NBR1 Sirna (H): Sc-94187
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Association Weight Matrix for the Genetic Dissection of Puberty in Beef Cattle
Association weight matrix for the genetic dissection of puberty in beef cattle Marina R. S. Fortesa,b,c, Antonio Revertera,b, Yuandan Zhanga,d, Eliza Collisa,b, Shivashankar H. Nagarajb,NickN.Jonssona,c,e, Kishore C. Prayagaa,b,1, Wes Barrisa,b, and Rachel J. Hawkena,b,2 aCooperative Research Centre for Beef Genetic Technologies; bCommonwealth Scientific and Industrial Research Organization, division of Livestock Industries, Queensland Bioscience Precinct, Brisbane QLD 4067, Australia; cThe University of Queensland, School of Veterinary Science, Gatton QLD 4343, Australia; dAnimal Genetics and Breeding Unit, University of New England, Armidale NSW 2351, Australia; and eFaculty of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom Edited by George Seidel, Colorado State University, Fort Collins, CO, and approved June 21, 2010 (received for review February 23, 2010) We describe a systems biology approach for the genetic dissection tional data on traits related to puberty are available. For example, of complex traits based on applying gene network theory to the re- weight and condition score are often measured on occasions sults from genome-wide associations. The associations of single- throughout an animal’s development. Hence, understanding ge- nucleotide polymorphisms (SNP) that were individually associated netics of cattle puberty and its biology serves two purposes: as with a primary phenotype of interest, age at puberty in our study, a strategy to develop efficient livestock resources and as a model were explored across 22 related traits. Genomic regions were sur- for human biology. veyed for genes harboring the selected SNP. As a result, an asso- The focus of this work is to demonstrate a unique systems ap- ciation weight matrix (AWM) was constructed with as many rows proach, which we call an association weight matrix (AWM), ap- as genes and as many columns as traits. -
Convergent Functional Genomics of Schizophrenia: from Comprehensive Understanding to Genetic Risk Prediction
Molecular Psychiatry (2012) 17, 887 -- 905 & 2012 Macmillan Publishers Limited All rights reserved 1359-4184/12 www.nature.com/mp IMMEDIATE COMMUNICATION Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction M Ayalew1,2,9, H Le-Niculescu1,9, DF Levey1, N Jain1, B Changala1, SD Patel1, E Winiger1, A Breier1, A Shekhar1, R Amdur3, D Koller4, JI Nurnberger1, A Corvin5, M Geyer6, MT Tsuang6, D Salomon7, NJ Schork7, AH Fanous3, MC O’Donovan8 and AB Niculescu1,2 We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-- coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. -
NBR1 (D2E6) Rabbit Mab A
Revision 1 C 0 2 - t NBR1 (D2E6) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 1 9 Web: [email protected] 8 www.cellsignal.com 9 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB, IP, IF-IC, F H M Endogenous 120 Rabbit IgG Q14596 4077 Product Usage Information Application Dilution Western Blotting 1:1000 Immunoprecipitation 1:50 Immunofluorescence (Immunocytochemistry) 1:1600 Flow Cytometry 1:50 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity NBR1 (D2E6) Rabbit mAb recognizes endogenous levels of total NBR1 protein. Species Reactivity: Human, Mouse Source / Purification Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Lys601 of human NBR1 protein. Background Next to BRCA1 gene 1 (NBR1) protein is known for its encoding gene proximity to the BRCA1 tumor suppressor gene (1,2). N-terminal Phox and Bem1p (PB1) domains of NBR1 mediate its interaction with muscle specific titin kinase (3,4) and scaffolding protein p62 (4). NBR1 plays a role in autophagy by facilitating the autophagosomal degradation of ubiquitinated proteins independently and also in concert with p62 (5,6). 1. Campbell, I.G. et al. (1994) Hum Mol Genet 3, 589-94. 2. -
W J B C Biological Chemistry
World Journal of W J B C Biological Chemistry Submit a Manuscript: https://www.f6publishing.com World J Biol Chem 2019 February 21; 10(2): 28-43 DOI: 10.4331/wjbc.v10.i2.28 ISSN 1949-8454 (online) REVIEW Fasciculation and elongation zeta proteins 1 and 2: From structural flexibility to functional diversity Mariana Bertini Teixeira, Marcos Rodrigo Alborghetti, Jörg Kobarg ORCID number: Mariana Bertini Mariana Bertini Teixeira, Jörg Kobarg, Institute of Biology, Department of Biochemistry and Teixeira (0000-0002-3431-3131); Tissue Biology, University of Campinas, Campinas 13083-862, Brazil Marcos Rodrigo Alborghetti (0000-0003-4517-5579); Jörg Kobarg Marcos Rodrigo Alborghetti, Department of Cell Biology, University of Brasilia, Brasilia (0000-0002-9419-0145). 70919-970, Brazil Author contributions: Teixeira MB, Jörg Kobarg, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083- Alborghetti MR and Kobarg J 862, Brazil performed the literature search, analyses and interpretation of the Corresponding author: Jörg Kobarg, PhD, Full Professor, Molecular Biologist, Faculty of data; elaborated the figures; Pharmaceutical Sciences, University of Campinas, Rua Monteiro Lobato 255, Bloco F, Sala conceived the overall idea of the 03, Campinas 13083-862, Brazil. [email protected] review, elaborated the final version Telephone: +55-19-35211443 of the text together; all the authors read, revised and approved the final version. Conflict-of-interest statement: The Abstract authors declare no conflict-of- Fasciculation and elongation zeta/zygin (FEZ) proteins are a family of hub interest. proteins and share many characteristics like high connectivity in interaction Open-Access: This article is an networks, they are involved in several cellular processes, evolve slowly and in open-access article which was general have intrinsically disordered regions. -
FEZ1) in the Brain
Review TheScientificWorldJOURNAL (2010) 10, 1646–1654 ISSN 1537-744X; DOI 10.1100/tsw.2010.151 Functions of Fasciculation and Elongation Protein Zeta-1 (FEZ1) in the Brain Andrés D. Maturana1,*, Toshitsugu Fujita2, and Shun’ichi Kuroda3,* 1Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan; 2Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; 3Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan E-mail: [email protected]; [email protected] Received March 16, 2010; Revised June 9, 2010; Accepted June 30, 2010; Published August 17, 2010 Fasciculation and elongation protein zeta-1 (FEZ1) is a mammalian ortholog of the Caenorhabditis elegans UNC-76 protein that possesses four coiled-coil domains and a nuclear localization signal. It is mainly expressed in the brain. Suppression of FEZ1 expression in cultured embryonic neurons causes deficiency of neuronal differentiation. Recently, proteomic techniques revealed that FEZ1 interacts with various intracellular partners, such as signaling, motor, and structural proteins. FEZ1 was shown to act as an antiviral factor. The findings reported so far indicate that FEZ1 is associated with neuronal development, neuropathologies, and viral infection. Based on these accumulating evidences, we herein review the biological functions of FEZ1. KEYWORDS: FEZ1, neuronal differentiation, neuronal disorders, virus infection, organelle transport DISCOVERY OF FASCICULATION AND ELONGATION PROTEIN ZETA-1 (FEZ1) FEZ1 is a mammalian ortholog of UNC-76, a protein found in the nematode Caenorhabditis elegans. UNC-76 has been used in an attempt to elucidate the mechanisms of locomotory defects. Genetic screenings of C. elegans mutants showing locomotory defects (uncoordinated or unc mutants) allowed the identification of various genes related to deficiencies in axonal guidance. -
Phosphorylation-Regulated Axonal Dependent Transport of Syntaxin 1 Is Mediated by a Kinesin-1 Adapter
Phosphorylation-regulated axonal dependent transport of syntaxin 1 is mediated by a Kinesin-1 adapter John Jia En Chuaa, Eugenia Butkevichb, Josephine M. Worseckc, Maike Kittelmannd, Mads Grønborga, Elmar Behrmanna, Ulrich Stelzlc, Nathan J. Pavlosa, Maciej M. Lalowskie,1, Stefan Eimerd, Erich E. Wankere, Dieter Robert Klopfensteinb,f,2, and Reinhard Jahna,2 aDepartment of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany; bGeorg-August-Universität Göttingen, Drittes Physikalisches Institut-Biophysik, 37077 Göttingen, Germany; fBiochemistry II, Georg-August-Universität Göttingen, 37073 Göttingen, Germany; cMax-Planck- Institute for Molecular Genetics, 14195 Berlin, Germany; dEuropean Neuroscience Institute Göttingen and German Research Foundation Research Center for Molecular Physiology of the Brain, 37077 Göttingen, Germany; and eMax Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany Edited by Ronald D. Vale, University of California, San Francisco, CA, and approved March 5, 2012 (received for review August 22, 2011) Presynaptic nerve terminals are formed from preassembled vesicles knockouts (15), although in the latter case, a compensation by other that are delivered to the prospective synapse by kinesin-mediated Munc18 isoforms cannot be excluded. These defects were attrib- axonal transport. However, precisely how the various cargoes are uted to a need for Stx to be stabilized by Munc18 in the inactive linked to the motor proteins remains unclear. Here, we report conformation during transport to prevent it from being trapped in a transport complex linking syntaxin 1a (Stx) and Munc18, two pro- nonproductive SNARE complexes (10) but Munc18 could addi- teins functioning in synaptic vesicle exocytosis at the presynaptic tionally participate in loading Stx onto kinesin. -
Fez1/Lzts1 Alterations in Gastric Carcinoma1
1546 Vol. 7, 1546–1552, June 2001 Clinical Cancer Research Advances in Brief Fez1/Lzts1 Alterations in Gastric Carcinoma1 Andrea Vecchione,2 Hideshi Ishii,2 tected in one case that did not express Fez1/Lzts1. Hyper- Yih-Horng Shiao, Francesco Trapasso, methylation of the CpG island flanking the Fez1/Lzts1 pro- Massimo Rugge, Joseph F. Tamburrino, moter was evident in six of the eight cell lines examined as well as in the normal control. Yoshiki Murakumo, Hansjuerg Alder, 3 Conclusions: Our findings support FEZ1/LZTS1 as a Carlo M. Croce, and Raffaele Baffa candidate tumor suppressor gene at 8p in a subtype of Kimmel Cancer Center, Jefferson Medical College of Thomas gastric cancer and suggest that its inactivation is attributa- Jefferson University, Philadelphia, Pennsylvania 19107 [A. V., H. I., F. T., J. F. T., Y. M., H. A., C. M. C., R. B.]; Laboratory of ble to several factors including genomic deletion and meth- Comparative Carcinogenesis, National Cancer Institute, Frederick ylation. Cancer Research and Development Center, NIH, Frederick, Maryland 21702 [Y-H. S.]; and Department of Pathology, University of Padova, Padova 35126, Italy [M. R.]. Introduction Gastric cancer is the second most common malignant tu- Abstract mor worldwide, with a much higher incidence in Asian than in 4 Purpose: Loss of heterozygosity (LOH) involving the Western countries (1). The international TNM classification (2) short arm of chromosome 8 (8p) is a common feature of the and Lauren’s system (3) classify gastric cancer into two distinct malignant progression of human tumors, including gastric histological types: intestinal (well differentiated) and diffuse cancer. -
Datasheet: MCA3240Z Product Details
Datasheet: MCA3240Z Description: MOUSE ANTI HUMAN NBR1:Preservative Free Specificity: NBR1 Format: Preservative Free Product Type: Monoclonal Antibody Clone: 6B11 Isotype: IgG1 Quantity: 0.1 mg Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 0.1 - 10 ug/ml Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls. Target Species Human Product Form Purified IgG - liquid Preparation Purified IgG prepared by affinity chromatography on Protein A Buffer Solution Phosphate buffered saline Preservative None present Stabilisers Approx. Protein Ig concentration 0.5 mg/ml Concentrations Immunogen Recombinant protein corresponding to aa 2-97 of human NBR1 External Database Links UniProt: Q14596 Related reagents Entrez Gene: 4077 NBR1 Related reagents Synonyms 1A13B, KIAA0049, M17S2 Page 1 of 3 Fusion Partners Spleen cells from BALB/c mice were fused with cells from the Sp2/0 myeloma cell line. Specificity Mouse anti Human NBR1 antibody, clone 6B11 recognizes human Next to BRCA1 gene 1 protein, also known as NBR1, Cell migration-inducing gene 19 protein, Membrane component chromosome 17 surface marker 2, Neighbor of BRCA1 gene 1 protein or Protein 1A1-3B. -
Towards Personalized Medicine in Psychiatry: Focus on Suicide
TOWARDS PERSONALIZED MEDICINE IN PSYCHIATRY: FOCUS ON SUICIDE Daniel F. Levey Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Program of Medical Neuroscience, Indiana University April 2017 ii Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Andrew J. Saykin, Psy. D. - Chair ___________________________ Alan F. Breier, M.D. Doctoral Committee Gerry S. Oxford, Ph.D. December 13, 2016 Anantha Shekhar, M.D., Ph.D. Alexander B. Niculescu III, M.D., Ph.D. iii Dedication This work is dedicated to all those who suffer, whether their pain is physical or psychological. iv Acknowledgements The work I have done over the last several years would not have been possible without the contributions of many people. I first need to thank my terrific mentor and PI, Dr. Alexander Niculescu. He has continuously given me advice and opportunities over the years even as he has suffered through my many mistakes, and I greatly appreciate his patience. The incredible passion he brings to his work every single day has been inspirational. It has been an at times painful but often exhilarating 5 years. I need to thank Helen Le-Niculescu for being a wonderful colleague and mentor. I learned a lot about organization and presentation working alongside her, and her tireless work ethic was an excellent example for a new graduate student. I had the pleasure of working with a number of great people over the years. Mikias Ayalew showed me the ropes of the lab and began my understanding of the power of algorithms. -
The FEZ1 Gene Shows No Association to Schizophrenia in Caucasian Or African American Populations
Neuropsychopharmacology (2007) 32, 190–196 & 2007 Nature Publishing Group All rights reserved 0893-133X/07 $30.00 www.neuropsychopharmacology.org The FEZ1 Gene Shows No Association to Schizophrenia in Caucasian or African American Populations ,1 1 1 2 1 Colin A Hodgkinson* , David Goldman , Francesca Ducci , Pamela DeRosse , Daniel A Caycedo , 1 2 3 2 Emily R Newman , John M Kane , Alec Roy and Anil K Malhotra 1Section of Human Neurogenetics, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; 2 3 Psychiatry Research, Hillside Hospital, Glen Oaks, NY, USA; Psychiatry Service, Department of Veterans Affairs, New Jersey Health System, East Orange, NJ, USA Schizophrenia is a complex psychiatric disorder with both genetic and environmental components and is thought to be in part neurodevelopmental in origin. The DISC1 gene has been linked to schizophrenia in two independent Caucasian populations. The DISC1 protein interacts with a variety of proteins including FEZ1, the mammalian homolog of the Caenorhabditis elegans unc-76 protein, which is involved in axonal outgrowth. Variation at the FEZ1 gene has been associated with schizophrenia in a large Japanese cohort. In this study, nine SNP markers at the FEZ1 locus were genotyped in two populations. A North American Caucasian cohort of 212 healthy controls, 178 schizophrenics, 79 bipolar disorder, and 58 with schizoaffective disorder, and an African American cohort of 133 healthy controls, 162 schizophrenics, and 28 with schizoaffective disorder. No association to schizophrenia, bipolar disorder or schizoaffective disorder was found for any of the nine markers typed in these populations at the allelic or the genotypic level. -
A Study of Fez1 and Fez2: Localization and Knock-Out Helene Bekkeli Schäfer Thesis for the Degree Master of Pharmacy May 2016 Supervisor: Assoc
Uit The Arctic University of Norway Faculty of Health Science, Department of Pharmacy Research group: Molecular Cancer Research Group A study of Fez1 and Fez2: Localization and knock-out Helene Bekkeli Schäfer Thesis for the degree Master of Pharmacy May 2016 Supervisor: Assoc. Professor Eva Sjøttem Assistant supervisor: Hanne Britt Brenne Acknowledgments I want to thank Eva Sjøttem for helping me a lot! Thanks also to Hanne Brenne. I also want to thank my mom for encouraging me when I did not want to write up my work. 2 Abstract Autophagy is a fundamental cellular process where cell components get digested in autolysosomes and are recycled. Dysregulation of autophagy is involved in major diseases like cancer, neurodegeneration, inflammation and ischemia. In this thesis we have worked with fasciculation and elongation zeta (Fez) proteins, which are reported to inhibit autophagy. There are at least two mammalian Fez proteins, Fez1 and Fez2. Fez1 has three light chain three interaction regions (LIRs). Fez1 can use these to interact with LIR docking sites (LDS) on the autophagy Atg8 proteins. Using the Flp-In system, ten Hek293 cell lines were established. These cell lines have tetracycline inducible expression of EGFP-Fez1 mutants, and one cell line has inducible expression of EGFP-Fez2. Seven of the cell lines expressing EGFP-Fez1 are mutated in the LIR motifs. The other two express a phosphorylation mimicking mutant of Fez1 (S58E) and the un-phosphorylated form Fez1 (S58A). Fez1 binds kinesin-1. Phosphorylation of Fez1 S58 regulates the kinesin-1 binding. The second LIR is close to Fez1 S58 and phosphorylation of S58 may also regulate Atg8 interaction.