The Search For'

Total Page:16

File Type:pdf, Size:1020Kb

The Search For' CANCER RESEARCH 54. 6374-6382, December IS. 19941 Special Lecture The Search for' Lori S. Friedman,2 Elizabeth A. Ostermeyer, Eric D. Lynch, Csffla I. Szabo, Lee A. Anderson, Patrick Dowd, Ming K. Lee, Sarah E. Rowell, Jeff Boyd, and Mary-Claire King3 Department of Molecular and Cell Biology and School of Public Health University of @alsfornia.Berkeley. california 94720 IL S. F., E. A. 0., E. D. L, C'. I. S., L A. A., P. D., M. K. L. S. E. R., M.-C. K.], and Depart@nent of Obstetrics and Gynecology, University of Pennsylvania School ofMedicine. Philadelphia. Pennsylvania 19104 ii. B.] Abstract breast cancer and may not be representative of all families with BRCAJ mutations. That is, there may exist other families with BRCAJ, a gene predisposing to breast and ovarian cancer, was breast cancer linked to less severe mutations in BRCA1. Now that mapped to chromosome 17q21 by linkage analysis. Loss of heterozy the BRCAJ gene is cloned, it will be possible to identify women gosity In breast and ovarian tumors from BRCAJ-linked patients al ways involved loss of wild-type alleles from chromosome 17q21, sug carrying variant alleles and to begin to evaluate the risk associated gesting that BRCAI acts as a tumor suppressor gene. Melotic with each mutant sequence. recombinatlon in linked families constrained the BRCA1 region to an Inherited breast cancer is not restricted to early-onset disease. estimated physical size of 650 kilobases. Twenty-two candidate genes Inherited predisposition influences a higher proportion of breast were isolated by screening complementary DNA libraries with yeast cancer at younger ages, accounting for an estimated 30% of breast artificial chromosomes and cosmids from the critical region. Of these, cancer diagnosed before age 40 years, compared to less than 5% of 8 were known human genes, 7 were homologues of genes identified in breast cancer diagnosed after age 60 years (8, 11). However, it is other species, and 7 encoded novel transcripts. Each gene was Se quenced and analyzed for variation, revealing 44 varIants, Including likely that the absolute number of patients with inherited disease is two missense mutations in two genes which segregated with breast greater among older patients. Reanalysis of the original BRCAJ cancer and were not found in controls. However, no frame-shift, linkage data with a different liability class structure suggested that nonsense, or regulatory mutations were found. inherited breast cancer occurs in all age classes and that linkage of BRCAJ to early-onset disease was easier to identify because far Genetic Epidemiology of Breast and Ovarian Cancer fewer sporadic cases appear (12). This hypothesis can now be Linkage of early-onset breast cancer to chromosome l7q2l was tested directly. discovered 4 years ago ( 1). The existence of a gene that increases Other genes responsible for inherited breast cancer have been susceptibility to breast and ovarian cancer was verified with sub identified. BRCA2, on chromosome 13ql2—l3, is linked to breast sequent work, with odds >1026: 1 (2, 3). BRCAJ has recently been cancer in families with both females and males affected, as well as in cloned (4, 5), and experiments were performed to verify that the some families with only female breast cancer (13). In our series, announced candidate is BRCAJ (6). In what follows, we present breast cancer is linked to BRCA2 in approximately 10% of families our approach to the search for BRCAJ, the 22 genes cloned and (i.e., —30%of high-risk families with breast cancer not linked to sequenced in the BRCAJ region, the mutations identified in these BRCAJ), including families with breast cancer in males and females genes, and the implications of the cloning of BRCAJ for breast and families with ovarian cancer (14). The first gene identified for cancer research. inherited breast cancer was p53, which is responsible for the Li BRCAJ appears to explain most of inherited breast cancer and Fraumeni syndrome (15). In addition to female breast cancer, families inherited ovarian cancer. Of the 104 families in our series, predispo with Li-Fraumeni syndrome have extremely high rates of brain tumors sition to breast and/or ovarian cancer are linked to BRCAJ in 57% of and adrenocortical cancers among children with a mutant p53 allele. families with five or more affected relatives (14). Similarly, in a series About 1% of women diagnosed with breast cancer before age 30 years of 214 families from Europe and America, 60% of families with at have germline mutations in p53. Additionally, a rare point mutation in least three breast cancer cases and more than 90% of families with the androgen receptor gene on the X chromosome can lead to breast multiple relatives with breast and ovarian cancer trace susceptibility to cancer and androgen insufficiency among males (16). Breast can BRCAJ (3). Furthermore, among families with at least three cases of cer in other families with multiple cases is probably due to other, ovarian cancer and no early-onset breast cancer, the proportion with as yet unidentified, predisposing genes. However, given the very cancer linked to BRCAJ is 78% if risk is assumed to be restricted to high rate of noninherited breast cancer, many remaining families ovarian cancer, and 100% if predisposition to both breast and ovarian with multiple cases of breast cancer may represent coincidental cancer is assumed (7). occurrences of breast cancer, rather than inherited predisposition Risks of breast cancer to women inheriting BRCAJ are extremely due to other genes. high, exceeding 50% before age 50 years and reaching 80% by age 65 years (3, 8—10)However,families who have participatedin The great majority of breast and ovarian cancers are due solely to genetic studies were selected because multiple relatives developed acquired mutations: only 5 to 10% of breast cancer patients and 8 to 15% of ovarian cancer patients have inherited mutations leading to the disease. However, although inherited breast cancer is a small fraction Received 9/29/94; accepted I 1/14/94. I Based upon the Thirty-fourth G. H. A. Clowes Memorial Award Lecture presented at of the breast cancer burden, it is a common genetic disease (17). Five the 85th Annual Meeting of the American Association for Cancer Research, San Fran % of a diseaseaffecting1in 10womenoverthe life spanmeansthat cisco, CA. April 10. 1994. This research was supported by grants from the National Cancer Institute (NIH ROl CA27632), the Breast Cancer Fund, and the Ensign and Lewis roughly 1 in 200 women, or more than 600,000 women in the United Foundation. States, will develop breast cancer by reason of inherited susceptibility. 2 Susan G. Komen Breast Cancer Foundation Fellow. Therefore, as an inherited trait, breast cancer is one of the most 3 American Cancer Society Professor of Genetics and Epidemiology. To whom requests for reprints should be addressed. common genetic diseases in the world. 6374 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 1994 American Association for Cancer Research. BRCAI AND CLONING OF 22 GENESFROM CHROMOSOMEl7q2l Materials and Methods grids were produced by growing cosmids in an array on LB plates and transferring to GeneScreen Plus hybridization membranes. YACs were grown DNA Samples. Genomic DNA from lymphoblastswas transformedwith in adenine hemisulfate casein liquid cultures, and total yeast and YAC DNA Epstein-Barr virus or extracted directly as described elsewhere (18). Breast or were isolated (as described in Ref. 20), and digested with EcoRI, run on a 1% ovarian tissue embedded in paraffin blocks was extracted using a 2-mm skin HGT agarose gel (20 cm long) in I X TBE, and Southern blot transferred onto biopsy punch. Paraffin was sliced off using a sterile scalpel, and each tissue Hybond N (Amersham) as described in Ref. 19. punch was treated with 100 @.tgofproteinase K in 200 @.tlof100mMTris-4 mM PCR-amplified products of cDNA were used as probes in hybridizations EDTA, pH 8. Proteinase K was inactivated by incubating the sample at 95°C against YAC Southern blots, cosmid grids, and transcript grids. Primers for 10 mm, and the sample was centrifuged to pellet cell debris and paraffin. from cDNA clones were used to amplify DNA from somatic cell hybrids Polymorphic markers were typed on families and tumors as described including parts of human chromosome 17 (21), as well as YACs and elsewhere (9). cosmids from the region. cDNA Isolation. Two cDNA libraries were constructedin AgtlO with DNA Sequence Analysis. PCR-amplifiedproductsof cDNA clones were C600 host, using normal ovarian tissue and a nontransformed fibroblast cell either sequenced directly after PCR amplification using a USB PCR Product line. The cDNA libraries were plated at 4 X l0@plaques/plate(as instructed in Sequencing Kit or digested with EcoRl, then subcloned into Ml3 mpl8, and Ref. 19) and transferred to Colony/Plaque Screen Hybridization Transfer sequenced with USB Sequenase Kit version 2.0. Sequences were resolved on Membranes (GeneScreen Plus) per NEN Dupont instructions. 6% denaturing polyacrylamide gels and exposed to KOdak X-ray film for YAC probes were prepared by running 1% HGT agarose pulsed field gel 24—72h. Sequencing primers used were the M13 universal primer and Se electrophoresis, cutting out the unique YAC band, purifying YAC DNA with quence-specific internal primers. BLAST was used for nucleotide and amino a Gene Clean II kit (BiolOl Inc., La Jolla, CA), and radioactively labeling the acid searches of databases, including Genbank and EMBL. YAC for use as a probe with a Multiprime DNA Labeling System (Amersham) Northern and Southern Blot Hybridizations. PCR-amplified products of and [a-32P]dCTP and [a-32P]dATP (from NEN Dupont). cDNA clones were radioactively labeled with a Multiprime DNA Labeling Cosmid probes were prepared by digesting the DNA from cosmids with System (Amersham) and [cr-32P]dCTP (from NEN Dupont) and used as probes NotI, running 1% HGT agarosegel electrophoresis in 1X TBE,4 purifying the in hybridizations against Southern blots and Northern blots.
Recommended publications
  • Lineage-Specific Programming Target Genes Defines Potential for Th1 Temporal Induction Pattern of STAT4
    Downloaded from http://www.jimmunol.org/ by guest on October 1, 2021 is online at: average * The Journal of Immunology published online 26 August 2009 from submission to initial decision 4 weeks from acceptance to publication J Immunol http://www.jimmunol.org/content/early/2009/08/26/jimmuno l.0901411 Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming Seth R. Good, Vivian T. Thieu, Anubhav N. Mathur, Qing Yu, Gretta L. Stritesky, Norman Yeh, John T. O'Malley, Narayanan B. Perumal and Mark H. Kaplan Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2009/08/26/jimmunol.090141 1.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 1, 2021. Published August 26, 2009, doi:10.4049/jimmunol.0901411 The Journal of Immunology Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming1 Seth R. Good,2* Vivian T. Thieu,2† Anubhav N. Mathur,† Qing Yu,† Gretta L.
    [Show full text]
  • WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 1/19 (2006.01) C12Q 1/02 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 15/81 (2006.01) C07K 14/47 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US20 15/049674 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 11 September 2015 ( 11.09.201 5) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/050,045 12 September 2014 (12.09.2014) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: WHITEHEAD INSTITUTE FOR BIOMED¬ DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, ICAL RESEARCH [US/US]; Nine Cambridge Center, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Cambridge, Massachusetts 02142-1479 (US).
    [Show full text]
  • The MDR Superfamily
    Cell. Mol. Life Sci. 65 (2008) 3879 – 3894 View metadata,1420-682X/08/243879-16 citation and similar papers at core.ac.uk Cellular and Molecular Life Sciencesbrought to you by CORE DOI 10.1007/s00018-008-8587-z provided by Springer - Publisher Connector Birkhuser Verlag, Basel, 2008 The MDR superfamily B. Perssona,b,*, J. Hedlunda and H. Jçrnvallc a IFM Bioinformatics, Linkçping University, 581 83 Linkçping (Sweden), Fax: +4613137568, e-mail: [email protected] b Dept of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm (Sweden) c Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm (Sweden) Online First 14 November 2008 Abstract. The MDR superfamily with ~350-residue ments. Subsequent recognitions now define at least 40 subunits contains the classical liver alcohol dehydro- human MDR members in the Uniprot database genase (ADH), quinone reductase, leukotriene B4 (correspondingACHTUNGRE to 25 genes when excluding close dehydrogenase and many more forms. ADH is a homologues), and in all species at least 10888 entries. dimeric zinc metalloprotein and occurs as five differ- Overall, variability is large, but like for many dehy- ent classes in humans, resulting from gene duplica- drogenases, subdivided into constant and variable tions during vertebrate evolution, the first one traced forms, corresponding to household and emerging to ~500 MYA (million years ago) from an ancestral enzyme activities, respectively. This review covers formaldehyde dehydrogenase line. Like many dupli- basic facts and describes eight large MDR families and cations at that time, it correlates with enzymogenesis nine smaller families. Combined, they have specific of new activities, contributing to conditions for substrates in metabolic pathways, some with wide emergence of vertebrate land life from osseous fish.
    [Show full text]
  • Inherited Duplications of PPP2R3B Promote Naevi and Melanoma Via a Novel C21orf91-Driven
    bioRxiv preprint doi: https://doi.org/10.1101/672576; this version posted June 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title Inherited duplications of PPP2R3B promote naevi and melanoma via a novel C21orf91-driven proliferative phenotype Authors Satyamaanasa Polubothu1,2, Lara Al-Olabi1, Daniël A Lionarons3, Mark Harland4, Anna C Thomas1, Stuart Horswell5, Lilian Hunt6, Nathan Wlodarchak7, Paula Aguilera8, Sarah Brand1, Dale Bryant1, Philip Beales1, Cristina Carrera8, Hui Chen7, Greg Elgar6, Catherine A Harwood9, Michael Howell10, Dagan Jenkins1, Lionel Larue11, Sam Loughlin12, Jeff MacDonald13, Josep Malvehy8, Sara Martin Barberan1, Vanessa Martins da Silva1, Miriam Molina3, Deborah Morrogh12, Dale Moulding1, Jérémie Nsengimana4, Alan Pittman14, Juan-Anton Puig-Butillé8, Kiran Parmar15, Neil J Sebire16, Stephen Scherer13, Paulina Stadnik1, Philip Stanier1, Gemma Tell7, Regula Waelchli2, Mehdi Zarrei13, Davide Zecchin3, Susana Puig8, Véronique Bataille14, Yongna Xing7, Eugene Healy17, Gudrun E Moore1, Wei-Li Di18, Julia Newton-Bishop4, Julian Downward3, Veronica A Kinsler1,2* Affiliations 1 Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK. 2 Paediatric Dermatology, Great Ormond Street Hospital for Children, London, UK. 3 Oncogene Biology Laboratory, Francis Crick Institute, London, UK. 4 Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Cancer Research UK Clinical Centre at Leeds, St James's University Hospital, Leeds, UK. 5 Bioinformatics and Biostatistics, Francis Crick Institute, London, UK. 6 Advanced Sequencing Facility, Francis Crick Institute, London, UK. 7 McArdle Laboratory, Department of Oncology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
    [Show full text]
  • The Human Genome: Structure and Function of Genes and Chromosomes
    3 The Human Genome: Structure and Function of Genes and Chromosomes Over the past 20 years, remarkable progress has been DNA STRUCTURE: A BRIEF made in our understanding of the structure and func- REVIEW tion of genes and chromosomes at the molecular level. More recently, this has been supplemented by DNA is a polymeric nucleic acid macromolecule an in-depth understanding of the organization of the composed of three types of units: a five-carbon sugar, human genome at the level of its DNA sequence. deoxyribose; a nitrogen-containing base; and a phos- These advances have come about in large measure phate group (Fig. 3–1). The bases are of two types, through the applications of molecular genetics and purines and pyrimidines. In DNA, there are two genomics to many clinical situations, thereby provid- purine bases, adenine (A) and guanine (G), and two ing the tools for a distinctive new approach to med- pyrimidine bases, thymine (T) and cytosine (C). ical genetics. In this chapter, we present an overview Nucleotides, each composed of a base, a phosphate, of the organization of the human genome and the and a sugar moiety, polymerize into long polynu- aspects of molecular genetics that are required for an cleotide chains by 5Ј–3Ј phosphodiester bonds understanding of the genetic approach to medicine. formed between adjacent deoxyribose units (Fig. This chapter is not intended to provide an extensive 3–2). In the human genome, these polynucleotide description of the wealth of new information about chains (in their double-helix form) are hundreds of gene structure and regulation.
    [Show full text]
  • Supporting Information
    Supporting Information Friedman et al. 10.1073/pnas.0812446106 SI Results and Discussion intronic miR genes in these protein-coding genes. Because in General Phenotype of Dicer-PCKO Mice. Dicer-PCKO mice had many many cases the exact borders of the protein-coding genes are defects in additional to inner ear defects. Many of them died unknown, we searched for miR genes up to 10 kb from the around birth, and although they were born at a similar size to hosting-gene ends. Out of the 488 mouse miR genes included in their littermate heterozygote siblings, after a few weeks the miRBase release 12.0, 192 mouse miR genes were found as surviving mutants were smaller than their heterozygote siblings located inside (distance 0) or in the vicinity of the protein-coding (see Fig. 1A) and exhibited typical defects, which enabled their genes that are expressed in the P2 cochlear and vestibular SE identification even before genotyping, including typical alopecia (Table S2). Some coding genes include huge clusters of miRNAs (in particular on the nape of the neck), partially closed eyelids (e.g., Sfmbt2). Other genes listed in Table S2 as coding genes are [supporting information (SI) Fig. S1 A and C], eye defects, and actually predicted, as their transcript was detected in cells, but weakness of the rear legs that were twisted backwards (data not the predicted encoded protein has not been identified yet, and shown). However, while all of the mutant mice tested exhibited some of them may be noncoding RNAs. Only a single protein- similar deafness and stereocilia malformation in inner ear HCs, coding gene that is differentially expressed in the cochlear and other defects were variable in their severity.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Identification and Comprehensive Characterization of Large Genomic
    Identification and comprehensive characterization of large genomic rearrangements in the and genes Jesús Valle, Lídia Feliubadaló, Marga Nadal, Alex Teulé, Rosa Miró, Raquel Cuesta, Eva Tornero, Mireia Menéndez, Esther Darder, Joan Brunet, et al. To cite this version: Jesús Valle, Lídia Feliubadaló, Marga Nadal, Alex Teulé, Rosa Miró, et al.. Identification and com- prehensive characterization of large genomic rearrangements in the and genes. Breast Cancer Re- search and Treatment, Springer Verlag, 2009, 122 (3), pp.733-743. 10.1007/s10549-009-0613-9. hal- 00535410 HAL Id: hal-00535410 https://hal.archives-ouvertes.fr/hal-00535410 Submitted on 11 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Breast Cancer Res Treat (2010) 122:733–743 DOI 10.1007/s10549-009-0613-9 PRECLINICAL STUDY Identification and comprehensive characterization of large genomic rearrangements in the BRCA1 and BRCA2 genes Jesu´s del Valle • Lı´dia Feliubadalo´ • Marga Nadal • Alex Teule´ • Rosa Miro´ • Raquel Cuesta • Eva Tornero • Mireia Mene´ndez • Esther Darder • Joan Brunet • Gabriel Capella` • Ignacio Blanco • Conxi La´zaro Received: 26 August 2009 / Accepted: 20 October 2009 / Published online: 6 November 2009 Ó Springer Science+Business Media, LLC.
    [Show full text]
  • WO 2014/028907 Al 20 February 2014 (20.02.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/028907 Al 20 February 2014 (20.02.2014) P O P C T (51) International Patent Classification: (74) Agents: EVANS, Judith et al; P.O. Box 23 1, Manassas, C12Q 1/68 (2006.01) G01N 33/00 (2006.01) VA 20108 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US20 13/055469 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 16 August 2013 (16.08.2013) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (30) Priority Data: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 61/684,029 16 August 2012 (16.08.2012) US SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 61/718,468 25 October 2012 (25. 10.2012) US TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 61/745,207 2 1 December 2012 (21. 12.2012) US ZW. (71) Applicant: THE TRUSTEES OF COLUMBIA UNI¬ (84) Designated States (unless otherwise indicated, for every VERSITY IN THE CITY OF NEW YORK [US/US]; kind of regional protection available): ARIPO (BW, GH, 412 Low Memorial Library, 535 West 116th Street, New GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, York, NY 10027 (US).
    [Show full text]
  • A Network Inference Approach to Understanding Musculoskeletal
    A NETWORK INFERENCE APPROACH TO UNDERSTANDING MUSCULOSKELETAL DISORDERS by NIL TURAN A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy College of Life and Environmental Sciences School of Biosciences The University of Birmingham June 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Musculoskeletal disorders are among the most important health problem affecting the quality of life and contributing to a high burden on healthcare systems worldwide. Understanding the molecular mechanisms underlying these disorders is crucial for the development of efficient treatments. In this thesis, musculoskeletal disorders including muscle wasting, bone loss and cartilage deformation have been studied using systems biology approaches. Muscle wasting occurring as a systemic effect in COPD patients has been investigated with an integrative network inference approach. This work has lead to a model describing the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. This model has shown for the first time that oxygen dependent changes in the expression of epigenetic modifiers and not chronic inflammation may be causally linked to muscle dysfunction.
    [Show full text]
  • Identifying Factors That Conctribute to Phenotypic Heterogeneity in Melanoma Progression
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Identifying factors that conctribute to Phenotypic heterogeneity in melanoma progression Widmer, Daniel Simon Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-73667 Dissertation Originally published at: Widmer, Daniel Simon. Identifying factors that conctribute to Phenotypic heterogeneity in melanoma progression. 2012, University of Zurich, Faculty of Medicine. Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Identifying factors that conctribute to Phenotypic heterogeneity in melanoma progression Daniel Simon Widmer 2012 Diss ETH No. 20537 DISS. ETH NO. 20537 IDENTIFYING FACTORS THAT CONTRIBUTE TO PHENOTYPIC HETEROGENEITY IN MELANOMA PROGRESSION A dissertation submitted to ETH ZURICH for the degree of Doctor of Sciences presented by Daniel Simon Widmer Master of Science UZH University of Zurich born on February 26th 1982 citizen of Gränichen AG accepted on the recommendation of Professor Sabine Werner, examinor Professor Reinhard Dummer, co-examinor Professor Michael Detmar, co-examinor 2012 Contents 1. ZUSAMMENFASSUNG...................................................................................................... 7 2. SUMMARY ................................................................................................................... 11 3. INTRODUCTION ...........................................................................................................
    [Show full text]
  • Elucidation of Melanogenesis-Associated Signaling Pathways Regulated by Argan Press Cake in B16 Melanoma Cells
    nutrients Article Elucidation of Melanogenesis-Associated Signaling Pathways Regulated by Argan Press Cake in B16 Melanoma Cells Thouria Bourhim 1,‡ , Myra O. Villareal 2,3,‡ , Chemseddoha Gadhi 1,2,* and Hiroko Isoda 2,3,* 1 Faculty of Sciences Semlalia, Cadi Ayyad University, Avenue Prince Moulay Abdellah, B.P. 2390, Marrakesh 40000, Morocco; [email protected] 2 Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan; [email protected] 3 Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan * Correspondence: [email protected] (C.G.); [email protected] (H.I.) ‡ These authors contributed equally to this work. Abstract: The beneficial effect on health of argan oil is recognized worldwide. We have previously reported that the cake that remains after argan oil extraction (argan press-cake or APC) inhibits melanogenesis in B16 melanoma cells in a time-dependent manner without cytotoxicity. In this study, the global gene expression profile of B16 melanoma cells treated with APC extract was determined in order to gain an understanding of the possible mechanisms of action of APC. The results suggest that APC extract inhibits melanin biosynthesis by down-regulating microphthalmia- associated transcription factor (Mitf ) and its downstream signaling pathway through JNK signaling activation, and the inhibition of Wnt/β-catenin and cAMP/PKA signaling pathways. APC extract also prevented the transport of melanosomes by down-regulating Rab27a expression. These results suggest that APC may be an important natural skin whitening product and pharmacological agent used for clinical treatment of pigmentary disorders.
    [Show full text]