2Nd Annual Eugene Bee Survey Hosted by Walama Restoration Project Beyond Toxics & Oregon Bee Project
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orchard Mason Bees
Orchard Mason Bees This page offers WWW links outside WSU as an option for finding further information. No endorsement of products or information is implied by including those sites. The orchard mason bee (Osmia lignaria) is a gentle beneficial insect that has potential as a pollinator of apples, cherries, and other tree fruits. It is found throughout most of North America, particularly in wooded areas but often around homes in towns and cities. Homeowners sometimes become concerned when they see the bee entering cavities under shake siding or investigating nail holes or other cavities in wood during March through early June. These are not destructive insects, since they do not excavate holes in the wood, though they will clean out loose debris. No controls are recommended, since no damage is done. To prevent the bee from nesting, holes may be filled with caulking. The orchard mason bee is usually slightly smaller than a honey bee and a shiny dark blue in color. The actual size of the bee depends largely upon the size of the hole in which it grew. Males (Fig. 1) are smaller than females, have longer antennae and an additional tuft of light colored hairs on the face. Females (Fig. 2) have hairs on the underside of the abdomen, called the "scopa", adapted for carrying pollen. Fig. 1 Male orchard bee. Note the long antennae. (The red coloring is caused by Chaetodactylus sp. mites riding on the bee.) Female orchard mason bee on blossom. Fig. 2 The female approaches the flower from the top, transferring pollen from other flowers in the process. -
Anthidium Manicatum, an Invasive Bee, Excludes a Native Bumble Bee, Bombus Impatiens, from floral Resources
Biol Invasions https://doi.org/10.1007/s10530-018-1889-7 (0123456789().,-volV)(0123456789().,-volV) ORIGINAL PAPER Anthidium manicatum, an invasive bee, excludes a native bumble bee, Bombus impatiens, from floral resources Kelsey K. Graham . Katherine Eaton . Isabel Obrien . Philip T. Starks Received: 15 April 2018 / Accepted: 21 November 2018 Ó Springer Nature Switzerland AG 2018 Abstract Anthidium manicatum is an invasive pol- response to A. manicatum presence. We found that B. linator reaching widespread distribution in North impatiens avoided foraging near A. manicatum in both America. Male A. manicatum aggressively defend years; but despite this resource exclusion, we found no floral territories, attacking heterospecific pollinators. evidence of fitness consequences for B. impatiens. Female A. manicatum are generalists, visiting many of These results suggest A. manicatum pose as significant the same plants as native pollinators. Because of A. resource competitors, but that B. impatiens are likely manicatum’s rapid range expansion, the territorial able to compensate for this resource loss by finding behavior of males, and the potential for female A. available resources elsewhere. manicatum to be significant resource competitors, invasive A. manicatum have been prioritized as a Keywords Exotic species Á Resource competition Á species of interest for impact assessment. But despite Interspecific competition Á Foraging behavior Á concerns, there have been no empirical studies inves- Pollination tigating the impact of A. manicatum on North Amer- ican pollinators. Therefore, across a two-year study, we monitored foraging behavior and fitness of the common eastern bumble bee (Bombus impatiens) in Introduction With increasing movement of goods and people Electronic supplementary material The online version of around the world, introduction of exotic species is this article (https://doi.org/10.1007/s10530-018-1889-7) con- increasing at an unprecedented rate (Ricciardi et al. -
Wisconsin Bee Identification Guide
WisconsinWisconsin BeeBee IdentificationIdentification GuideGuide Developed by Patrick Liesch, Christy Stewart, and Christine Wen Honey Bee (Apis mellifera) The honey bee is perhaps our best-known pollinator. Honey bees are not native to North America and were brought over with early settlers. Honey bees are mid-sized bees (~ ½ inch long) and have brownish bodies with bands of pale hairs on the abdomen. Honey bees are unique with their social behavior, living together year-round as a colony consisting of thousands of individuals. Honey bees forage on a wide variety of plants and their colonies can be useful in agricultural settings for their pollination services. Honey bees are our only bee that produces honey, which they use as a food source for the colony during the winter months. In many cases, the honey bees you encounter may be from a local beekeeper’s hive. Occasionally, wild honey bee colonies can become established in cavities in hollow trees and similar settings. Photo by Christy Stewart Bumble bees (Bombus sp.) Bumble bees are some of our most recognizable bees. They are amongst our largest bees and can be close to 1 inch long, although many species are between ½ inch and ¾ inch long. There are ~20 species of bumble bees in Wisconsin and most have a robust, fuzzy appearance. Bumble bees tend to be very hairy and have black bodies with patches of yellow or orange depending on the species. Bumble bees are a type of social bee Bombus rufocinctus and live in small colonies consisting of dozens to a few hundred workers. Photo by Christy Stewart Their nests tend to be constructed in preexisting underground cavities, such as former chipmunk or rabbit burrows. -
The “Houdini” Fly Jean R
Natter’s Notes A New Pest of Mason Bees: The “Houdini” Fly Jean R. Natter Early in 2020, a new pest of mason bee, Cacoxenus sluggishly, and are often seen near the entry to a nesting indagator, was identified in Washington State for the tunnel. first time. It’s often referred to as the Houdini Fly After the mother bee leaves the nesting tunnel, the because of the unique way it escapes from the mason Houdini fly enters the tube, lays eggs on the pollen ball, bee’s nesting cell. It’s also nicknamed the Red Devil due then quickly exits. After the nesting cell is closed by the to its large red eyes, or just Devil Fly. It’s presence in mother mason bee, the fly larvae hatch and eat the Oregon is suspected but not yet verified. pollen ball. As a result, the mason bee larva starves. The arrival of the Houdini fly is suspected to be an unfortunate example of moving bees without carefully inspecting them and their nests prior to the move. “In New York, the first two records were in 2011, although it may have arrived there earlier. It had presumably come there from Europe, probably someone moving an unclean nest block,” said Josh Vlach, from the Oregon Department of Agriculture; interviewed by Andony Melathopolous; PolliNation Podcast #154 (2020). The Houdini fly, Cacoxenus indagator, is a newly identified kleptoparasite of mason bees in Washington State. Its presence is not yet verified in Oregon. This fly resembles the Drosophila fruit fly; it’s the same size, has large red eyes, but is a drab brown overall and moves sluggishly. -
LIFE 4 Pollinators Bees of the Mediterranean Hairs Are Used to Gather the Pollen Grains
NO OR FEW HAIR FEW OR NO HAIRY ANDRENID A may be present. be may E COLITIDAE E D I GU D IEL F morphogenus more than one class per category category per class one than more morphogenus COLITIDAE n each each n I classes. several propose we categories, protection under the common agricultural policy. agricultural common the under protection or each of these these of each or F colour. tegument and hairs strategy, the pollinators initiative and biodiversity biodiversity and initiative pollinators the strategy, MEGACHILIDAE he traits you need to observe at first are size, size, are first at observe to need you traits he T legislation, including amongst others the biodiversity biodiversity the others amongst including legislation, HALICTIDAE morphogenera defined by few traits. few by defined morphogenera U policy and and policy U E of range a to contribute wil project he T regroup them in few big groups of species called called species of groups big few in them regroup the remaining high-value pollinator habitats. pollinator high-value remaining the MEGACHILIDAE ees species are not easy to identify, but we we but identify, to easy not are species ees B and ensure sustainable management and restoration of of restoration and management sustainable ensure and the level of individual species individual of level the to address the main drivers behind pollinator decline decline pollinator behind drivers main the address to recognised within 15 morpho-groups and not at at not and morpho-groups 15 within recognised obstacles to proper planning of successful programmes programmes successful of planning proper to obstacles APIDAE morphological traits only, allows the bees to be be to bees the allows only, traits morphological his knowledge gap is one of the main main the of one is gap knowledge his T diversity. -
Decline of Six Native Mason Bee Species Following the Arrival of an Exotic Congener Kathryn A
www.nature.com/scientificreports OPEN Decline of six native mason bee species following the arrival of an exotic congener Kathryn A. LeCroy1*, Grace Savoy‑Burke2, David E. Carr1, Deborah A. Delaney2 & T’ai H. Roulston1 A potential driver of pollinator declines that has been hypothesized but seldom documented is the introduction of exotic pollinator species. International trade often involves movement of many insect pollinators, especially bees, beyond their natural range. For agricultural purposes or by inadvertent cargo shipment, bee species successfully establishing in new ranges could compete with native bees for food and nesting resources. In the Mid‑Atlantic United States, two Asian species of mason bee (Osmia taurus and O. cornifrons) have become recently established. Using pan‑trap records from the Mid‑Atlantic US, we examined catch abundance of two exotic and six native Osmia species over the span of ffteen years (2003–2017) to estimate abundance changes. All native species showed substantial annual declines, resulting in cumulative catch losses ranging 76–91% since 2003. Exotic species fared much better, with O. cornifrons stable and O. taurus increasing by 800% since 2003. We characterize the areas of niche overlap that may lead to competition between native and exotic species of Osmia, and we discuss how disease spillover and enemy release in this system may result in the patterns we document. International trade creates opportunities for plant and animal species to be intentionally or inadvertently intro- duced into novel ecosystems where they may interact with native species. One outcome of species introductions is the potential for competitive interactions with native species, especially those that are most closely related to the introduced species. -
UC Berkeley UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program Permalink https://escholarship.org/uc/item/8z91q49s Author Ward, Laura True Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program By Laura T Ward A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Nicholas J. Mills, Chair Professor Erica Bree Rosenblum Professor Eileen A. Lacey Fall 2020 Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program © 2020 by Laura T Ward Abstract Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program By Laura T Ward Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor Nicholas J. Mills, Chair This dissertation combines two disparate subjects: bees and belonging. The first two chapters explore pesticide exposure for wild bees and honey bees visiting crop and non-crop plants in northern California agriculture. The final chapter utilizes surveys from a mentorship program as a case study to analyze sense of belonging among undergraduates. The first chapter of this dissertation explores pesticide exposure for wild bees and honey bees visiting sunflower crops. -
2017 City of York Biodiversity Action Plan
CITY OF YORK Local Biodiversity Action Plan 2017 City of York Local Biodiversity Action Plan - Executive Summary What is biodiversity and why is it important? Biodiversity is the variety of all species of plant and animal life on earth, and the places in which they live. Biodiversity has its own intrinsic value but is also provides us with a wide range of essential goods and services such as such as food, fresh water and clean air, natural flood and climate regulation and pollination of crops, but also less obvious services such as benefits to our health and wellbeing and providing a sense of place. We are experiencing global declines in biodiversity, and the goods and services which it provides are consistently undervalued. Efforts to protect and enhance biodiversity need to be significantly increased. The Biodiversity of the City of York The City of York area is a special place not only for its history, buildings and archaeology but also for its wildlife. York Minister is an 800 year old jewel in the historical crown of the city, but we also have our natural gems as well. York supports species and habitats which are of national, regional and local conservation importance including the endangered Tansy Beetle which until 2014 was known only to occur along stretches of the River Ouse around York and Selby; ancient flood meadows of which c.9-10% of the national resource occurs in York; populations of Otters and Water Voles on the River Ouse, River Foss and their tributaries; the country’s most northerly example of extensive lowland heath at Strensall Common; and internationally important populations of wetland birds in the Lower Derwent Valley. -
Additional Activities Honey Bee Math
Additional Activities Name: _____________________________ Honey Bee Math Date:__________________ Answer the following questions using these honey bee facts. Weight of average worker bee: 80 milligrams Amount of nectar the honey sac can hold: 70 milligrams Amount of pollen a worker can carry in the pollen baskets: 20 milligrams Maximum number of eggs laid daily by the queen: 3,000 Average number of trips a worker bee makes outside the hive each day: 10 trips Average speed of a worker bee in flight: 15 miles per hour Average distance from hive a worker bee travels in one trip: 1-1/2 miles Average life of a worker bee in the summer: 45 days 1. What is the average total weight a worker bee carries in both nectar and pollen per trip? Amount of nectar _____ + amount of pollen _____ = _____ Total Weight 2. What is the amount of nectar one worker bee could contribute to the colony in one day? Amount of nectar carried in one trip ____ x number of trips in one day _____ = _____ Total Nectar 3. What is the ratio of the total weight of a full load of nectar and pollen carried by the worker bee in one trip as compared to her body weight? 4. If you could carry the same amount of weight in comparison to your body weight as a honey bee, how much weight could you carry? 5. Approximately how many weeks does a worker bee live in the summer? 6. About how long would it take a worker bee to fly to a garden 2 miles away? 7. -
Downloaded From
HoneybeeLives.org Honeybees are insects, and like all insects, bees have six legs, a three-part body, a pair of antennae, compound eyes, jointed legs, and a hard exoskeleton. The three body parts are the head, thorax, and abdomen (the tail end). Honeybees live in a highly evolved social structure called a colony, with each bee working towards the good of the hive as a whole. The bees in the colony must be considered as one organism. Within this organism are three distinct kinds of bees. Worker Drone Queen Queen Bee There is only one queen per hive. The queen is the only bee with fully developed ovaries. A queen bee can live for 3-5 years. At the beginning of her life, the queen takes one, or two, “mating flights.” She is inseminated by several male (drone) bees, not necessarily from her hive, and requires no other input of sperm during her life. At the height of her laying season each year, from early spring into mid-summer, she lays up to 2000 eggs per day. Fertilized eggs become female (worker bees) and unfertilized eggs become male (drone bees). When she dies, or becomes unproductive, the other bees will "make" a new queen, sometimes two or three, by selecting a young larva and feeding it a diet solely of "royal jelly". For queen bees, it takes 16 days from egg to emergence. The queen bee will only sting another queen bee in a struggle for dominance in the hive Worker Bee All worker bees are female, but they are not able to reproduce. -
Reproduction of the Red Mason Solitary Bee Osmia Rufa (Syn
Eur. J. Entomol. 112(1): 100–105, 2015 doi: 10.14411/eje.2015.005 ISSN 1210-5759 (print), 1802-8829 (online) Reproduction of the red mason solitary bee Osmia rufa (syn. Osmia bicornis) (Hymenoptera: Megachilidae) in various habitats MONIKA FLISZKIEWICZ, ANNA KuśnierczaK and Bożena Szymaś Department of apidology, institute of zoology, Poznań university of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; e-mails: [email protected]; [email protected]; [email protected] Key words. Hymenoptera, Megachilidae, Osmia rufa (Osmia bicornis), ecosystem, reproduction, pollination, parasitism Abstract. Osmia rufa L. (Osmia bicornis L.) is a species of a solitary bee, which pollinates many wild and cultivated plants. A total of 900 cocoons containing mature individuals of Osmia rufa L. (450 females and 450 males of a known weight), were placed in each of four habitats (orchard, mixed forest, hay meadow and arboretum of the Dendrology Institute of the Polish Academy of Sciences at Kórnik). These bees were provided with artificial nests made of the stems of common reed. The following parameters were calculated: reproduction dynamics, total number of chambers built by females, mean number of breeding chambers per reed tube and mean num- ber of cocoons per tube. included in the analysis were also the nectar flowers and weather conditions recorded in each of the habitats studied. General linear mixed models indicated that the highest number of chambers was recorded in the hay meadow (6.6 per tube). However, the number of cocoons per tube was similar in the hay meadow, forest and orchard (4.5–4.8 per tube) but was significantly lower in the arboretum (3.0 cocoons per tube on average). -
Nest Site Selection in the European Wool-Carder Bee, Anthidium Manicatum, with Methods for an Emerging Model Species*
Apidologie (2011) 42:181 – 191 Original article c INRA/DIB-AGIB/EDP Sciences, 2010 DOI: 10.1051/apido/2010050 Nest site selection in the European wool-carder bee, Anthidium manicatum, with methods for an emerging model species* Ansel Payne 1,DustinA.Schildroth2,PhilipT.Starks 3 1 Division of Invertebrate Zoology, American Museum of Natural History, NY 10024 New York, USA 2 Department of Psychology, University of New England, ME 04005 Biddeford, USA 3 Department of Biology, Tufts University, MA 02155 Medford, USA Received 6 February 2010 – Revised 11 May 2010 – Accepted 12 May 2010 Abstract – For many organisms, choosing an appropriate nest site is a critical component of reproductive fitness. Here we examine nest site selection in the solitary, resource defense polygynous bee, Anthidium manicatum. Using a wood-framed screen enclosure outfitted with food sources, nesting materials, and bam- boo trap nests, we show that female bees prefer to initiate nests in sites located high above the ground. We also show that nest sites located at higher levels are less likely to contain spiderwebs, suggesting an adaptive explanation for nest site height preferences. We report size differences between this study’s source populations in Boston, Massachusetts and Brooklyn, New York; male bees collected in Boston have smaller mean head widths than males collected in Brooklyn. Finally, we argue that methods for studying captive populations of A. manicatum hold great promise for research into sexual selection, alternative phenotypes, recognition systems, and the evolution of nesting behavior. Megachilidae / introduced species / solitary bee / enclosure methods 1. INTRODUCTION biased sexual size dimorphism unusual among bees (Darwin, 1871; Severinghaus et al., 1981; The European wool-carder bee, Anthidium Shreeves and Field, 2008).