Identification and Comprehensive Characterization of Large Genomic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anti-ARL4A Antibody (ARG41291)
Product datasheet [email protected] ARG41291 Package: 100 μl anti-ARL4A antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes ARL4A Tested Reactivity Hu, Ms, Rat Tested Application ICC/IF, IHC-P Host Rabbit Clonality Polyclonal Isotype IgG Target Name ARL4A Antigen Species Human Immunogen Recombinant fusion protein corresponding to aa. 121-200 of Human ARL4A (NP_001032241.1). Conjugation Un-conjugated Alternate Names ARL4; ADP-ribosylation factor-like protein 4A Application Instructions Application table Application Dilution ICC/IF 1:50 - 1:200 IHC-P 1:50 - 1:200 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 23 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Gene Symbol ARL4A Gene Full Name ADP-ribosylation factor-like 4A Background ADP-ribosylation factor-like 4A is a member of the ADP-ribosylation factor family of GTP-binding proteins. ARL4A is similar to ARL4C and ARL4D and each has a nuclear localization signal and an unusually high guaninine nucleotide exchange rate. -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
A Database for Human and Yeast Genes Involved in Telomere Maintenance Delia M
Braun et al. BMC Genetics (2018) 19:32 https://doi.org/10.1186/s12863-018-0617-8 DATABASE Open Access TelNet - a database for human and yeast genes involved in telomere maintenance Delia M. Braun, Inn Chung, Nick Kepper, Katharina I. Deeg and Karsten Rippe* Abstract Background: The ends of linear chromosomes, the telomeres, comprise repetitive DNA sequences in complex with proteins that protects them from being processed by the DNA repair machinery. Cancer cells need to counteract the shortening of telomere repeats during replication for their unlimited proliferation by reactivating the reverse transcriptase telomerase or by using the alternative lengthening of telomeres (ALT) pathway. The different telomere maintenance (TM) mechanisms appear to involve hundreds of proteins but their telomere repeat length related activities are only partly understood. Currently, a database that integrates information on TM relevant genes is missing. Description: To provide a resource for studies that dissect TM features, we here introduce the TelNet database at http://www.cancertelsys.org/telnet/. It offers a comprehensive compilation of more than 2000 human and 1100 yeast genes linked to telomere maintenance. These genes were annotated in terms of TM mechanism, associated specific functions and orthologous genes, a TM significance score and information from peer-reviewed literature. This TM information can be retrieved via different search and view modes and evaluated for a set of genes as demonstrated for an exemplary application. Conclusion: TelNet supports the annotation of genes identified from bioinformatics analysis pipelines to reveal possible connections with TM networks. We anticipate that TelNet will be a helpful resource for researchers that study telomeres. -
TMEM106B in Humans and Vac7 and Tag1 in Yeast Are Predicted to Be Lipid Transfer Proteins
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.435176; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. TMEM106B in humans and Vac7 and Tag1 in yeast are predicted to be lipid transfer proteins Tim P. Levine* UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom. ORCID 0000-0002-7231-0775 *Corresponding author and lead contact: [email protected] Data availability statement: The data that support this study are freely available in Harvard Dataverse at https://dataverse.harvard.edu/dataverse/LEA_2. Acknowledgements: work was funded by the Higher Education Funding Council for England and the NIHR Moorfields Biomedical Research Centre Conflict of interest disclosure: the author declares that there is no conflict of interest Keywords: Structural bioinformatics, Lipid transfer protein, LEA_2, TMEM106B, Vac7, YLR173W, Endosome, Lysosome Running Title: TMEM106B & Vac7: lipid transfer proteins 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.435176; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract TMEM106B is an integral membrane protein of late endosomes and lysosomes involved in neuronal function, its over-expression being associated with familial frontotemporal lobar degeneration, and under-expression linked to hypomyelination. It has also been identified in multiple screens for host proteins required for productive SARS-CoV2 infection. Because standard approaches to understand TMEM106B at the sequence level find no homology to other proteins, it has remained a protein of unknown function. -
Temporal Chip-On-Chip of RNA-Polymerase-II to Detect Novel Gene Activation Events During Photoreceptor Maturation
Molecular Vision 2010; 16:252-271 <http://www.molvis.org/molvis/v16/a32> © 2010 Molecular Vision Received 12 July 2009 | Accepted 10 February 2010 | Published 17 February 2010 Temporal ChIP-on-Chip of RNA-Polymerase-II to detect novel gene activation events during photoreceptor maturation Padmaja Tummala, Raghuveer S. Mali, Eduardo Guzman, Xiao Zhang, Kenneth P. Mitton (The first two authors contributed equally to this work.) Eye Research Institute, Oakland University, Rochester, MI Purpose: During retinal development, post-mitotic neural progenitor cells must activate thousands of genes to complete synaptogenesis and terminal maturation. While many of these genes are known, others remain beyond the sensitivity of expression microarray analysis. Some of these elusive gene activation events can be detected by mapping changes in RNA polymerase-II (Pol-II) association around transcription start sites. Methods: High-resolution (35 bp) chromatin immunoprecipitation (ChIP)-on-chip was used to map changes in Pol-II binding surrounding 26,000 gene transcription start sites during photoreceptor maturation of the mouse neural retina, comparing postnatal age 25 (P25) to P2. Coverage was 10–12 kb per transcription start site, including 2.5 kb downstream. Pol-II-active regions were mapped to the mouse genomic DNA sequence by using computational methods (Tiling Analysis Software-TAS program), and the ratio of maximum Pol-II binding (P25/P2) was calculated for each gene. A validation set of 36 genes (3%), representing a full range of Pol-II signal ratios (P25/P2), were examined with quantitative ChIP assays for transcriptionally active Pol-II. Gene expression assays were also performed for 19 genes of the validation set, again on independent samples. -
1 UST College of Science Department of Biological Sciences
UST College of Science Department of Biological Sciences 1 Pharmacogenomics of Myofascial Pain Syndrome An Undergraduate Thesis Submitted to the Department of Biological Sciences College of Science University of Santo Tomas In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Biology Jose Marie V. Lazaga Marc Llandro C. Fernandez May 2021 UST College of Science Department of Biological Sciences 2 PANEL APPROVAL SHEET This undergraduate research manuscript entitled: Pharmacogenomics of Myofascial Pain Syndrome prepared and submitted by Jose Marie V. Lazaga and Marc Llandro C. Fernandez, was checked and has complied with the revisions and suggestions requested by panel members after thorough evaluation. This final version of the manuscript is hereby approved and accepted for submission in partial fulfillment of the requirements for the degree of Bachelor of Science in Biology. Noted by: Asst. Prof. Marilyn G. Rimando, PhD Research adviser, Bio/MicroSem 602-603 Approved by: Bio/MicroSem 603 panel member Bio/MicroSem 603 panel member Date: Date: UST College of Science Department of Biological Sciences 3 DECLARATION OF ORIGINALITY We hereby affirm that this submission is our own work and that, to the best of our knowledge and belief, it contains no material previously published or written by another person nor material to which a substantial extent has been accepted for award of any other degree or diploma of a university or other institute of higher learning, except where due acknowledgement is made in the text. We also declare that the intellectual content of this undergraduate research is the product of our work, even though we may have received assistance from others on style, presentation, and language expression. -
Association Weight Matrix for the Genetic Dissection of Puberty in Beef Cattle
Association weight matrix for the genetic dissection of puberty in beef cattle Marina R. S. Fortesa,b,c, Antonio Revertera,b, Yuandan Zhanga,d, Eliza Collisa,b, Shivashankar H. Nagarajb,NickN.Jonssona,c,e, Kishore C. Prayagaa,b,1, Wes Barrisa,b, and Rachel J. Hawkena,b,2 aCooperative Research Centre for Beef Genetic Technologies; bCommonwealth Scientific and Industrial Research Organization, division of Livestock Industries, Queensland Bioscience Precinct, Brisbane QLD 4067, Australia; cThe University of Queensland, School of Veterinary Science, Gatton QLD 4343, Australia; dAnimal Genetics and Breeding Unit, University of New England, Armidale NSW 2351, Australia; and eFaculty of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom Edited by George Seidel, Colorado State University, Fort Collins, CO, and approved June 21, 2010 (received for review February 23, 2010) We describe a systems biology approach for the genetic dissection tional data on traits related to puberty are available. For example, of complex traits based on applying gene network theory to the re- weight and condition score are often measured on occasions sults from genome-wide associations. The associations of single- throughout an animal’s development. Hence, understanding ge- nucleotide polymorphisms (SNP) that were individually associated netics of cattle puberty and its biology serves two purposes: as with a primary phenotype of interest, age at puberty in our study, a strategy to develop efficient livestock resources and as a model were explored across 22 related traits. Genomic regions were sur- for human biology. veyed for genes harboring the selected SNP. As a result, an asso- The focus of this work is to demonstrate a unique systems ap- ciation weight matrix (AWM) was constructed with as many rows proach, which we call an association weight matrix (AWM), ap- as genes and as many columns as traits. -
Lineage-Specific Programming Target Genes Defines Potential for Th1 Temporal Induction Pattern of STAT4
Downloaded from http://www.jimmunol.org/ by guest on October 1, 2021 is online at: average * The Journal of Immunology published online 26 August 2009 from submission to initial decision 4 weeks from acceptance to publication J Immunol http://www.jimmunol.org/content/early/2009/08/26/jimmuno l.0901411 Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming Seth R. Good, Vivian T. Thieu, Anubhav N. Mathur, Qing Yu, Gretta L. Stritesky, Norman Yeh, John T. O'Malley, Narayanan B. Perumal and Mark H. Kaplan Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2009/08/26/jimmunol.090141 1.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 1, 2021. Published August 26, 2009, doi:10.4049/jimmunol.0901411 The Journal of Immunology Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming1 Seth R. Good,2* Vivian T. Thieu,2† Anubhav N. Mathur,† Qing Yu,† Gretta L. -
NBR1 (D2E6) Rabbit Mab A
Revision 1 C 0 2 - t NBR1 (D2E6) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 1 9 Web: [email protected] 8 www.cellsignal.com 9 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB, IP, IF-IC, F H M Endogenous 120 Rabbit IgG Q14596 4077 Product Usage Information Application Dilution Western Blotting 1:1000 Immunoprecipitation 1:50 Immunofluorescence (Immunocytochemistry) 1:1600 Flow Cytometry 1:50 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity NBR1 (D2E6) Rabbit mAb recognizes endogenous levels of total NBR1 protein. Species Reactivity: Human, Mouse Source / Purification Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Lys601 of human NBR1 protein. Background Next to BRCA1 gene 1 (NBR1) protein is known for its encoding gene proximity to the BRCA1 tumor suppressor gene (1,2). N-terminal Phox and Bem1p (PB1) domains of NBR1 mediate its interaction with muscle specific titin kinase (3,4) and scaffolding protein p62 (4). NBR1 plays a role in autophagy by facilitating the autophagosomal degradation of ubiquitinated proteins independently and also in concert with p62 (5,6). 1. Campbell, I.G. et al. (1994) Hum Mol Genet 3, 589-94. 2. -
Anti-TMEM106A (RABBIT) Antibody - 600-401-FH1
Anti-TMEM106A (RABBIT) Antibody - 600-401-FH1 Code: 600-401-FH1 Size: 100 µg Product Description: Anti-TMEM106A (RABBIT) Antibody - 600-401-FH1 Concentration: 1 mg/mL by UV absorbance at 280 nm PhysicalState: Liquid (sterile filtered) Label Unconjugated Host Rabbit Gene Name TMEM106A Species Reactivity Human, mouse Buffer 0.01 M Sodium Phosphate, 0.25 M Sodium Chloride, pH 7.2 Stabilizer None Preservative 0.02% (w/v) Sodium Azide Storage Condition Store vial at -20° C prior to opening. Aliquot contents and freeze at -20° C or below for extended storage. Avoid cycles of freezing and thawing. Centrifuge product if not completely clear after standing at room temperature. This product is stable for several weeks at 4° C as an undiluted liquid. Dilute only prior to immediate use. Synonyms TMEM106A Antibody, Transmembrane protein 106A Application Note Anti-TMEM106A Antibody has been tested for use in ELISA, Western Blotting, Immunohistochemistry and Immunofluorescence. Specific conditions for reactivity should be optimized by the end user. Expect a band at approximately 29 kDa in Western Blots of specific cell lysates and tissues. Background Transmembrane protein 106A (TMEM106A) is a single-pass transmembrane protein that is closely related to TMEM106B, a protein that is thought to be a novel risk factor for frontotemporal lobar degeneration (FTLD), a group of clinically, pathologically and genetically heterogeneous disorders associated with atrophy in the frontal lobe and temporal lobe of the brain. The actual roles of TMEM106A and TMEM106B are still undetermined; however, as TMEM106B is involved in FTLD, it is possible that TMEM106A may also be a risk factor for FTLD. -
Genomic and Transcriptome Analysis Revealing an Oncogenic Functional Module in Meningiomas
Neurosurg Focus 35 (6):E3, 2013 ©AANS, 2013 Genomic and transcriptome analysis revealing an oncogenic functional module in meningiomas XIAO CHANG, PH.D.,1 LINGLING SHI, PH.D.,2 FAN GAO, PH.D.,1 JONATHAN RUssIN, M.D.,3 LIYUN ZENG, PH.D.,1 SHUHAN HE, B.S.,3 THOMAS C. CHEN, M.D.,3 STEVEN L. GIANNOTTA, M.D.,3 DANIEL J. WEISENBERGER, PH.D.,4 GAbrIEL ZADA, M.D.,3 KAI WANG, PH.D.,1,5,6 AND WIllIAM J. MAck, M.D.1,3 1Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California; 2GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; 3Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California; 4USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California; 5Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California; and 6Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California Object. Meningiomas are among the most common primary adult brain tumors. Although typically benign, roughly 2%–5% display malignant pathological features. The key molecular pathways involved in malignant trans- formation remain to be determined. Methods. Illumina expression microarrays were used to assess gene expression levels, and Illumina single- nucleotide polymorphism arrays were used to identify copy number variants in benign, atypical, and malignant me- ningiomas (19 tumors, including 4 malignant ones). The authors also reanalyzed 2 expression data sets generated on Affymetrix microarrays (n = 68, including 6 malignant ones; n = 56, including 3 malignant ones). -
Increased Expression of the Frontotemporal Dementia Risk Factor Tmem106b Causes C9orf72-Dependent Alterations in Lysosomes
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2016 Increased Expression of Frontotemporal Dementia Risk Factor Tmem106b Alters Lysosomal and Autophagosomal Pathways Johanna Irene Busch University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Cell Biology Commons, and the Neuroscience and Neurobiology Commons Recommended Citation Busch, Johanna Irene, "Increased Expression of Frontotemporal Dementia Risk Factor Tmem106b Alters Lysosomal and Autophagosomal Pathways" (2016). Publicly Accessible Penn Dissertations. 1630. https://repository.upenn.edu/edissertations/1630 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1630 For more information, please contact [email protected]. Increased Expression of Frontotemporal Dementia Risk Factor Tmem106b Alters Lysosomal and Autophagosomal Pathways Abstract Frontotemporal lobar degeneration (FTLD) is an important cause of dementia in individuals under age 65. Common variants in the TMEM106B gene were previously discovered by genome-wide association (GWAS) to confer genetic risk for FTLD-TDP, the largest neuropathological subset of FTLD (p=1x10-11, OR=1.6). Prior to its discovery in the GWAS, TMEM106B, or Transmembrane Protein 106B, was uncharacterized. To further understand the role of TMEM106B in disease pathogenesis, we used immortalized as well as primary neurons to assess the cell biological effects of disease-relevant levels of TMEM106B overexpression and the interaction of TMEM106B with additional disease-associated proteins. We also employed immunostaining to assess its expression pattern in human brain from controls and FTLD cases. We discovered that TMEM106B is a highly glycosylated, Type II late endosomal/lysosomal transmembrane protein. We found that it is expressed by neurons, glia, and peri-vascular cells in disease- affected and unaffected regions of human brain from normal controls in a cytoplasmic, perikaryal distribution.