What Is a Recessive Allele?

Total Page:16

File Type:pdf, Size:1020Kb

What Is a Recessive Allele? What Is a Recessive Allele? WernerG. Heim ONE of the commonlymisunderstood and misin- are termedthe dominant[dominirende], and those terpreted concepts in elementary genetics is that which becomelatent in the processrecessive [reces- sive]. The expression"recessive" has been chosen of dominance and recessiveness of alleles. Many becausethe charactersthereby designated withdraw students in introductory courses perceive the idea or entirelydisappear in the hybrids,but nevertheless that the dominant form of a gene is somehow stron- reappear unchanged in their progeny ... (Mendel ger than the recessive form and, when they are 1950,p. 8) together in a heterozygote, the dominant allele sup- Two important concepts are presented here: (1) presses the action of the recessive one. This belief is Statements about dominance and recessiveness are Downloaded from http://online.ucpress.edu/abt/article-pdf/53/2/94/44793/4449229.pdf by guest on 27 September 2021 not only incorrectbut it can lead to a whole series of statements about the appearanceof characters,about further errors. Students, for example, often errone- what is seen or can be detected, not about the ously conclude that because the dominant allele is the underlying genetic situation; (2) The relationship stronger, it therefore ought to become more common between two alleles of a gene falls on a continuous in the course of evolution. scale from one of complete dominance and recessive- There are other common misconceptions, among ness to a complete lack thereof. In the latter case, the them that: expression of both alleles is seen in either of two ways 1) Dominance operates at the genotypic level. in the heterozygote. of domi- 2) Allelic families must have some order The actual situation is, however, somewhat more nance among the members. complicated than Mendel knew. Here, three propo- 3) Dominance is an all-or-none phenomenon. sitions will be briefly analyzed: (1) There exists a full 4) The dominance relationship depends on some spectrum of possible relationships between two al- mysterious, unknown and perhaps unknowable leles of a gene. (2) The nature of the relationship force rather than on molecular and physiological sometimes depends upon the level of analysis used. events subject to exploration and explanation. (3) The cause of the relationship can sometimes be Gregor Mendel recognized that "hybrids," i.e. the analyzed in great detail. For the last of these, we will F1 generation of a cross between two purebred par- return to one of Mendel's cases, that of the wrinkled ents differing in one or more characteristics, are pea. seldom exactly intermediate in appearance between the parents. In some cases, he says: The Spectrum of Relationships [w]ithsome of the morestriking characters, those, for instance,which relate to the form and size of the Generally, textbooks speak of four types of domi- leaves, the pubescenceof the severalparts, &c., the nance-recessiveness relationships:(1) complete dom- intermediate,indeed, is nearlyalways to be seen; in othercases, however,one of the two parentalcharac- inance, (2) codominance, (3) partial or incomplete ters is so preponderantthat it is difficult,or quite dominance, and (4) lack of dominance, although impossible,to detectthe otherin the hybrid.(Mendel some do not differentiateamong all these categories, 1950,p. 7) particularlythe last two. Complete dominance occurs where the of a between two dif- Turning to the results of his own work, he contin- offspring mating strains "resemblesthat of of ues: fering, purebred one the parentalforms so closely that the other either escapes In the case of each of the seven crossesthe hybrid- observation completely or cannot be detected with characterresembles that of one of the parentalforms certainty" (Mendel 1950, p. 7). In more modern so closely that the other either escapes observation terms, there is complete dominance when the phe- completely or cannot be detected with certainty .... [T]hosecharacters which are transmittedentire, or notype of the heterozygote cannot be distinguished almostunchanged in the hybridization,and therefore from that of the dominant parent. A classic example in themselvesconstitute the charactersof the hybrid, is the case of the round and wrinkled peas where the round heterozygotes are as round as the round homozygotes (Mendel 1950). Wemer G. Heim is a professorin the department of biology,The Codominance exists when the phenotypic expres- Colorado College, Colorado Springs,CO 80903. He was asso- ciate editor of ABTfrom 1970 to 1974. sion of both alleles is clearly and separately seen in the heterozygote. A good example here is the human 94 THEAMERICAN BIOLOGY TEACHER, VOLUME 53, NO. 2, FEBRUARY1991 blood type AB, the phenotype jroduced by the designated as ts. Carriers (heterozygotes, genotype simultaneous action of the alleles I and IB. Partialor TS/ts) have usually 40-60 percent of the enzyme incomplete dominance exists if the heterozygote activity of normal, homozygous persons (genotype shows a phenotype more or less, but not exactly, TS/TS)(Bergsma 1979). In everyday life, health, lon- intermediate between the two parental phenotypes, gevity and fertility the heterozygotes cannot be dis- as where pink carnations result from the mating of tinguished from the normal homozygotes. The ho- red flowered with white flowered plants (Klug & mozygotes ts/ts die in infancy or early childhood Cummings 1986). Finally, if the heterozygote's char- (McKusick1988). acter state is precisely intermediate between that of Is, then, Tay-Sachs disease caused by a recessive the two parental characterstates, we may even speak allele? Since the gross phenotypes of the heterozy- of a lack of dominance. The differences among these gotes and homozygote normals cannot be distin- relationships-codominance, partial or incomplete guished, it is so by Mendel's criterion.Yet, the het- dominance, and lack of dominance-are small and erozygotes are easily distinguished from the may not be worth emphasizing in introductory homozygote normals (and from the affected persons) courses. by a relatively simple serum enzyme test (Thompson ideas follow from an understanding & Thompson 1979). Whether the allele yielding the Two important Downloaded from http://online.ucpress.edu/abt/article-pdf/53/2/94/44793/4449229.pdf by guest on 27 September 2021 of these relationships between pairs of alleles. First, "normal"phenotype is dominant relative to the allele the dominant-recessiverelation may be considered as causing the disease depends upon the level of anal- on a scale from complete to nonexistent (Strickberger ysis. 1985). Second, it is sometimes possible to calculate When alleles of a gene are compared by DNA the degree of dominance exercised by each allele as in nucleotide sequencing, no two alleles are in a reces- the form: sive-dominant relationship. At this level of analysis every heterozygote must differ from either homozy- Degree of Dominance= gote since, by the very definition of "allele," the base (Heterozygous value) - (recessive value) sequences of the two homologous chromosomes must differ in some way. Again, the dominant- (Dominant value) - (recessive value) recessive relationship is not one fundamental to the (Stansfield 1977). As a simple example, consider a nature of genes but depends upon the level of anal- pair of purebred plant lines where one averages one ysis and the degree of detail to which we know the meter in height and the other three. Assume that the genetic situation. One might well argue that the heterozygotes resulting from a cross of these two concept of the relationship disappears entirely at the lines average 2.5 meters in height. The heterozygotes level of the DNA (or RNA) base sequences. are closer in height to the tall parents: The allele producing the greater height exerts 2.5-1/3-1or 3/4 of The Causes of Dominance a complete dominance effect on the height of the heterozygotes. Contrary to the belief among some A heterozygote may display in its phenotype the inexperienced students, the dominance-recessivere- action of one of its pair of alleles for any of several lationship is neither inevitable nor absolute. The reasons. Sometimes the recessive gene may not direct relationship neither has to exist (and often indeed the synthesis of an RNA or protein product; some- does not) nor must the dominant allele always com- times the gene product is defective or markedly low pletely prevent the expression of the recessive one. in activity. In other cases, especially those where the recessive allele, when homozygous, produces the normal phenotype, the dominant allele may be pro- The Level of Analysis ducing a structuralprotein incapable of proper func- Since dominance and recessiveness refer essen- tion by itself or with the product of the recessive tially to an organism's phenotype, we should not be allele. surprised that the relationship may be different at A case of the last type where, for structuralrea- different levels of analysis between phenotype and sons, the abnormalallele acts as a dominant relative genotype. This is well illustrated in the human auto- to the normal allele is illustrated by Ehlers-Danlos somal recessive condition usually called Tay-Sachs syndrome type IV (McKusick1988, entry no. 13005). disease or, more descriptively, GM2-gangliosidosisB The normal allele directs the synthesis of a normal variant (McKusick1988, entry no. 27280). The cause polypeptide. This polypeptide is combined with oth- of this condition is the virtual absence of an enzyme, ers to form the collagen molecule of connective tis- hexoseaminidase A (Hex A) in the affected homozy- sues. The abnormalallele causes the production of an gotes (Thompson & Thompson 1979). The normal abnormal polypeptide that prevents proper forma- allele is conventionally designated as TS; the one tion of the whole collagen protein from the polypep- which, in the homozygous state, causes the disease is tide subunits. Superti-Furga and Steinman (1988) ALLELE95 have demonstrated a deletion of the DNA coding for fragments in the DNA from plants of either geno- the alpha subunit of one type of collagen in the type.
Recommended publications
  • Basic Genetic Terms for Teachers
    Student Name: Date: Class Period: Page | 1 Basic Genetic Terms Use the available reference resources to complete the table below. After finding out the definition of each word, rewrite the definition using your own words (middle column), and provide an example of how you may use the word (right column). Genetic Terms Definition in your own words An example Allele Different forms of a gene, which produce Different alleles produce different hair colors—brown, variations in a genetically inherited trait. blond, red, black, etc. Genes Genes are parts of DNA and carry hereditary Genes contain blue‐print for each individual for her or information passed from parents to children. his specific traits. Dominant version (allele) of a gene shows its Dominant When a child inherits dominant brown‐hair gene form specific trait even if only one parent passed (allele) from dad, the child will have brown hair. the gene to the child. When a child inherits recessive blue‐eye gene form Recessive Recessive gene shows its specific trait when (allele) from both mom and dad, the child will have blue both parents pass the gene to the child. eyes. Homozygous Two of the same form of a gene—one from Inheriting the same blue eye gene form from both mom and the other from dad. parents result in a homozygous gene. Heterozygous Two different forms of a gene—one from Inheriting different eye color gene forms from mom mom and the other from dad are different. and dad result in a heterozygous gene. Genotype Internal heredity information that contain Blue eye and brown eye have different genotypes—one genetic code.
    [Show full text]
  • Basic Genetic Concepts & Terms
    Basic Genetic Concepts & Terms 1 Genetics: what is it? t• Wha is genetics? – “Genetics is the study of heredity, the process in which a parent passes certain genes onto their children.” (http://www.nlm.nih.gov/medlineplus/ency/article/002048. htm) t• Wha does that mean? – Children inherit their biological parents’ genes that express specific traits, such as some physical characteristics, natural talents, and genetic disorders. 2 Word Match Activity Match the genetic terms to their corresponding parts of the illustration. • base pair • cell • chromosome • DNA (Deoxyribonucleic Acid) • double helix* • genes • nucleus Illustration Source: Talking Glossary of Genetic Terms http://www.genome.gov/ glossary/ 3 Word Match Activity • base pair • cell • chromosome • DNA (Deoxyribonucleic Acid) • double helix* • genes • nucleus Illustration Source: Talking Glossary of Genetic Terms http://www.genome.gov/ glossary/ 4 Genetic Concepts • H describes how some traits are passed from parents to their children. • The traits are expressed by g , which are small sections of DNA that are coded for specific traits. • Genes are found on ch . • Humans have two sets of (hint: a number) chromosomes—one set from each parent. 5 Genetic Concepts • Heredity describes how some traits are passed from parents to their children. • The traits are expressed by genes, which are small sections of DNA that are coded for specific traits. • Genes are found on chromosomes. • Humans have two sets of 23 chromosomes— one set from each parent. 6 Genetic Terms Use library resources to define the following words and write their definitions using your own words. – allele: – genes: – dominant : – recessive: – homozygous: – heterozygous: – genotype: – phenotype: – Mendelian Inheritance: 7 Mendelian Inheritance • The inherited traits are determined by genes that are passed from parents to children.
    [Show full text]
  • Glossary/Index
    Glossary 03/08/2004 9:58 AM Page 119 GLOSSARY/INDEX The numbers after each term represent the chapter in which it first appears. additive 2 allele 2 When an allele’s contribution to the variation in a One of two or more alternative forms of a gene; a single phenotype is separately measurable; the independent allele for each gene is inherited separately from each effects of alleles “add up.” Antonym of nonadditive. parent. ADHD/ADD 6 Alzheimer’s disease 5 Attention Deficit Hyperactivity Disorder/Attention A medical disorder causing the loss of memory, rea- Deficit Disorder. Neurobehavioral disorders character- soning, and language abilities. Protein residues called ized by an attention span or ability to concentrate that is plaques and tangles build up and interfere with brain less than expected for a person's age. With ADHD, there function. This disorder usually first appears in persons also is age-inappropriate hyperactivity, impulsive over age sixty-five. Compare to early-onset Alzheimer’s. behavior or lack of inhibition. There are several types of ADHD: a predominantly inattentive subtype, a predomi- amino acids 2 nantly hyperactive-impulsive subtype, and a combined Molecules that are combined to form proteins. subtype. The condition can be cognitive alone or both The sequence of amino acids in a protein, and hence pro- cognitive and behavioral. tein function, is determined by the genetic code. adoption study 4 amnesia 5 A type of research focused on families that include one Loss of memory, temporary or permanent, that can result or more children raised by persons other than their from brain injury, illness, or trauma.
    [Show full text]
  • Evolution at Multiple Loci
    Evolution at multiple loci • Linkage • Sex • Quantitative genetics Linkage • Linkage can be physical or statistical, we focus on physical - easier to understand • Because of recombination, Mendel develops law of independent assortment • But loci do not always assort independently, suppose they are close together on the same chromosome Haplotype - multilocus genotype • Contraction of ‘haploid-genotype’ – The genotype of a chromosome (gamete) • E.g. with two genes A and B with alleles A and a, and B and b • Possible haplotypes – AB; Ab; aB, ab • Will selection at the A locus affect evolution of the B locus? Chromosome (haplotype) frequency v. allele frequency • Example, suppose two populations have: – A allele frequency = 0.6, a allele frequency 0.4 – B allele frequency = 0.8, b allele frequency 0.2 • Are those populations identical? • Not always! Linkage (dis)equilibrium • Loci are in equilibrium if: – Proportion of B alleles found with A alleles is the same as b alleles found with A alleles; and • Loci in linkage disequilibrium if an allele at one locus is more likely to be found with a particular allele at another locus – E.g., B alleles more likely with A alleles than b alleles are with A alleles Equilibrium - alleles A locus, A allele p = 15/25 = 0.6 a allele q = 1-p = 0.4 B locus, B allele p = 20/25 = 0.8; b allele q = 1-p = 0.2 Equilibrium - haplotypes Allele B with allele A = 12; A without B = 3 times; AB 12/15 = 0.8 Allele B with allele a = 8; a without B = 2 times; aB 8/10 = 0.8 Equilibrium graphically Disequilibrium - alleles
    [Show full text]
  • BIOL 116 General Biology II Common Course Outline
    South Central College BIOL 116 General Biology II Common Course Outline Course Information Description This course covers biology at the organismal. population and system level. It will emphasize organismal diversity, population and community ecology and ecosystems. Students will gain an understanding of how evolutionary advances have occurred among organisms within a kingdom due to natural selection. This course involves a weekly three hour lab. (prerequisites: Score of 86 or above on the Sentence Skills portion of the Accuplacer test or ENGL 0090 and score of 50 or above on College Level Math portion of the Accuplacer test or MATH 0085) MNTC area 3 Total Credits 4.00 Total Hours 80.00 Types of Instruction Instruction Type Credits Lecture Lab Pre/Corequisites Prerequisite Score of 50 or above on the College Level Math portion of the Accuplacer test or MATH 0085 Prerequisite Score of 86 or above on the Sentence Skills portion of the Accuplacer test or ENGL 0090 Course Competencies 1 Appreciate and explain the process of scientific discovery and methodology Learning Objectives List and describe the steps of the scientific method Demonstrate the process of scientific discovery in the lab 2 Develop the skills necessary to engage in the scientific method Learning Objectives Formulate a hypothesis based on observations Develop a method to test a hypothesis Collect and analyze data Interpret data and form a conclusion Communicate scientific findings Common Course Outline - Page 1 of 4 Monday, September 24, 2012 3:42 PM 3 Explain the theory of
    [Show full text]
  • Evolutionary Forces: Generation X Simulation to Launch the Genx
    Biol 303 1 Lecture Notes Evolutionary Forces: Generation X Simulation To launch the GenX software: 1. Right-click ‘My Computer’. 2. Click ‘Map Network Drive’ 3. Don’t worry about what drive letter is assigned in the upper part of the dialogue box that pops up. In the lower part, enter: \\hopper\labshare. You can probably get this without typing by clicking the little triangle on the right of the field. 4. Using Windows Explorer, Click on the Labshare folder, then on Biology 303 folder, then on the GenX icon to start. A. Recall from lecture: Evolution is a change over time in allele (gene) frequencies within a population. There are 4 main evolutionary forces: Mutation - new allele arises by physical change in structure of DNA Genetic drift - random change in allele frequency by chance, important mainly in small populations (remember that variance ↑ as sample size ↓) Isolation - two populations that exchange members (even just 1 disperser per generation) do not diverge genetically. Isolated populations can diverge due to drift or natural selection Natural selection - differential survival and reproduction of individuals with different phenotypes Also recall that a locus is fixed for a single allele if any allele reaches a frequency of one. When a population holds only one allele, evolution cannot occur (until an alternative allele arrives by mutation or immigration). B. Background for Generation X simulations: Generation X is a computer model of evolution. It allows you to alter the four evolutionary forces, either one at a time or in combination, and see the effect on genotype and allele frequencies.
    [Show full text]
  • A Glossary of Terms for Restoration Genetics
    Paul R. Salon Allele – The specific composition of DNA at each gene is known as an allele. Multiple alleles of a gene maybe A Glossary of Terms for Restoration Genetics USDA-NRCS Syracuse, NY generated by mutations which are structural or chemical changes in DNA at a specific location on a chromosome (locus), this generates genetic variation. Genetic shift – A change in the germplasm balance of a cross pollinated variety, usually caused by Biodiversity - The total variability within and among species of living organisms and the ecological complexes environmental selection pressures, or nursery practices and selection. that they inhabit. Biodiversity has three levels - ecosystem, species, and genetic diversity reflected in the Genetic vulnerability - Having a narrow range of genetic diversity and reacting uniformly to diverse external number of different species, the different combination of species, and the different combinations of genes within conditions. (Applied to breeding populations of varieties or species). each species. Genotype - The genetic constitution of an individual or group of plants. It is the set of alleles it possesses at a Biotype - A group of individuals within a population occurring in nature, all with essentially the same genetic certain locus or over particular or all loci. constitution. A species usually consists of many biotypes. See also “ecotype”. Germplasm – Genetic material that determines the morphological and physiological characteristics of a species. Chromosomes - Are thread like DNA and protein-based structures in cells whose function is the orderly duplication and distribution of genes during cell division. Heterozygote – If alleles at a locus are different. Cultivar - The international term cultivar denotes an assemblage of cultivated plants that is clearly distinguished Homozygote – If alleles at a locus are the same, the locus is homozygous and the organism is a homozygote for that by any characters (morphological, physiological, cytological, chemical, or others) and when reproduced (sexually gene or trait.
    [Show full text]
  • Module 2: Genetics
    Genetics Module B, Anchor 3 Key Concepts: - An individual’s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for each gene segregate from each other so that each gamete carries only one allele for each gene. - Punnett squares use mathematical probability to help predict the genotype and phenotype combinations in genetic crosses. - The principle of independent assortment states that genes for different traits can segregate independently during the formation of gametes. - Mendel’s principles of heredity, observed through patterns of inheritance, form the basis of modern genetics. - Some alleles are neither dominant nor recessive. Many genes exist in several different forms and are therefore said to have multiple alleles. Many traits are produced by the interaction of several genes. - Environmental conditions can affect gene expression and influence genetically determined traits. - The DNA that makes up genes must be capable of storing, copying, and transmitting the genetic information in a cell. - DNA is a nucleic acid made up of nucleotides joined into long strands or chains by covalent bonds. - DNA polymerase is an enzyme that joins individual nucleotides to produce a new strand of DNA. - Replication in most prokaryotic cells starts from a single point and proceeds in both directions until the entire chromosome is copied. - In eukaryotic cells, replication may begin at dozens or even hundreds of places on the DNA molecule, proceeding in both directions until each chromosome is completely copied. - The main differences between DNA and RNA are that (1) the sugar in RNA is ribose instead of deoxyribose; (2) RNA is generally single-stranded, not double-stranded; and (3) RNA contains uracil in place of thymine.
    [Show full text]
  • Glossary in Evolutionary Biology Compiled by Prof
    Glossary evolutionary biology. Page 1 Glossary in Evolutionary Biology Compiled by Prof. Dieter Ebert This list contains terms, which a student in evolutionary biology should know. The terms denoted with an * are for an advanced level (Courses in evolutionary and quantitative genetics). This Glossary has been compiled with the help of the following books: • J.R. Krebs & N.B. Davies; An Introduction to Behavioural Ecology. 3. Ed., Blackwell UK. 1993. • S.C. Stearns & R.F. Hoeckstra; Evolution: An Introduction. Oxford University Press. 2005. • D.A. Roff; The Evolution of life histories. Chapman & Hall. 1992. ____________________________________________________________________ Adaptation: A state that evolved because it improved reproductive performance, to which survival contributes. Also the process that produces that state. Adaptive evolution: The process of change in a population driven by variation in reproductive success that is correlated with heritable variation in a trait. *Additive genetic variance: The part of total genetic variance that can be modelled by allelic effects whose influence on the phenotype in heterozygotes is additive (Additive means that the phenotype of the heterozygote is halfway between the phenotype of the two homozygotes). This part of genetic variance determines the response to selection by quantitative traits. Aging (=Ageing): (See Senescence). Allele: One of the different homologous forms of a single gene; at the molecular level, a different DNA sequence at the same place in the chromosome. Allele frequency: Proportion the copies of a given allele among all alleles at the locus of interest. Allometry: Relationship between the size of two organisms or their parts. E.g. larger organisms produce larger offspring.
    [Show full text]
  • "TOP/BOT" Strand and "A/B" Allele
    Illumina® SNP Genotyping TECHNICAL NOTE “TOP/BOT” Strand and “A/B” Allele A guide to Illumina’s method for determining Strand and Allele for the GoldenGate® and Infinium™ Assays. INTRODUCTION consistently designate the same SNP orientation and To address DNA strand designation and orientation for allele calls even if public SNP databases and genome both human and non-human species, Illumina has devel- assemblies change. This will enable researchers world- oped a consistent and simple method to ensure uniformi- wide to easily correlate the genotype calls made today to ty in the reporting of genotype calls. research that may have been completed several years ago. The method that Illumina has developed uses the top Researchers can be confident that the same genotype (TOP) and bottom (BOT) designations based on the poly- calls are being made across time. morphism itself, or the contextual surrounding Additionally, although the human genome has been sequence. This document provides a description of the annotated and extensively SNP genotyped, the study of TOP/BOT method, as well as the generalized nomencla- non-human species is growing rapidly. Much of this work ture of “Allele A” and “Allele B” within the Illumina geno- is being done on species for which SNP databases are in typing system. Beginning in mid-2005, dbSNP also their initial stages or do not yet exist. Many researchers adopted this TOP/BOT nomenclature and has included that study both humans and non-human species also rely this designation for all SNP entries. on proprietary SNP sequences that may not yet have been incorporated into public databases or for which assembly BACKGROUND and orientation have not been established.
    [Show full text]
  • Infinite Allele Model with Varying Mutation Rate (Protein Polymorphism/Heterozygosity/Genetic Distance) MASATOSHI Nei, RANAJIT CHAKRABORTY, and PAUL A
    Proc. Natl. Acad. Sci. USA Vol. 73, No. 11, pp.4164-4168, November 1976 Genetics Infinite allele model with varying mutation rate (protein polymorphism/heterozygosity/genetic distance) MASATOSHI NEi, RANAJIT CHAKRABORTY, AND PAUL A. FUERST Center for Demographic and Population Genetics, University of Texas at Houston, Houston, Tex. 77030 Communicated by Motoo Kimura, September 7, 1976 ABSTRACT Available data suggest that the variation in tone IV which has an unusually low rate of amino acid substi- mutation rate among protein loci follows the gamma distribu- tion. Thus, taking. into account this variation, formulae are de- tution. The mean and standard deviations of this distribution veloped for the distribution of allele frequencies, mean and are 2.47 X 10-7 and 2.51 X 10- per year, respectively. We variance of heter'ozygosity, expected number of alleles, pro- fitted the following gamma distribution to these data: portion of polymorphic loci, and genetic distance. These for- mulae should be more appropriate for the analysis of gene fre- quency data for protein loci than equivalent formulae with f(z) r(a) e Zi, [1] constant mutation rate. where a = i2/V5 and , = z/V,, in which z and V. are the In the last 10 years statistical methods based on the so-called mean and variance of the variate in question (z), respectively. infinite allele model (1, 2) have been used extensively to study The maximum likelihood estimates of a and ,3 obtained are 0.95 the mechanism of maintenance of protein polymorphism. and 3.9 X 106, respectively. It is clear that the gamma distri- Because each allele in a population behaves in a random fashion bution fits the data reasonably well (Fig.
    [Show full text]
  • Genetics, DNA, and Heredity
    Genetics, DNA, and Heredity The Basics What is DNA? It's a history book - a narrative of the journey of our species through time. It's a shop manual, with an incredibly detailed blueprint for building every human cell. And it's a transformative textbook of medicine, with insights that will give health care providers immense new powers to treat, prevent and cure disease." - Francis Collins What Does DNA Look Like? A T G C Every cell in our body has the same DNA…. Eye cell Karyotype Lung cell Toe cell How much DNA is in one cell? Genome = 46 chromosomes Genome = approx. 3 billion base pairs One base pair is 0.00000000034 meters DNA sequence in any two people is 99.9% identical – only 0.1% is unique! What makes one cell different from another? DNA = “the life instructions of the cell” Gene = segment of DNA that tells the cell how to make a certain protein. Allele = one of two or more different versions of a gene Sequence for normal adult hemoglobin: Sequence for mutant hemoglobin: Wild-type Hemoglobin Protein Mutant Protein Normal Red Blood Cell Abnormal Red Blood Cell The Human Genome Project Goals • To sequence (i.e. determine the exact order of nucleotides (A,T,G,C) for ALL of the DNA in a human cell • To determine which sections of DNA represent individual genes (protein-coding units). The HGP: International effort to decipher the blueprint of a human being. How It Was Done Samples sent to Human Genome DNA samples collected from Project centers across the world thousands of volunteers Scientists at centers perform DNA sequencing and analysis • February 2001: Draft of the sequence published in Nature (public effort )and Science (Celera – private company).
    [Show full text]