Reef Check California Instruction Manual

Total Page:16

File Type:pdf, Size:1020Kb

Reef Check California Instruction Manual REEF CHECK CALIFORNIA INSTRUCTION MANUAL A Guide to Monitoring California’s Kelp Forests 9th Edition This is the official instruction manual (9th Edition) for the Reef Check California Community Monitoring Program. If you have any questions about training procedures or about the Reef Check California protocol, please contact Reef Check. 9th Edition April 2019 (1st Edition June 2006) Reef Check Foundation 13723 Fiji Way, B-2 Marina del Rey, CA 90292 USA Tel: 310-305-4622 Email: [email protected] Website: reefcheck.org This publication should be cited as: J. Freiwald, S. McMillan, D. Abbott, T. McHugh, K. Kozma. (2019). Reef Check California Instruction Manual: A Guide to Monitoring California’s Kelp Forests, 9th Edition. Reef Check Foundation, Marina del Rey, CA, USA. ISBN 0-9723051-9-X Front cover illustration by Jann Griffiths Back cover illustration by Amadeo Bachar Acknowledgements Reef Check California was launched in 2005 with the gracious assistance of the David and Lucile Packard Foundation’s California Coastal and Marine Initiative. Reef Check thanks its dedicated volunteers and scientists for their contribution to the development and evaluation of the Reef Check California protocol. We are especially grateful to scientific advisors for their assistance during the development of the Reef Check California Protocol: Dr. Richard Ambrose UCLA - Director Environmental Science and Engineering Program Mike Anghera UCLA Dive Safety Officer Dr. Mary Bergen Consultant to CA Dept. of Fish and Wildlife Dirk Burcham Aquarium of the Pacific - Catalina Conservancy Divers Dr. Mark Carr UCSC - PISCO Dr. Jennifer Caselle UCSB - PISCO Gary Davis National Park Service - Retired Amanda Jensen UCSC - PISCO Research Diver Dr. Kathy Ann Miller UC Berkeley, University Herbarium David Osorio CA Dept. of Fish and Wildlife – Dive Safety Officer Dr. Dan Pondella Occidental College - Director Vantuna Research Group Dr. Pete Raimondi UCSC - PISCO Dr. Donna Schroeder UCSB - Marine Science Institute Dr. John Stephens Vantuna Research Group - Retired John Ugoretz Habitat Conservation Program Manager, Marine Region CDFW 2 Table of Contents TABLE OF CONTENTS ............................................................................................................ 3 TABLE OF FIGURES ...................................................................................................................................... 6 TABLE OF TABLES ........................................................................................................................................ 9 INTRODUCTION ......................................................................................................................10 ABOUT THE REEF CHECK FOUNDATION ...................................................................................................... 11 REEF CHECK CALIFORNIA ....................................................................................................12 THE PROGRAM IN CONTEXT ....................................................................................................................... 12 California Marine Protected Areas ...................................................................................................... 14 HOW TO PARTICIPATE IN REEF CHECK CALIFORNIA ..................................................................................... 15 LIABILITY ................................................................................................................................................... 16 CALIFORNIA’S MARINE ENVIRONMENT ..............................................................................17 MARINE ECOLOGY CRASH COURSE ............................................................................................................ 17 California’s Currents ............................................................................................................................ 17 Upwelling ............................................................................................................................................. 18 California’s Kelp Forests ..................................................................................................................... 19 ECOSYSTEM CHANGES AND LONG-TERM MONITORING ................................................................................ 19 Sea Star Wasting Disease and Urchin Barrens .................................................................................. 20 Invasive Species and Range Expansions ........................................................................................... 22 Invasive Seaweed, Sargassum horneri, Spreading in Southern California ........................................ 22 Crowned Sea Urchin Seen in Monterey Bay ...................................................................................... 23 Rare Species Sightings in California ................................................................................................... 23 SCIENTIFIC SURVEY METHODS ............................................................................................25 THE INTRICACIES OF DATA COLLECTION ..................................................................................................... 25 Variability ............................................................................................................................................. 25 Replication ........................................................................................................................................... 26 Precision vs. Accuracy ........................................................................................................................ 26 GENERAL SAMPLING METHODS .................................................................................................................. 27 Transects ............................................................................................................................................. 27 Size Frequency Surveys ..................................................................................................................... 28 Video Recordings ................................................................................................................................ 28 Sensors ............................................................................................................................................... 29 SCIENTIFIC INTEGRITY & ETHICAL CONCERNS ............................................................................................. 29 REEF CHECK CALIFORNIA SURVEY METHODS ..................................................................30 SURVEY OVERVIEW ................................................................................................................................... 30 SITE SELECTION ........................................................................................................................................ 32 INVERTEBRATE TRANSECT ......................................................................................................................... 32 KELP TRANSECT ........................................................................................................................................ 35 UNIFORM POINT CONTACT (UPC) TRANSECT ............................................................................................. 36 FISH TRANSECT......................................................................................................................................... 48 URCHIN SIZE FREQUENCY SURVEY ............................................................................................................ 56 NORTHERN RED ABALONE SIZE FREQUENCY SURVEY ................................................................................. 56 CLIMATE CHANGE MONITORING .................................................................................................................. 56 3 DEPLOYING THE TRANSECTS ...................................................................................................................... 57 REEF CHECK CALIFORNIA KEY SPECIES ...........................................................................59 INVERTEBRATE SPECIES ............................................................................................................................ 60 Mollusks .............................................................................................................................................. 62 Echinoderms ....................................................................................................................................... 68 Crustaceans ........................................................................................................................................ 73 Cnidarians ........................................................................................................................................... 74 KELP SPECIES ........................................................................................................................................... 78 Kelp (Laminariales) ............................................................................................................................. 78 Invasive Species ................................................................................................................................. 80 FISH SPECIES...........................................................................................................................................
Recommended publications
  • Paralabrax Nebulifer) in Nearshore Waters Off Northern San Diego County
    ROBERTS ET AL.: FEEDING HABITS OF BARRED SAND BASS CalCOFI Rep., Vol. XXV, 1984 THE FEEDING HABITS OF JUVENILE-SMALL ADULT BARRED SAND BASS (PARALABRAX NEBULIFER) IN NEARSHORE WATERS OFF NORTHERN SAN DIEGO COUNTY DALE A. ROBERTS‘, EDWARD E. DeMARTINI’, AND KENNETH M. PLUMMER2 Marine Science Institute University of California Santa Barbara, California 93106 ABSTRACT pelecipodos y peces epibent6nicos. Estas observa- The feeding habits of juvenile-small adult barred ciones no concuerdan con estudios previos, 10s cuales sand bass (Purulubrax nebulifer) are described, based consideran a la anchoveta del norte, Engruulis mor- on 165 specimens 123-523 mm standard length (SL) dux, como el elemento mas importante en la dieta de collected between San Onofre and Oceanside, Califor- P. nebulifer de tallas similares a las analizadas durante nia, at depths ranging from 8 to 30 m. Collections esta estudio. La dieta de P. nebulifer pequeiios (< 240 were made during an annual cycle from March 1981 to mm de longitud esthndar) es distinta debido a la pre- March 1982. sencia de crustaceos (misidaceos y antipodos gamir- The diet of the barred sand bass indicates that it idos), mientras que 10s ejemplares grandes (> 320 forages in close proximity to the substrate. Brachyuran mm LE) consumieron presas grandes como Porich- crabs, mysids, pelecypods, and epibenthic fishes were thys notutus (80-160 mm LE) y Octopus. P. nebulifer the most important prey. These findings are contrary de talla mediana (240-320 mm LE) contenian en su to previous studies, which found northern anchovy est6mago presas similares a las consumidas por 10s (Engruulis mordux) to be of major importance in the ejemplares grandes y pequeiios.
    [Show full text]
  • Report on the California Data-Limited Fisheries Project: Integrating MSE Into the Management of California State Fisheries
    Report on the California Data-Limited Fisheries Project: Integrating MSE into the Management of California State Fisheries July 2020 Introduction Over the past five years, California Department of Fish and Wildlife (CDFW) has made a substantial investment of resources in integrating management strategy evaluation (MSE) into the science and management of California state fisheries. The initial phase of the project, beginning in July 2015, used a stakeholder process to demonstrate how MSE could be used to manage data-limited fisheries in the state through the application of the Data-Limited Methods Toolkit (DLMtool). Four fisheries were analyzed as case studies for that phase of the project: Barred Sand Bass, California Halibut, Red Sea Urchin, and Warty Sea Cucumber. This led to the incorporation of MSE into the revised 2018 Master Plan for Fisheries (Master Plan) and laid the groundwork for continued collaboration with CDFW to build the scientific capacity of its staff and to apply MSE to additional fisheries. The current phase of the project, beginning in February 2018, included a series of webinars and workshops with a group of six CDFW biologists and managers to train them in basic fishery population dynamics modeling and the fundamentals of MSE using the DLMtool. The second component of the project involved developing new or updated MSEs for eight fisheries, including the four from the initial phase of the project and the following additional fisheries: Kelp Bass, Rock Crab, Spiny Lobster, and Redtail Surfperch. The eight fisheries were chosen because they represent a range of life histories and data availability. The outputs of these MSEs, which have been submitted to CDFW for review as of the date of this report, will be used to understand the tradeoffs and levels of uncertainty with the current management frameworks for each fishery and how they perform in both the short- and long-term.
    [Show full text]
  • <I>Aplysia Californica</I>
    Temperature Eff ects on Growth, Maturation, and Lifes- pan of the California Sea Hare (Aplysia californica) DUSTIN STOMMES, BLA, LYNNE A. FIEBER, PHD,* CHRISTINA BENO, ROBERT GERDES, MS, and THOMAS R. CAPO, BS We conducted a hatchery growth study to describe the variability in growth rates, spawning, and mortality of Aplysia californica in regard to rearing temperature. Animals were housed at a standard hatchery density of fi ve animals per cage, at temperatures of 13, 15, 18, and 21°C. Animals reared at 13 or 15°C grew as much as four times as large, lived twice as long, matured later, and spawned longer than did animals reared at 18 or 21°C. At age 170 to 205 days the fastest growth rates occurred at 18 and 21°C, and the slowest at 13°C. As animals at 18 and 21°C reached sexual maturity at ages 190 to 197 days, or ∼60% through their lifespans, their growth rates slowed such that by age 260 days, the fastest growth rate was at 13°C, and the slowest was at 21°C. Animals reared at 13 and 15°C reached sexual maturity at 242 and 208 days, respectively, or at ∼40% of their life spans. Lifespan and maximum average animal weight were signifi cantly inversely correlated with temperature (P ≤ 0.0001). However, there were no signifi cant diff erences at any temperature in the age at which maximum animal weight was reached when this age was expressed as a percentage of the life span: animals reached their maximum weight at ∼80% of their life span.
    [Show full text]
  • A Thesis Presented to the Faculty of the Department of Marine Science
    COMMUNITY STRUCTURE AND ENERGY FLOW WITHIN RHODOLITH HABITATS AT SANTA CATALINA ISLAND, CA A Thesis Presented to The Faculty of the Department of Marine Science San José State University In Partial Fulfillment Of the Requirements for the Degree Master of Science In Marine Science by Scott Stanley Gabara December 2014 © 2014 Scott S. Gabara ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled COMMUNITY STRUCTURE AND ENERGY FLOW WITHIN RHODOLITH HABITATS AT SANTA CATALINA ISLAND, CA By Scott Stanley Gabara APPROVED FOR THE DEPARTMENT OF MARINE SCIENCE SAN JOSÉ STATE UNIVERSITY December 2014 Dr. Diana L. Steller Moss Landing Marine Laboratories Dr. Michael H. Graham Moss Landing Marine Laboratories Dr. Scott L. Hamilton Moss Landing Marine Laboratories ABSTRACT COMMUNITY STRUCTURE AND ENERGY FLOW WITHIN RHODOLITH HABITATS AT SANTA CATALINA ISLAND, CA by Scott Stanley Gabara The purpose of this study was to describe the floral and faunal community associated with rhodolith beds, which are aggregations of free-living coralline algal nodules, off of Santa Catalina Island. Surveys of macroalgal cover, infaunal and epifaunal invertebrates, and fishes suggest rhodolith beds off Santa Catalina Island support greater floral and faunal abundances than adjacent sand habitat. Community separation between rhodolith and sand habitats was due to increased presence of fleshy macroalgae, herbivorous gastropods, and greater abundance of infaunal invertebrates dominated by amphipods, mainly tanaids and gammarids. Stable isotopes were used to determine important sources of primary production supporting rhodolith beds and to identify the major pathways of energy. Stable isotopes suggest the rhodolith bed food web is detrital based with contributions from water column particulate organic matter, drift kelp tissue, and kelp particulates from adjacent kelp beds.
    [Show full text]
  • Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................
    [Show full text]
  • WMSDB - Worldwide Mollusc Species Data Base
    WMSDB - Worldwide Mollusc Species Data Base Family: TURBINIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: VETIGASTROPODA-TROCHOIDEA ------ Family: TURBINIDAE Rafinesque, 1815 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=681, Genus=26, Subgenus=17, Species=203, Subspecies=23, Synonyms=411, Images=168 abyssorum , Bolma henica abyssorum M.M. Schepman, 1908 aculeata , Guildfordia aculeata S. Kosuge, 1979 aculeatus , Turbo aculeatus T. Allan, 1818 - syn of: Epitonium muricatum (A. Risso, 1826) acutangulus, Turbo acutangulus C. Linnaeus, 1758 acutus , Turbo acutus E. Donovan, 1804 - syn of: Turbonilla acuta (E. Donovan, 1804) aegyptius , Turbo aegyptius J.F. Gmelin, 1791 - syn of: Rubritrochus declivis (P. Forsskål in C. Niebuhr, 1775) aereus , Turbo aereus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) aethiops , Turbo aethiops J.F. Gmelin, 1791 - syn of: Diloma aethiops (J.F. Gmelin, 1791) agonistes , Turbo agonistes W.H. Dall & W.H. Ochsner, 1928 - syn of: Turbo scitulus (W.H. Dall, 1919) albidus , Turbo albidus F. Kanmacher, 1798 - syn of: Graphis albida (F. Kanmacher, 1798) albocinctus , Turbo albocinctus J.H.F. Link, 1807 - syn of: Littorina saxatilis (A.G. Olivi, 1792) albofasciatus , Turbo albofasciatus L. Bozzetti, 1994 albofasciatus , Marmarostoma albofasciatus L. Bozzetti, 1994 - syn of: Turbo albofasciatus L. Bozzetti, 1994 albulus , Turbo albulus O. Fabricius, 1780 - syn of: Menestho albula (O. Fabricius, 1780) albus , Turbo albus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) albus, Turbo albus T. Pennant, 1777 amabilis , Turbo amabilis H. Ozaki, 1954 - syn of: Bolma guttata (A. Adams, 1863) americanum , Lithopoma americanum (J.F.
    [Show full text]
  • Diversity and Life-Cycle Analysis of Pacific Ocean Zooplankton by Video Microscopy and DNA Barcoding: Crustacea
    Journal of Aquaculture & Marine Biology Research Article Open Access Diversity and life-cycle analysis of Pacific Ocean zooplankton by video microscopy and DNA barcoding: Crustacea Abstract Volume 10 Issue 3 - 2021 Determining the DNA sequencing of a small element in the mitochondrial DNA (DNA Peter Bryant,1 Timothy Arehart2 barcoding) makes it possible to easily identify individuals of different larval stages of 1Department of Developmental and Cell Biology, University of marine crustaceans without the need for laboratory rearing. It can also be used to construct California, USA taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy 2Crystal Cove Conservancy, Newport Coast, CA, USA reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Correspondence: Peter Bryant, Department of Newport Beach, California (Lat. 33.628342, Long. -117.927933) between May 2013 and Developmental and Cell Biology, University of California, USA, January 2020, and individual crustacean specimens were documented by video microscopy. Email Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the Received: June 03, 2021 | Published: July 26, 2021 University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 544 COI sequences were obtained falling into 199 Barcode Identification Numbers (BINs), of which 76 correspond to recognized species. For 15 species of decapods (Loxorhynchus grandis, Pelia tumida, Pugettia dalli, Metacarcinus anthonyi, Metacarcinus gracilis, Pachygrapsus crassipes, Pleuroncodes planipes, Lophopanopeus sp., Pinnixa franciscana, Pinnixa tubicola, Pagurus longicarpus, Petrolisthes cabrilloi, Portunus xantusii, Hemigrapsus oregonensis, Heptacarpus brevirostris), DNA barcoding allowed the matching of different life-cycle stages (zoea, megalops, adult).
    [Show full text]
  • Paralabrax, Pisces, Serranidae)
    BUTLER ET AL.: DEVELOPMENTAL STAGES OF THREE SEA BASSES CalCOFI Rep., Vol. XXm, 1982 DEVELOPMENTAL STAGES OF THREE CALIFORNIA SEA BASSES (PARALABRAX, PISCES, SERRANIDAE) JOHN L BUTLER, H. GEOFFREY MOSER, GREGORY S. HAGEMAN. AND LAYNE E. NORDGREN National Oceanic and Atmospheric Administraticm Depaltrnent of Biological Suencas National Marine Fisheries Service Universiiy of Southern CaMornia thnhwest Fishecies Center universily Park La Jdla, California 92038 Lw Angeles, California 90007 ABSTRACT was known from Cedros Island south to Cab San Eggs, larvae, and juveniles of kelp bass, Parala- Lucas and the Gulf of California (Fitch and Shultz bra clathratus, barred sand bass, P. nebulifer, and 1978). Larvae of Paralabrax sp. have been illustrated spotted sand bass, P. rnaculatofasciatus, are described by Kendall (1979) from CalCOFI specimens, which from specimens reared in the laboratory and from we have identified as P. clathratus. All three species specimens collected in the field. Eggs of spotted sand are found in nearshore areas from the surface to about bass'are 0.80-0.89 mm in diameter; eggs of kelp bass 600 feet (Miller and Lea 1972). and barred sand bass are 0.94-0.97 mm in diameter. The kelp and sand basses combined rank second in Larvae and juveniles of the three species may be dis- the California sport fish catch (Oliphant 1979). Iden- tinguished by differences in pigmentation during most tifying these three species in ichthyoplankton collec- stages of development. Larvae of the two species of tions may be important in monitoring population sand bass are indistinguishable during notochord changes and assessing the impact of human activities flexion.
    [Show full text]
  • Seashore Beaty Box #007) Adaptations Lesson Plan and Specimen Information
    Table of Contents (Seashore Beaty Box #007) Adaptations lesson plan and specimen information ..................................................................... 27 Welcome to the Seashore Beaty Box (007)! .................................................................................. 28 Theme ................................................................................................................................................... 28 How can I integrate the Beaty Box into my curriculum? .......................................................... 28 Curriculum Links to the Adaptations Lesson Plan ......................................................................... 29 Science Curriculum (K-9) ................................................................................................................ 29 Science Curriculum (10-12 Drafts 2017) ...................................................................................... 30 Photos: Unpacking Your Beaty Box .................................................................................................... 31 Tray 1: ..................................................................................................................................................... 31 Tray 2: .................................................................................................................................................... 31 Tray 3: ..................................................................................................................................................
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title A historical perspective of California recreational fisheries using a new database of "trophy" fish records (1966-2013), combined with fisheries analyses of three species in the genus Paralabrax Permalink https://escholarship.org/uc/item/1g40s1h0 Author Bellquist, Lyall F. Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO A historical perspective of California recreational fisheries using a new database of “trophy” fish records (1966-2013), combined with fisheries analyses of three species in the genus Paralabrax A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Marine Biology by Lyall F. Bellquist Committee in charge: Brice Semmens, Chair Richard Carson David Checkley Philip Hastings Ed Parnell 2015 Copyright Lyall F. Bellquist, 2015 All rights reserved. The Dissertation of Lyall F. Bellquist is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Chair University of California, San
    [Show full text]
  • Status of Reefs in Selected Southeast Asia Countries
    Reef Check Malaysia Bhd (783440-X) Box # 606, Unit 5.19 – 5.22, Wisma Central, Jalan Ampang, 50450 Kuala Lumpur, Malaysia 03 2161 5948 [email protected] Status of Reefs in Selected Southeast Asia Countries Alvin Jeyanathan Chelliah1*, Chen Sue Yee2, Affendi Yang Amri3, Kee Alfian Abd Adzis4, Julian Hyde5 1,2,5Reef Check Malaysia, Lot 5.19-5.22, Wisma Central, Jalan Ampang, 50450 Kuala Lumpur, Malaysia 3Institure of Biological Sciences, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia 4Marine Ecosystem Research Centre, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Malaysia. In 2012 the status of Southeast Asia’s coral reefs was determined using Reef Check survey methods on 295 sites from six different countries; 50 in Brunei, 22 in Philippines, 40 in Taiwan, 24 in Thailand, 18 in Indonesia and 141 in Malaysia. Data collected and assessed were the Indo Pacific Reef Check indicator fish, invertebrates and substrate. The assessment of the data shows that the reefs in Southeast Asia are in fair condition with 43.20% of live coral (hard coral + soft coral) cover. However the abundance of highly prized food fish (Barramundi Cod, Humphead Wrasse and Bumphead Parrotfish) and several other fish targeted for food were low. Invertebrates targeted for curio trade and food trade were also present in small number or completely absent at many survey sites. Overfishing seems to be the main impact to coral reefs in this region. Keywords: Coral Reefs, Survey, Status, Southeast Asia and Reef Check. Email: [email protected] 1. INTRODUCTION 1.1 Southeast Asia’s Reefs Coral reefs in Southeast Asia have the highest degree of biodiversity and most extensive coastlines of all the world’s coral reefs.
    [Show full text]
  • Member's Report on Activities to ICRI
    Members Report ICRI GM 24 - MR/Project AWARE Foundation INTERNATIONAL CORAL REEF INITIATIVE (ICRI) General Meeting Monaco, 12-15 January 2010 Member’s report on activities to ICRI Presented by Project AWARE Foundation Reporting period July 2008 – December 2009 Please note that the purpose of this report is to help you share information about your activities within the ICRI community to allow discussion at the next ICRI General Meeting. The reports will be made available on the ICRIForum prior to the meeting. The ICRI secretariat is well aware of your busy schedule, thus don’t hesitate to submit an incomplete report. 1. General Information Are you an ICRI Member? Yes Representation to ICRI (Country / Project AWARE Foundation Organization): Focal Point 1: Name: Jenny Miller Garmendia Organization: Project AWARE Foundation Email: [email protected] Focal point 2: Name: Organization: Email: Last meeting attended: Ft. Lauderdale, USA July 2008 How do you circulate ICRI information within email and e-newsletter your country and/or organization? Budget allocated for coral reef related activities Approximately $100,000 per year (please mention for year/period): 2. Updates on your activities (new initiatives/programs/projects of your government /organization which will be of interest to the ICRI Members) 2008 - 2009 Project AWARE Foundation’s Project the Living Reef program includes education and awareness, CoralWatch monitoring, AWARE Kids related activities, small grants to coral related projects, advocacy for the protection of coral reefs and management for fisheries and sharks as well as activities related to IYOR. ACTIVITIES CoralWatch monitoring & awareness program in partnership with the University of Queensland • Registered 1106 Project AWARE CoralWatch Operators (Worldwide) • Completed Spanish translation of the CoralWatch Operators materials.
    [Show full text]