A Novel Candidate Tumor Suppressor Gene from 10Q24.3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nucleotide Sequence and Analysis of the 58.3 to 65.5-Kb Early Region of Bacteriophage T4
Volume 14 Number 21 1986 Nucleic Acids Research Nucleotide sequence and analysis of the 58.3 to 65.5-kb early region of bacteriophage T4 Kristoffer Valerie 13.4, John Stevens', Mark Lynch'5, Earl E.Henderson12 and Jon K.de Riel1 'Fels Research Institute, and 2Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA and 3Department of Biochemistry and Biotechnology, Royal Institute of Technology, S-100 44 Stockholm, Sweden Received 21 July 1986; Revised and Accepted 30 September 1986 ABSTRACT The complete 7.2-kb nucleotide sequence from the 58.3 to 65.5-kb early region of bacteriophage T4 has been determined by Maxam and Gilbert sequencing. Computer analysis revealed at least 20 open reading frames (ORFs) within this sequence. All major ORFs are transcribed from the left strand, suggesting that they are expressed early during infection. Among the ORFs, we have identified the pIIII, II, denV and tk genes. The ORFs are very tightly spaced, even over Lapping in some instances, and when ORF interspacing occurs, promoter-like sequences can be implicated. Several of the sequences preceding the ORFs, in particular those at ipIII, ipII, denV, and orf6l.9, can potentially form stable stem-loop structures. INTRODUCTION Recently, considerable progress has been made studying the bacteriophage T4 genome at the molecular level due to the development of T4 strains with unmod- ified DNA suitable for digestion with restriction endonucleases (1). Many T4 genes have since been cloned, sequenced, and their gene products overproduced in Escherichia coli (for review see ref. 2). A majority of the T4 genes studied so far have been essential and non-essential genes with well-characterized pheno- types. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Figure S1. Representative Report Generated by the Ion Torrent System Server for Each of the KCC71 Panel Analysis and Pcafusion Analysis
Figure S1. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. A Figure S1. Continued. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. B Figure S2. Comparative analysis of the variant frequency found by the KCC71 panel and calculated from publicly available cBioPortal datasets. For each of the 71 genes in the KCC71 panel, the frequency of variants was calculated as the variant number found in the examined cases. Datasets marked with different colors and sample numbers of prostate cancer are presented in the upper right. *Significantly high in the present study. Figure S3. Seven subnetworks extracted from each of seven public prostate cancer gene networks in TCNG (Table SVI). Blue dots represent genes that include initial seed genes (parent nodes), and parent‑child and child‑grandchild genes in the network. Graphical representation of node‑to‑node associations and subnetwork structures that differed among and were unique to each of the seven subnetworks. TCNG, The Cancer Network Galaxy. Figure S4. REVIGO tree map showing the predicted biological processes of prostate cancer in the Japanese. Each rectangle represents a biological function in terms of a Gene Ontology (GO) term, with the size adjusted to represent the P‑value of the GO term in the underlying GO term database. -
An Amino-Terminal Domain of Mxil Mediates Anti-Myc Oncogenic Activity and Interacts with a Homolog of the Yeast Transcriptional Repressor SIN3
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Cell, Vol, 80, 777-786, March 10, 1995, Copyright © 1995 by Cell Press An Amino-Terminal Domain of Mxil Mediates Anti-Myc Oncogenic Activity and Interacts with a Homolog of the Yeast Transcriptional Repressor SIN3 Nicole Schreiber-Agus,*t Lynda Chin,*tt Ken Chen,t et al., 1990), and a carboxy-terminal a-helical domain re- Richard Torres, t Govinda Rao,§ Peter Guida,t quired for dimerization with another basic region-helix- Arthur h Skoultchi,§ and Ronald A. DePinhot Ioop-helix-leucine zipper (bHLH-LZ) protein, Max (Black- "rDepartments of Microbiology and Immunology wood and Eisenman, 1991; Prendergast et al., 1991). and of Medicine Many of the biochemical and biological activities of Myc §Department of Cell Biology appear to be highly dependent upon its association with ~Division of Dermatology Max (Blackwood and Eisenman, 1991 ; Prendergast et al., Albert Einstein College of Medicine 1991; Kretzner et al., 1992; Amati et al., 1993a, 1993b). Bronx, New York 10461 In addition to its key role as an obligate partner in transacti- vation-competent Myc-Max complexes, Max may also re- press Myc-responsive genes through the formation of Summary transactivation-inert complexes that are capable of bind- ing the Myc-Max recognition sequence (Blackwood et al., Documented interactions among members of the Myc 1992; Kato et al., 1992; Kretzner et al., 1992; Makela et superfamily support a yin-yang model for the regula- al., 1992; Mukherjee et al., 1992; Prendergast et al., 1992; tion of Myc-responsive genes in which t ransactivation- Ayer et al., 1993; Zervos et al., 1993). -
Transcriptional Control of Tissue-Resident Memory T Cell Generation
Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells. -
Electrophoretic Variation in Adenylate Kinase Ofneisseria
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 10535-10539, November 1995 Genetics Electrophoretic variation in adenylate kinase of Neisseria meningitidis is due to inter- and intraspecies recombination (natural transformation/linkage disequilibrium/mosaic genes/multilocus enzyme electrophoresis/nonclonal population structure) EDWARD FEIL, GILL CARPENTER, AND BRIAN G. SPRATT* Molecular Microbiology Group, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom Communicated by John Maynard Smith, University of Sussex, Falmer, Brighton, United Kingdom, August 7, 1995 ABSTRACT In prokaryotic and eukaryotic organisms, their growth cycles and the availability of this mechanism of the electrophoretic variation in housekeeping enzymes from genetic exchange appears to have a profound effect on their natural populations is assumed to have arisen by the accu- evolution and population biology (3, 13-17). mulation of stochastic predominantly neutral mutations. In Caugant et al. (18) carried out an extensive MLEE survey of the naturally transformable bacterium Neisseria meningitidis, meningococci, analyzing variation at 15 enzyme loci in 688 we show that variation in the electrophoretic mobility of isolates recovered predominantly from patients with invasive adenylate kinase is due to inter- and intraspecies recombina- disease. Although the results from this survey appeared to tion rather than mutation. The nucleotide sequences of the imply relatively high levels of linkage disequilibrium, it has adenylate kinase gene (adk) from isolates that express the been pointed out (3, 17) that artificially high levels of linkage predominant slow electrophoretic variant were rather uni- disequilibrium may result from sampling bias, in this case form, differing in sequence at an average of 1.1% of nucleotide through the disproportionately high frequency in the data set sites. -
Differential Expression of FEZ1/LZTS1 Gene in Lung Cancers and Their Cell Cultures1
2292 Vol. 8, 2292–2297, July 2002 Clinical Cancer Research Differential Expression of FEZ1/LZTS1 Gene in Lung Cancers and Their Cell Cultures1 Shinichi Toyooka, Yasuro Fukuyama, NSCLC cell lines, it was strongly correlated to D8S261 Ignacio I. Wistuba, Melvyn S. Tockman, and LPL loci in SCLC cell lines. No mutation was found John D. Minna, and Adi F. Gazdar2 within cording region of FEZ1 by PCR-single-strand con- formational polymorphism. Hamon Center for Therapeutic Oncology Research [S. T., Y. F., Conclusions: We found differential FEZ1 expression in J. D. M., A. F. G.], and Departments of Pathology [A. F. G.], Internal Medicine [J. D. M.], and Pharmacology [J. D. M.], University of NSCLC and SCLC cell lines, and the absent expression in 3 Texas Southwestern Medical Center, Dallas, Texas 75390-8593; of 6 short-term cultures of NSCLC tumors. FEZ1 may be Department of Pathology, Pontificia Universidad Catolica de Chile, related to tumorigenesis of lung cancer. Santiago, Chile [I. I. W.]; and Molecular Screening Laboratory, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612-9497 [M .S. T.] INTRODUCTION Lung cancer is the most common cause of cancer deaths in the United States (1) and on clinicopathological grounds is ABSTRACT divided into two major types, NSCLCs and SCLCs. The mo- Purpose: The FEZ1/LZTS1 (FEZ1) gene, located on lecular genetic changes in these two types of lung cancer are chromosome 8p22 (8p22), was identified recently as a can- very different, including specific patterns of allelic loss (2–5). didate tumor suppressor gene. -
B Number Gene Name Mrna Intensity Mrna
sample) total list predicted B number Gene name assignment mRNA present mRNA intensity Gene description Protein detected - Membrane protein membrane sample detected (total list) Proteins detected - Functional category # of tryptic peptides # of tryptic peptides # of tryptic peptides detected (membrane b0002 thrA 13624 P 39 P 18 P(m) 2 aspartokinase I, homoserine dehydrogenase I Metabolism of small molecules b0003 thrB 6781 P 9 P 3 0 homoserine kinase Metabolism of small molecules b0004 thrC 15039 P 18 P 10 0 threonine synthase Metabolism of small molecules b0008 talB 20561 P 20 P 13 0 transaldolase B Metabolism of small molecules chaperone Hsp70; DNA biosynthesis; autoregulated heat shock b0014 dnaK 13283 P 32 P 23 0 proteins Cell processes b0015 dnaJ 4492 P 13 P 4 P(m) 1 chaperone with DnaK; heat shock protein Cell processes b0029 lytB 1331 P 16 P 2 0 control of stringent response; involved in penicillin tolerance Global functions b0032 carA 9312 P 14 P 8 0 carbamoyl-phosphate synthetase, glutamine (small) subunit Metabolism of small molecules b0033 carB 7656 P 48 P 17 0 carbamoyl-phosphate synthase large subunit Metabolism of small molecules b0048 folA 1588 P 7 P 1 0 dihydrofolate reductase type I; trimethoprim resistance Metabolism of small molecules peptidyl-prolyl cis-trans isomerase (PPIase), involved in maturation of b0053 surA 3825 P 19 P 4 P(m) 1 GenProt outer membrane proteins (1st module) Cell processes b0054 imp 2737 P 42 P 5 P(m) 5 GenProt organic solvent tolerance Cell processes b0071 leuD 4770 P 10 P 9 0 isopropylmalate -
The Id-Protein Family in Developmental and Cancer-Associated Pathways Cornelia Roschger and Chiara Cabrele*
Roschger and Cabrele Cell Communication and Signaling (2017) 15:7 DOI 10.1186/s12964-016-0161-y REVIEW Open Access The Id-protein family in developmental and cancer-associated pathways Cornelia Roschger and Chiara Cabrele* Abstract Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop- helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. -
Downloaded the “Top Edge” Version
bioRxiv preprint doi: https://doi.org/10.1101/855338; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Drosophila models of pathogenic copy-number variant genes show global and 2 non-neuronal defects during development 3 Short title: Non-neuronal defects of fly homologs of CNV genes 4 Tanzeen Yusuff1,4, Matthew Jensen1,4, Sneha Yennawar1,4, Lucilla Pizzo1, Siddharth 5 Karthikeyan1, Dagny J. Gould1, Avik Sarker1, Yurika Matsui1,2, Janani Iyer1, Zhi-Chun Lai1,2, 6 and Santhosh Girirajan1,3* 7 8 1. Department of Biochemistry and Molecular Biology, Pennsylvania State University, 9 University Park, PA 16802 10 2. Department of Biology, Pennsylvania State University, University Park, PA 16802 11 3. Department of Anthropology, Pennsylvania State University, University Park, PA 16802 12 4 contributed equally to work 13 14 *Correspondence: 15 Santhosh Girirajan, MBBS, PhD 16 205A Life Sciences Building 17 Pennsylvania State University 18 University Park, PA 16802 19 E-mail: [email protected] 20 Phone: 814-865-0674 21 1 bioRxiv preprint doi: https://doi.org/10.1101/855338; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 22 ABSTRACT 23 While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non- 24 neuronal phenotypes, functional studies evaluating these regions have focused on the molecular 25 basis of neuronal defects. -
8P22 MTUS1 Gene Product ATIP3 Is a Novel Anti-Mitotic Protein Underexpressed in Invasive Breast Carcinoma of Poor Prognosis
8p22 MTUS1 Gene Product ATIP3 Is a Novel Anti-Mitotic Protein Underexpressed in Invasive Breast Carcinoma of Poor Prognosis Sylvie Rodrigues-Ferreira1, Anne Di Tommaso1, Ariane Dimitrov2, Sylvie Cazaubon1, Nade`ge Gruel3,4, He´le`ne Colasson1, Andre´ Nicolas5, Nathalie Chaverot1, Vincent Molinie´ 6, Fabien Reyal2, Brigitte Sigal-Zafrani4,5, Benoit Terris7, Olivier Delattre3,4, Franc¸ois Radvanyi2, Franck Perez2, Anne Vincent-Salomon4,5, Clara Nahmias1* 1 Institut Cochin, Universite´ Paris Descartes, Inserm U567, CNRS UMR8104, Paris, France, 2 CNRS UMR144, Institut Curie, Paris, France, 3 Inserm U830, Institut Curie, Paris, France, 4 Translational Research Department, Institut Curie, Paris, France, 5 Pathology Department, Hopital Curie, Paris, France, 6 Pathology Department, Hopital St. Joseph, Paris, France, 7 Pathology Department, Hopital Cochin, Paris, France Abstract Background: Breast cancer is a heterogeneous disease that is not totally eradicated by current therapies. The classification of breast tumors into distinct molecular subtypes by gene profiling and immunodetection of surrogate markers has proven useful for tumor prognosis and prediction of effective targeted treatments. The challenge now is to identify molecular biomarkers that may be of functional relevance for personalized therapy of breast tumors with poor outcome that do not respond to available treatments. The Mitochondrial Tumor Suppressor (MTUS1) gene is an interesting candidate whose expression is reduced in colon, pancreas, ovary and oral cancers. The present study investigates the expression and functional effects of MTUS1 gene products in breast cancer. Methods and Findings: By means of gene array analysis, real-time RT-PCR and immunohistochemistry, we show here that MTUS1/ATIP3 is significantly down-regulated in a series of 151 infiltrating breast cancer carcinomas as compared to normal breast tissue. -
Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .