Mitochondrial Metabolism Supports Resistance to IDH Mutant Inhibitors
Total Page:16
File Type:pdf, Size:1020Kb
Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia Lucille Stuani, Marie Sabatier, Estelle Saland, Guillaume Cognet, Nathalie Poupin, Claudie Bosc, Florence Castelli, Lara Gales, Evgenia Turtoi, Camille Montersino, et al. To cite this version: Lucille Stuani, Marie Sabatier, Estelle Saland, Guillaume Cognet, Nathalie Poupin, et al.. Mitochon- drial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. Journal of Experimental Medicine, Rockefeller University Press, 2021, 218 (5), 10.1084/jem.20200924. hal- 03185690 HAL Id: hal-03185690 https://hal.inrae.fr/hal-03185690 Submitted on 16 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License ARTICLE Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia Lucille Stuani1,2,3, Marie Sabatier1,2,3, Estelle Saland1,2,3, Guillaume Cognet1,2,3,NathaliePoupin4,ClaudieBosc1,2,3, Florence A. Castelli5, Lara Gales6,7, Evgenia Turtoi8,9, Camille Montersino10,ThomasFarge1,2,3,EmelineBoet1,2,3, Nicolas Broin1,2,3,Clement´ Larrue1,2,3, Natalia Baran11,MadiY.Cisse´8,MarcConti12,13, Sylvain Loric12, Tony Kaoma14, Alexis Hucteau1,2,3, Aliki Zavoriti1,2,3, Ambrine Sahal1,2,3, Pierre-Luc Mouchel1,2,3,15, Mathilde Gotanègre1,2,3,Cedric´ Cassan16, Laurent Fernando4, Feng Wang11, Mohsen Hosseini1,2,3, Emeline Chu-Van5, Laurent Le Cam8, Martin Carroll17, Mary A. Selak17,NorbertVey10,Remy´ Castellano10, François Fenaille5,AndreiTurtoi8, Guillaume Cazals18,PierreBories19, Yves Gibon16, Brandon Nicolay20,Sebastien´ Ronseaux20, Downloaded from http://rupress.org/jem/article-pdf/218/5/e20200924/1412095/jem_20200924.pdf by INSERM user on 24 March 2021 Joseph R. Marszalek11, Koichi Takahashi11,CourtneyD.DiNardo11, Marina Konopleva11,Vera´ Pancaldi1,21, Yves Collette10, Floriant Bellvert6,7,FabienJourdan4,7, Laetitia K. Linares8, Christian Recher´ 1,2,3,15, Jean-Charles Portais6,7,22, and Jean-Emmanuel Sarry1,2,3,23 Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid β-oxidation of IDH1 mutant cells. While IDH1 mutant inhibitor reduced 2-HG oncometabolite and CEBPα methylation, it failed to reverse FAO and OxPHOS. These mitochondrial activities were maintained through the inhibition of Akt and enhanced activation of peroxisome proliferator-activated receptor-γ coactivator-1 PGC1α upon IDH1 mutant inhibitor. Accordingly, OxPHOS inhibitors improved anti-AML efficacy of IDH mutant inhibitors in vivo. This work provides a scientific rationale for combinatory mitochondrial- targeted therapies to treat IDH mutant AML patients, especially those unresponsive to or relapsing from IDH mutant inhibitors. Introduction Changes in intermediary and energy metabolism provide the fatty acid β-oxidation (FAO), or oxidative phosphorylation flexibility for cancer cells to adapt their metabolism to meet (OxPHOS) markedly reduces cell growth in vitro and in vivo energetic and biosynthetic requirements for proliferation and sensitizes acute myeloid leukemia (AML) cells to drugs ˇ (Boroughs and DeBerardinis, 2015; Vander Heiden and (Samudio et al., 2010; Skrtic´ et al., 2011; Scotland et al., 2013; DeBerardinis, 2017). Manipulating glycolysis, glutaminolysis, Matre et al., 2016; Farge et al., 2017; Sharon et al., 2019). The ............................................................................................................................................................................. 1Centre de Recherches en Cancerologie´ de Toulouse, Universite´ de Toulouse, Institut National de la SanteetdelaRecherch´ eM´ edicale,´ Centre National de la Recherche Scientifique, Toulouse, France; 2LabEx Toucan, Toulouse, France; 3Equipe Labellisee´ Ligue Nationale Contre le Cancer 2018, Toulouse, France; 4UMR1331 Toxalim, Universite´ de Toulouse, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Ecole Nationale Vet´ erinaire´ de Toulouse, INP-Purpan, Universite´ Paul Sabatier, Toulouse, France; 5CEA/DSV/iBiTec-S/SPI, Laboratoire d’Etude du Metabolisme´ des Medicaments,´ MetaboHUB-Paris, Gif-sur-Yvette, France; 6Toulouse Biotechnology Institute, Universite´ de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des sciences appliquees,´ Toulouse, France; 7MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France; 8Institut de Recherche en Cancerologie´ de Montpellier, Institut National de la SanteetdelaRecherch´ eM´ edicale,´ Universite´ de Montpellier, Institut Regional´ du Cancer Montpellier, Montpellier, France; 9Montpellier Alliance for Metabolomics and Metabolism Analysis, Platform for Translational Oncometabolomics, Biocampus, Centre National de la Recherche Scientifique, Institut National de la SanteetdelaRecherch´ eM´ edicale,´ Universite´ de Montpellier, Montpellier, France; 10Aix-Marseille University, Institut National de la SanteetdelaRecherch´ eM´ edicale,´ Centre National de la Recherche Scientifique, Institut Paoli-Calmettes, Centre de Recherches en Cancerologie´ de Marseille, Marseille, France; 11Departments of Leukemia and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX; 12Institut National de la Santeetdela´ RechercheM´ edicale´ U938, Hopitalˆ St Antoine, Paris, France; 13Integracell, Longjumeau, France; 14Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg; 15Service d’Hematologie,´ Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France; 16UMR1332 Biologie du Fruit et Pathologie, Plateforme Metabolome´ Bordeaux, Institut National de la Recherche Agronomique, Universite´ de Bordeaux, Villenave d’Ornon, France; 17Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA; 18Laboratoire de Mesures Physiques, Universite´ de Montpellier, Montpellier, France; 19Reseau´ Regional´ de Cancerologie´ Onco-Occitanie, Toulouse, France; 20Agios Pharmaceuticals, Cambridge, MA; 21Barcelona Supercomputing Center, Barcelona, Spain; 22STROMALab, Universite´ de Toulouse, Institut National de la Sante´ et de la RechercheM´ edicale´ U1031, EFS, INP- ENVT, UPS, Toulouse, France; 23Centre Hospitalier Universitaire de Toulouse, Toulouse, France. Correspondence to Lucille Stuani: [email protected]; Jean-Emmanuel Sarry: [email protected]. © 2021 Stuani et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). Rockefeller University Press https://doi.org/10.1084/jem.20200924 1of23 J. Exp. Med. 2021 Vol. 218 No. 5 e20200924 importance of the metabolic reprogramming in this disease is demonstrated that IDHm cancer cells exhibit some metabolic further illustrated by recurrent mutations in the genes of two specificities, in particular related to redox homeostasis through crucial metabolic enzymes, isocitrate dehydrogenases (IDH) nicotinamide adenine dinucleotide (phosphate) NAD(P)+ avail- 1 and 2, present in >15% of AML patients. Most of these mu- ability (Tateishi et al., 2015; Hollinshead et al., 2018; Gelman tations are at arginine (R) residues at codon 132 for IDH1 (IDH1 et al., 2018; Mugoni et al., 2019). However, none of these stud- R132) and at 140 and 172 for IDH2 (IDH2 R140 and IDH2 R172; ies have definitively shown how metabolic changes elicited by Mardis et al., 2009; Marcucci et al., 2010; Papaemmanuil et al., IDH mutations modulate cell proliferation and drug resistance or 2016). impact therapeutic response in AML. In particular, the role of The impact of IDH mutation and the related accumulation of metabolism in resistance to IDHmi has not yet been compre- the oncometabolite (R)-2-hydroxyglutarate (2-HG) have been hensively studied in AML. Although existing literature in the well documented in leukemic transformation and AML biology field described several vulnerabilities to mitochondrial in- (Figueroa et al., 2010; Sasaki et al., 2012; Losman et al., 2013; Kats hibitors in IDH1/2 mutant cells from solid tumors and AML et al., 2014;