canada H3C 3J7; fOtto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; gDepartment of Pharmacology, University of California, San Diego, CA 92093; hInstitute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom; iDepartment of Chemistry, Université de Montréal, Montreal, QC, Canada H3C 3J7; and jInstitute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, 8010 Graz, Austria Contributed by Susan S. Taylor, May 24, 2016 (sent for review February 18, 2016; reviewed by John J. G. Tesmer and Mark von Zastrow) Scaffolding proteins organize the information flow from activated G accounts for nanomolar binding affinities to PKA R subunit dimers protein-coupled receptors (GPCRs) to intracellular effector cascades (12, 13). Moreover, additional components of the cAMP signaling both spatially and temporally. By this means, signaling scaffolds, such machinery, such as GPCRs, adenylyl cyclases, and phosphodiester- as A-kinase anchoring proteins (AKAPs), compartmentalize kinase ases, physically interact with AKAPs (1, 5, 11, 14). -
Identification and Characterization of RHOA-Interacting Proteins in Bovine Spermatozoa1
BIOLOGY OF REPRODUCTION 78, 184–192 (2008) Published online before print 10 October 2007. DOI 10.1095/biolreprod.107.062943 Identification and Characterization of RHOA-Interacting Proteins in Bovine Spermatozoa1 Sarah E. Fiedler, Malini Bajpai, and Daniel W. Carr2 Department of Medicine, Oregon Health & Sciences University and Veterans Affairs Medical Center, Portland, Oregon 97239 ABSTRACT Guanine nucleotide exchange factors (GEFs) catalyze the GDP for GTP exchange [2]. Activation is negatively regulated by In somatic cells, RHOA mediates actin dynamics through a both guanine nucleotide dissociation inhibitors (RHO GDIs) GNA13-mediated signaling cascade involving RHO kinase and GTPase-activating proteins (GAPs) [1, 2]. Endogenous (ROCK), LIM kinase (LIMK), and cofilin. RHOA can be RHO can be inactivated via C3 exoenzyme ADP-ribosylation, negatively regulated by protein kinase A (PRKA), and it and studies have demonstrated RHO involvement in actin-based interacts with members of the A-kinase anchoring (AKAP) cytoskeletal response to extracellular signals, including lyso- family via intermediary proteins. In spermatozoa, actin poly- merization precedes the acrosome reaction, which is necessary phosphatidic acid (LPA) [2–4]. LPA is known to signal through for normal fertility. The present study was undertaken to G-protein-coupled receptors (GPCRs) [4, 5]; specifically, LPA- determine whether the GNA13-mediated RHOA signaling activated GNA13 (formerly Ga13) promotes RHO activation pathway may be involved in acrosome reaction in bovine through GEFs [4, 6]. Activated RHO-GTP then signals RHO caudal sperm, and whether AKAPs may be involved in its kinase (ROCK), resulting in the phosphorylation and activation targeting and regulation. GNA13, RHOA, ROCK2, LIMK2, and of LIM-kinase (LIMK), which in turn phosphorylates and cofilin were all detected by Western blot in bovine caudal inactivates cofilin, an actin depolymerizer, the end result being sperm. -
Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement
School of Natural Sciences and Mathematics Reconstructing Cell Cycle Pseudo Time-Series Via Single-Cell Transcriptome Data—Supplement UT Dallas Author(s): Michael Q. Zhang Rights: CC BY 4.0 (Attribution) ©2017 The Authors Citation: Liu, Zehua, Huazhe Lou, Kaikun Xie, Hao Wang, et al. 2017. "Reconstructing cell cycle pseudo time-series via single-cell transcriptome data." Nature Communications 8, doi:10.1038/s41467-017-00039-z This document is being made freely available by the Eugene McDermott Library of the University of Texas at Dallas with permission of the copyright owner. All rights are reserved under United States copyright law unless specified otherwise. File name: Supplementary Information Description: Supplementary figures, supplementary tables, supplementary notes, supplementary methods and supplementary references. CCNE1 CCNE1 CCNE1 CCNE1 36 40 32 34 32 35 30 32 28 30 30 28 28 26 24 25 Normalized Expression Normalized Expression Normalized Expression Normalized Expression 26 G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage CCNE1 CCNE1 CCNE1 CCNE1 40 32 40 40 35 30 38 30 30 28 36 25 26 20 20 34 Normalized Expression Normalized Expression Normalized Expression 24 Normalized Expression G1 S G2/M G1 S G2/M G1 S G2/M G1 S G2/M Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Cell Cycle Stage Supplementary Figure 1 | High stochasticity of single-cell gene expression means, as demonstrated by relative expression levels of gene Ccne1 using the mESC-SMARTer data. For every panel, 20 sample cells were randomly selected for each of the three stages, followed by plotting the mean expression levels at each stage. -
Dissociation Between AKAP3 and PKARII Promotes AKAP3 Degradation in Sperm Capacitation
Dissociation between AKAP3 and PKARII Promotes AKAP3 Degradation in Sperm Capacitation Pnina Hillman, Debby Ickowicz, Ruth Vizel, Haim Breitbart* The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel Abstract Ejaculated spermatozoa must undergo a series of biochemical modifications called capacitation, prior to fertilization. Protein-kinase A (PKA) mediates sperm capacitation, although its regulation is not fully understood. Sperm contain several A-kinase anchoring proteins (AKAPs), which are scaffold proteins that anchor PKA. In this study, we show that AKAP3 is degraded in bovine sperm incubated under capacitation conditions. The degradation rate is variable in sperm from different bulls and is correlated with the capacitation ability. The degradation of AKAP3 was significantly inhibited by MG-132, a proteasome inhibitor, indicating that AKAP3 degradation occurs via the proteasomal machinery. Treatment with Ca2+-ionophore induced further degradation of AKAP3; however, this effect was found to be enhanced in the absence of Ca2+ in the medium or when intracellular Ca2+ was chelated the degradation rate of AKAP3 was significantly enhanced when intracellular space was alkalized using NH4Cl, or when sperm were treated with Ht31, a peptide that contains the PKA-binding domain of AKAPs. Moreover, inhibition of PKA activity by H89, or its activation using 8Br-cAMP, increased AKAP3 degradation rate. This apparent contradiction could be explained by assuming that binding of PKA to AKAP3 protects AKAP3 from degradation. We conclude that AKAP3 degradation is regulated by intracellular alkalization and PKARII anchoring during sperm capacitation. Citation: Hillman P, Ickowicz D, Vizel R, Breitbart H (2013) Dissociation between AKAP3 and PKARII Promotes AKAP3 Degradation in Sperm Capacitation. -
© Copyright 2021 Heather Raquel Dahlin
© Copyright 2021 Heather Raquel Dahlin The Structure of Sperm Autoantigenic Protein (SPA17): An R2D2 Protein Critical to Cilia and Implicated in Oncogenesis Heather Raquel Dahlin A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2021 Reading Committee: John D. Scott, Chair Ning Zheng Linda Wordeman Program Authorized to Offer Degree: Pharmacology University of Washington Abstract Structure of SPA17: An R2D2 Protein Critical to Cilia and Implicated in Oncogenesis Heather Raquel Dahlin Chair of the Supervisory Committee: John D. Scott, Ph.D., Edwin G. Krebs- Speights Professor of Cell Signaling and Cancer Biology Pharmacology A-Kinase Anchoring proteins (AKAPs) localize the activity of cyclic AMP (cAMP)-Dependent Protein Kinase (PKA) through interaction of an amphipathic helix that binds to a conserved RIIα docking and dimerization (R2D2) domain on the N-terminus of PKA. Genome analysis indicates that at least thirteen other RIIα superfamily proteins exist in humans, which are not coupled to cyclic nucleotide binding domains and are largely localized to cilia and flagella. The newly reported R2D2 proteins exist in two lineages differing by their similarity to Type I or Type II PKA. Moreover, R2D2 domains bind to AKAPs and can contain extra regulatory sequences conferring novel functions and binding specificity. Here we detail the structure of one such domain comprising the N-terminus of Sperm Autoantigenic Protein 17 (SPA17) resolved to 1.72 Å. The structure of core hydrophobic sites for dimerization and AKAP binding are highly conserved between PKA and SPA17. Additional flanking sequences outside of the core R2D2 domain occlude the AKAP binding site and reduce the affinity for AKAP helices in the absence of heterodimerization with another R2D2 protein, ROPN1L. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Direct in Vivo Mapping of Functional Suppressors in Glioblastoma Genome
bioRxiv preprint doi: https://doi.org/10.1101/153460; this version posted June 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Direct in vivo mapping of functional suppressors in glioblastoma genome Ryan D. Chow *,1,2,3, Christopher D. Guzman*,1,2,4,5,6, Guangchuan Wang *,1,2, Florian Schmidt *,7,8, Mark W. Youngblood **,1,3,9, Lupeng Ye **,1,2, Youssef Errami 1,2, Matthew B. Dong 1,2,3, Michael A. Martinez 1,2, Sensen Zhang 1,2, Paul Renauer, Kaya Bilguvar 1,10, Murat Gunel 1,3,9,10, Phillip A. Sharp 11,12, Feng Zhang 13,14, Randall J. Platt 7,8,#, and Sidi Chen 1,2,3,4,5,15,16# Affiliations 1. Department of Genetics 2. System Biology Institute 3. MD-PhD Program 4. Biological and Biomedical Sciences Program 5. Immunobiology Program 6. Department of Immunobiology Yale University School of Medicine 333 Cedar Street, SHM I-308, New Haven, CT 06520, USA 7. Department of Biosystems Science and Engineering, ETH Zurich Mattenstrasse 26, 4058 Basel, Switzerland 8. Department of Chemistry, University of Basel Petersplatz 1, 4003 Basel, Switzerland 9. Department of Neurosurgery 10. Yale Center for Genome Analysis Yale University School of Medicine 300 Cedar Street, New Haven, CT 06520-8043 11. Koch Institute for Integrative Cancer Research, MIT 12. Department of Biology, MIT 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA 13. Broad Institute of MIT and Harvard 14. Department of Biological Engineering, MIT 75 Ames Street, Cambridge, MA 02142, USA 15. -
TCTE1 Is a Conserved Component of the Dynein Regulatory Complex and Is Required for Motility and Metabolism in Mouse Spermatozoa
TCTE1 is a conserved component of the dynein PNAS PLUS regulatory complex and is required for motility and metabolism in mouse spermatozoa Julio M. Castanedaa,b,1, Rong Huac,d,1, Haruhiko Miyatab, Asami Ojib,e, Yueshuai Guoc,d, Yiwei Chengc,d, Tao Zhouc,d, Xuejiang Guoc,d, Yiqiang Cuic,d, Bin Shenc, Zibin Wangc, Zhibin Huc,f, Zuomin Zhouc,d, Jiahao Shac,d, Renata Prunskaite-Hyyrylainena,g,h, Zhifeng Yua,i, Ramiro Ramirez-Solisj, Masahito Ikawab,e,k,2, Martin M. Matzuka,g,i,l,m,n,2, and Mingxi Liuc,d,2 aDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; bResearch Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; cState Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People’s Republic of China; dDepartment of Histology and Embryology, Nanjing Medical University, Nanjing 210029, People’s Republic of China; eGraduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871, Japan; fAnimal Core Facility of Nanjing Medical University, Nanjing 210029, People’s Republic of China; gCenter for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030; hFaculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland; iCenter for Drug Discovery, Baylor College of Medicine, Houston, TX 77030; jWellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom; kThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 1088639, Japan; lDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; mDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; and nDepartment of Pharmacology, Baylor College of Medicine, Houston, TX 77030 Contributed by Martin M. -
A Chromosome Level Genome of Astyanax Mexicanus Surface Fish for Comparing Population
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.189654; this version posted July 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title 2 A chromosome level genome of Astyanax mexicanus surface fish for comparing population- 3 specific genetic differences contributing to trait evolution. 4 5 Authors 6 Wesley C. Warren1, Tyler E. Boggs2, Richard Borowsky3, Brian M. Carlson4, Estephany 7 Ferrufino5, Joshua B. Gross2, LaDeana Hillier6, Zhilian Hu7, Alex C. Keene8, Alexander Kenzior9, 8 Johanna E. Kowalko5, Chad Tomlinson10, Milinn Kremitzki10, Madeleine E. Lemieux11, Tina 9 Graves-Lindsay10, Suzanne E. McGaugh12, Jeff T. Miller12, Mathilda Mommersteeg7, Rachel L. 10 Moran12, Robert Peuß9, Edward Rice1, Misty R. Riddle13, Itzel Sifuentes-Romero5, Bethany A. 11 Stanhope5,8, Clifford J. Tabin13, Sunishka Thakur5, Yamamoto Yoshiyuki14, Nicolas Rohner9,15 12 13 Authors for correspondence: Wesley C. Warren ([email protected]), Nicolas Rohner 14 ([email protected]) 15 16 Affiliation 17 1Department of Animal Sciences, Department of Surgery, Institute for Data Science and 18 Informatics, University of Missouri, Bond Life Sciences Center, Columbia, MO 19 2 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 20 3 Department of Biology, New York University, New York, NY 21 4 Department of Biology, The College of Wooster, Wooster, OH 22 5 Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 23 6 Department of Genome Sciences, University of Washington, Seattle, WA 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.189654; this version posted July 6, 2020. -
Analysis of Diet-Induced Differential Methylation, Expression, And
www.nature.com/scientificreports OPEN Analysis of diet-induced diferential methylation, expression, and interactions of lncRNA and protein- Received: 2 March 2018 Accepted: 29 June 2018 coding genes in mouse liver Published: xx xx xxxx Jose P. Silva1 & Derek van Booven2 Long non-coding RNAs (lncRNAs) regulate expression of protein-coding genes in cis through chromatin modifcations including DNA methylation. Here we interrogated whether lncRNA genes may regulate transcription and methylation of their fanking or overlapping protein-coding genes in livers of mice exposed to a 12-week cholesterol-rich Western-style high fat diet (HFD) relative to a standard diet (STD). Deconvolution analysis of cell type-specifc marker gene expression suggested similar hepatic cell type composition in HFD and STD livers. RNA-seq and validation by nCounter technology revealed diferential expression of 14 lncRNA genes and 395 protein-coding genes enriched for functions in steroid/cholesterol synthesis, fatty acid metabolism, lipid localization, and circadian rhythm. While lncRNA and protein-coding genes were co-expressed in 53 lncRNA/protein-coding gene pairs, both were diferentially expressed only in 4 lncRNA/protein-coding gene pairs, none of which included protein- coding genes in overrepresented pathways. Furthermore, 5-methylcytosine DNA immunoprecipitation sequencing and targeted bisulfte sequencing revealed no diferential DNA methylation of genes in overrepresented pathways. These results suggest lncRNA/protein-coding gene interactions in cis play a minor role mediating hepatic expression of lipid metabolism/localization and circadian clock genes in response to chronic HFD feeding. More than 70% of the mammalian genome is transcribed as non-coding RNA (ncRNA) while only 1–2% of the mammalian genome is transcribed as protein-coding RNA1–3. -
A Class of Circadian Long Non-Coding Rnas Mark Enhancers Modulating Long-Range Circadian Gene Regulation Zenghua Fan1,2, Meng Zhao3, Parth D
5720–5738 Nucleic Acids Research, 2017, Vol. 45, No. 10 Published online 8 March 2017 doi: 10.1093/nar/gkx156 A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation Zenghua Fan1,2, Meng Zhao3, Parth D. Joshi4,PingLi5, Yan Zhang5, Weimin Guo3, Yichi Xu1,2, Haifang Wang3, Zhihu Zhao5 and Jun Yan3,* 1 CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Downloaded from https://academic.oup.com/nar/article-abstract/45/10/5720/3063381 by guest on 06 March 2019 Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, 2University of Chinese Academy of Sciences, Shanghai 200031, China, 3Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, 4Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen,¨ Germany and 5Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China Received February 04, 2017; Editorial Decision February 23, 2017; Accepted February 24, 2017 ABSTRACT regulation and shed new lights on the evolutionary origin of lncRNAs. Circadian rhythm exerts its influence on animal physiology and behavior by regulating gene expres- sion at various levels. Here we systematically ex- INTRODUCTION plored circadian long non-coding RNAs (lncRNAs) Circadian rhythm is an intrinsic 24 h oscillation of var- in mouse liver and examined their circadian reg- ious physiological processes and behaviors synchronized ulation. We found that a significant proportion of with daily light/dark cycle in a wide-range of species. -
Hereditary Spastic Paraplegia: from Genes, Cells and Networks to Novel Pathways for Drug Discovery
brain sciences Review Hereditary Spastic Paraplegia: From Genes, Cells and Networks to Novel Pathways for Drug Discovery Alan Mackay-Sim Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia; a.mackay-sim@griffith.edu.au Abstract: Hereditary spastic paraplegia (HSP) is a diverse group of Mendelian genetic disorders affect- ing the upper motor neurons, specifically degeneration of their distal axons in the corticospinal tract. Currently, there are 80 genes or genomic loci (genomic regions for which the causative gene has not been identified) associated with HSP diagnosis. HSP is therefore genetically very heterogeneous. Finding treatments for the HSPs is a daunting task: a rare disease made rarer by so many causative genes and many potential mutations in those genes in individual patients. Personalized medicine through genetic correction may be possible, but impractical as a generalized treatment strategy. The ideal treatments would be small molecules that are effective for people with different causative mutations. This requires identification of disease-associated cell dysfunctions shared across geno- types despite the large number of HSP genes that suggest a wide diversity of molecular and cellular mechanisms. This review highlights the shared dysfunctional phenotypes in patient-derived cells from patients with different causative mutations and uses bioinformatic analyses of the HSP genes to identify novel cell functions as potential targets for future drug treatments for multiple genotypes. Keywords: neurodegeneration; motor neuron disease; spastic paraplegia; endoplasmic reticulum; Citation: Mackay-Sim, A. Hereditary protein-protein interaction network Spastic Paraplegia: From Genes, Cells and Networks to Novel Pathways for Drug Discovery. Brain Sci. 2021, 11, 403.