New Tools to Bash Bugs

Total Page:16

File Type:pdf, Size:1020Kb

New Tools to Bash Bugs Cape Flora Post-harvest Insect Control, including Phytosanitary Compliance, & Post-harvest Physiology 2 3 PROJECT TITLE New tools to Novel technologies for post-harvest treatment of Cape flora flowers for control of phytosanitary insect pests bash bugs PRINCIPAL INVESTIGATOR Dr Shelley Johnson CONTACT DETAILS Two novel techniques hold great potential for mitigating The European Union receives around 80% +27 (0)21 808 2694 of Cape flora exports, but this does not imply [email protected] the most persistent pests troubling the export of South that the flowers are not in demand elsewhere. However, access to other markets proves more (consisting of 1% oxygen, 15% carbon Methodology and results DURATION Two years African Proteaceae to stricter markets. challenging, due to phytosanitary regulations dioxide in nitrogen) to eliminate pests. Early in 2016, before the start of the peak export that are particularly strict, resulting in the danger • Ethyl formate (EF) is a naturally occurring season, numerous pilot trials were performed. PHI PROGRAMME & IN SOUTH AFRICA, Cape flora cut flowers and harsh reality of consignment rejection. compound that, in high enough doses, Cut stems from the species Protea INDUSTRY CONTRIBUTIONS are grown and harvested in their natural This is particularly true for countries whose prevents oxygen reaching the cells of insects, magnifica (also known as ‘Queen’ or ‘Barbi’) R412 951 & R112 693 1 Dr Shelley environment, which includes the insect climatic conditions are, in places, similar to the ultimately leading to their demise through were subjected to regular atmosphere heat LEAD INSTITUTION Johnson and MSc communities that live there. The insects of the Western Cape’s Mediterranean climate, and asphyxiation. treatments to assess the flowers’ response to Cape Flora SA student Anton Cape flora biome are diverse, even between those that have their own Proteaceae or similar heat stress. These proved far too harsh. The BENEFICIARY growing regions, and are so poorly understood floral families. The risk of South African insects Both these methods are considered flowers lost an average of 13g in water mass Huysamer (right) The Cape flora industry with the laboratory- and understudied that many have not been establishing in overseas crops is too great for environmentally friendly, as CATTS is essentially and yielded unsatisfactory results from an scale controlled identified scientifically. them to accept our flowers without intensive chemical free, and EF breaks down into aesthetic perspective, particularly in terms of FOCUS AREA atmosphere and The complexity and arrangement of phytosanitary inspections and regulations, and naturally occurring, harmless products. leaf damage. Post-harvest insect control, including phytosanitary temperature Proteaceae floral structures, not to mention many have a zero-tolerance approach to living Shelley and Dr Lynn Hoffman, lecturer at With these results in mind, amendments compliance, and post- treatment systems the impressive size of some, provide ample and dead insect pests within consignments. the Department of Horticultural Sciences, were made. The ‘Barbi’s’ were kept at 4°C for harvest physiology (CATTS) unit at hiding places for a massive array of arthropods. The direct and indirect costs of consignment Stellenbosch University, designed a study that no longer than 24 hours after harvesting before Stellenbosch They may inhabit the stem, leaves, receptacle rejection and subsequent damage to the received funding from industry and the PHI treatments commenced. The flowers were HUMAN CAPITAL University. or inflorescence, and can occur in staggering reputation of the Cape flora cut flower industry Programme to achieve two objectives: pulsed using a sucrose solution, and subjected DEVELOPMENT One MSc student 2 Core temperatures numbers. are astronomical. 1. Identify the insect categories that are of to much faster temperature ramps for shorter of ‘Barbi’s’ (Protea Regardless, Cape flora is an internationally Current mitigation techniques for highest concern to the Cape flora cut flower durations. The flowers then underwent 10-day PUBLICATIONS magnifica) are renowned and highly sought after floricultural phytosanitary pests include various pre- and industry. vase life studies, during which they were graded Two product, with more than 20 million stems 2. Establish the efficacy of various CATTS and for both leaf blackening and bract browning of recorded throughout post-harvest protocols. These protocols, PRESENTATIONS the CATTS exported in the 2015/2016 season. although sufficient for flowers intended for EF fumigation treatments on problematic the flower head. Three treatments. some markets, have not yet fully met the high phytosanitary pests, while maintaining post- These brief yet intense treatments, in 3 Protea scarlet 1 standards required for others that have stricter treatment flower quality. combination with controlled atmospheres, butterfly found in phytosanitary requirements. Effective, reliable ‘Barbi’s’ receptacle and preferably greener post-harvest techniques 4 5 was raised from larval are required to ensure that consignments arrive stage to assist in its pest-free, containing only the breathtaking identification. flowers the world has come to expect from the 4 ‘Barbi’ proteas Cape Floral Kingdom. subjected to various Looking further afield for answers, Dr Shelley ethyl formate Johnson, research fellow at the Department (EF) fumigation of Conservation Ecology and Entomology, treatments inside 14 Stellenbosch University, realised that two post- litre desiccators. harvest techniques that have been approved 5 Toxicity with for and are used in other industries have great sugar pulsing in potential for use on Cape flora cut flowers: Leucospermum leaves • Controlled atmosphere and temperature was induced under treatment systems, known as CATTS, use intensive temperature the stresses created by high temperatures ramping protocols. in combination with controlled atmospheres 62 63 Cape Flora Post-harvest Insect Control, including Phytosanitary Compliance, & Post-harvest Physiology 1 DID YOU KNOW? According to Tony Rebelo, author of the book A field guide to the Proteas of South Africa, there are currently about 1400 species in more than 60 genera in the Proteaceae family. Virtually all the species occur in the Southern Hemisphere, mostly in Australia which harbours 800 species representing 45 genera. About 400 species occur in Africa, of which more than 330 species When repeated on ‘Barbi’, the same 5 are in the South-Western Cape. Central and South America host about aesthetic challenges were experienced. 90 species, while 80 species occur on the islands east of New Guinea, 45 A diverse range of insects, from stem species in New Caledonia and a few species in Madagascar, Southeast borers and leaf miners to pollen visitors, were Asia, New Guinea and New Zealand. subjected to different treatments to determine their overall tolerance to both heat treatments Taxonomy and fumigation concentrations. Family: Proteaceae Living insects were collected over a period Genus: Proteaceae (The Sugarbushes), Leucadendron (The Conebushes), of two months during official phytosanitary Serruria (The Spiderheads), Orothamnus (The Marsch Rose), Vexatorella inspections at the airport in the peak export (The Vexators), Leucospermum (The Pincushions), Hakea (The season. Adult specimens were identified, and Needlebushes), Diastella (The Silkypuffs), Brabejum (The Wild Almond), larval stages were reared to allow for easier and Grevillea (The Silky Oaks), Aulax (the Featherbushes), Mimetes (The yielded far better results than the standard more accurate identification. Pagodas), Faurea (The Beechwoods), Paranomus (The Sceptres), Spatalla regimes used on fruit overseas, which were A total of 10 species were collected, of which A noteworthy insect was the Protea hister (The Spoons) and Sorocephalus (The Clusterheads) followed in the pilot trials. four occurred regularly. beetle, Platysoma capensis. Although there 1 The Leucospermum ‘Veldfire’ cultivar was The western flower thrip, Frankliniella were never more than two individuals per ‘Barbi’ proteas A ‘protea’ is any member of the Proteaceae family. In order to distinguish subjected to the amended CATTS regimes, occidentalis, was of particular concern due inspection, it has proven to be incredibly hardy subjected to a between a member of the Proteaceae family and a member of the Protea and also yielded more promising results with to the sheer numbers in which it was present, and resistant, with 0% mortality in regular 10-day vase life study genus, the latter is sometimes referred to as a ‘sugarbush’. after EF fumigation regard to leaf damage. However, the controlled resulting in multiple rejections. Living specimens atmosphere treatments and 40% mortality rate treatments. atmosphere protocols did result in significant were collected from commercial plantations and achieved using EF fumigation. 2 Severe leaf damage pin wilting not seen in the same heat treatments subjected to the amended CATTS treatments, Finally, receptacle-boring Lepidopteran insect pests that trouble the Cape flora industry. and pin wilting in performed with regular atmospheres. as well as the lowest concentration of EF caterpillars, such as the Protea scarlet butterfly “To this end, we will include more Protea and ‘Veldfire’ after higher Although these treatments improved fumigation. In both cases 100% mortality was larvae (Capys alpheus) and American bollworm Leucospermum cultivars
Recommended publications
  • Method to Estimate Dry-Kiln Schedules and Species Groupings: Tropical and Temperate Hardwoods
    United States Department of Agriculture Method to Estimate Forest Service Forest Dry-Kiln Schedules Products Laboratory Research and Species Groupings Paper FPL–RP–548 Tropical and Temperate Hardwoods William T. Simpson Abstract Contents Dry-kiln schedules have been developed for many wood Page species. However, one problem is that many, especially tropical species, have no recommended schedule. Another Introduction................................................................1 problem in drying tropical species is the lack of a way to Estimation of Kiln Schedules.........................................1 group them when it is impractical to fill a kiln with a single Background .............................................................1 species. This report investigates the possibility of estimating kiln schedules and grouping species for drying using basic Related Research...................................................1 specific gravity as the primary variable for prediction and grouping. In this study, kiln schedules were estimated by Current Kiln Schedules ..........................................1 establishing least squares relationships between schedule Method of Schedule Estimation...................................2 parameters and basic specific gravity. These relationships were then applied to estimate schedules for 3,237 species Estimation of Initial Conditions ..............................2 from Africa, Asia and Oceana, and Latin America. Nine drying groups were established, based on intervals of specific Estimation
    [Show full text]
  • Proteaceae), with a Key to the Species of Phaeophleospora
    Fungal Diversity Phaeophleospora faureae comb. novo associated with leaf spots on Faurea saligna (Proteaceae), with a key to the species of Phaeophleospora Joanne E. Taylor* and Pedro W. Crous Department of Plant Pathology, University of Stellenbosch, Private Bag Xl, Stellenbosch 7602, South Africa; * e-mail: [email protected] Taylor, J.E. and erous, P.W. (1999). Phaeophleosporafaureae comb. novo associated with leaf spots on Faurea saligna (Proteaceae), with a key to the species of Phaeophleospora. Fungal Diversity 3: 153-158. During studies of the fungal pathogens occurring on Proteaceae in South Africa, the type specimen of Stilbospora faureae was examined. This fungus was found to be a species of Phaeophleospora, and is transferred to this genus in the present paper. A key to the species in Phaeophleospora is also given. Key words: pathogen, Phaeophleospora, Proteaceae, Stilbospora Introduction Phaeophleospora was considered to be a nomen dubium (Sutton, 1977), until Crous et al. (1997) resurrected it as an earlier name for the coelomycete genus Kirramyces 1. Walker, B. Sutton and 1. Pascoe. There are currently 11 species in Phaeophleospora (Walker et al., 1992; Sutton, 1993; Palm, 1996; Wingfield et al., 1996; Wu et al., 1996; Crous et al., 1997; Crous, 1998; Crous and Palm, 1999) and three of these occur on Proteaceae hosts. Phaeophleospora is associated with leaf spots and is characterised by sub• epidermal, dark-walled pycnidia, which become open and cup-shaped at maturity (Crous et al., 1997). Under conditions of high humidity, these conidiomata exude masses of conidia in a long, brown to black cirrus (Crous et al., 1997).
    [Show full text]
  • IV. on the Proteaceć of Jussieu. by Mr. Robert Brown, Lib. LS
    IV. On the Proteacea of Jussieu. By -Mr. Robert Brown, Lib. L.S. Read Jan. 17, 1809. THELinnean system of botany, though confessedly artificial, has not only contributed more than all others to facilitate tlie knowledge of species, but, by constantly directing the attention to those essential parts of the flower on which it is founded, has made us acquainted with more of their important modific-a t’ ions than we probably should have known, had it not been generally adopted, and has thus laid a more solid foundation for the esta- blishment of a natural arrangement, the superior importance of which no one has been inore fully impressed with than Linnzus hiinself. There are still, however, certain circumstances respccting the stamina and pistilla, which appear to iiie to havc been much less attended to than they deserve, both by Linneus and succeeding botanists. What I chiefly allude to is the state of these organs before the expansion of the flower. Tlie utility of ascertaining the internal condition of the ovarium before fecundation will liardly be called in question, now that the immortal worlis of Gxrtner and Jussieu hare demonstrated the necessity of minutely studying the fruits of plants in attempting to arrange tlicin ac- cording to tlic sum of their affinities, as in many cases the true nature of tlie ripc fruit, cspecially witli respect to the placenta- tion of the seeds, can oiily be detcrniined by this mc;~ns. Its importance is indeed expressly inculcated by many l~ot:inists, Tf’llO, 16 Mr. BROWN,on the Proteacee of Jussieu.
    [Show full text]
  • Pathogens Associated with Diseases. of Protea, Leucospermum and Leucadendron Spp
    PATHOGENS ASSOCIATED WITH DISEASES. OF PROTEA, LEUCOSPERMUM AND LEUCADENDRON SPP. Lizeth Swart Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Agriculture at the University of Stellenbosch Supervisor: Prof. P. W. Crous Decem ber 1999 Stellenbosch University https://scholar.sun.ac.za DECLARATION 1, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or in part been submitted at any university for a degree. SIGNATURE: DATE: Stellenbosch University https://scholar.sun.ac.za PATHOGENS ASSOCIATED WITH DISEASES OF PROTEA, LEUCOSPERMUM ANDLEUCADENDRONSPP. SUMMARY The manuscript consists of six chapters that represent research on different diseases and records of new diseases of the Proteaceae world-wide. The fungal descriptions presented in this thesis are not effectively published, and will thus be formally published elsewhere in scientific journals. Chapter one is a review that gives a detailed description of the major fungal pathogens of the genera Protea, Leucospermum and Leucadendron, as reported up to 1996. The pathogens are grouped according to the diseases they cause on roots, leaves, stems and flowers, as well as the canker causing fungi. In chapter two, several new fungi occurring on leaves of Pro tea, Leucospermum, Telopea and Brabejum collected from South Africa, Australia or New Zealand are described. The following fungi are described: Cladophialophora proteae, Coniolhyrium nitidae, Coniothyrium proteae, Coniolhyrium leucospermi,Harknessia leucospermi, Septoria prolearum and Mycosphaerella telopeae spp. nov. Furthermore, two Phylloslicla spp., telopeae and owaniana are also redecribed. The taxonomy of the Eisinoe spp.
    [Show full text]
  • Protea Newsletter International
    Protea Newsletter International An e­Newsletter for the International Protea Industry and Scientific Community to Promote Communication, Cooperation and the Advancement of Science, Technology, Production and Marketing (and to promote the Hawaii Protea Industry) Volume 2, Number 1, April 2009 Editor: Ken Leonhardt Chairman, lnternational Protea Working Group (IPWG), International Society for Horticultural Science (ISHS) Professor, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, Hawaii USA Contents: A visit to South Africa ............................................................................. 2 International Horticulture Congress announcement .................................. 3 New protea poster from the University of Hawaii..................................... 4 A message from the Hawaii State Protea Growers Corporation ................ 4 A message from the Zimbabwe Protea Association .................................. 5 Protea night­life ....................................................................................... 6 Proteaceae cultivar development and uses ................................................ 6 Sample costs to establish and produce protea ........................................... 6 Research funding awarded by the IPA...................................................... 7 New cultivar registrations......................................................................... 7 Recent books on Proteaceae ....................................................................
    [Show full text]
  • Rates of Molecular Evolution and Diversification in Plants: Chloroplast
    Duchene and Bromham BMC Evolutionary Biology 2013, 13:65 http://www.biomedcentral.com/1471-2148/13/65 RESEARCH ARTICLE Open Access Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae David Duchene* and Lindell Bromham Abstract Background: Many factors have been identified as correlates of the rate of molecular evolution, such as body size and generation length. Analysis of many molecular phylogenies has also revealed correlations between substitution rates and clade size, suggesting a link between rates of molecular evolution and the process of diversification. However, it is not known whether this relationship applies to all lineages and all sequences. Here, in order to investigate how widespread this phenomenon is, we investigate patterns of substitution in chloroplast genomes of the diverse angiosperm family Proteaceae. We used DNA sequences from six chloroplast genes (6278bp alignment with 62 taxa) to test for a correlation between diversification and the rate of substitutions. Results: Using phylogenetically-independent sister pairs, we show that species-rich lineages of Proteaceae tend to have significantly higher chloroplast substitution rates, for both synonymous and non-synonymous substitutions. Conclusions: We show that the rate of molecular evolution in chloroplast genomes is correlated with net diversification rates in this large plant family. We discuss the possible causes of this relationship, including molecular evolution driving diversification, speciation increasing the rate of substitutions, or a third factor causing an indirect link between molecular and diversification rates. The link between the synonymous substitution rate and clade size is consistent with a role for the mutation rate of chloroplasts driving the speed of reproductive isolation.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • THE PROTEA ATLAS of Southern Africa
    THE PROTEA ATLAS of southern Africa Anthony G Rebelo (Ed.) South African National Biodiversity Institute, Kirstenbosch THE PROTEA ATLAS of southern Africa Anthony G Rebelo (Ed.) South African National Biodiversity Institute, Pretoria (Title Page) Standard SANBI copyright page (Copyright page) Foreword By whom? CONTENTS ACKNOWLEDGEMENTS .......................................................................................................................... x Sponsors ........................................................................................................................................................ x Organisation .................................................................................................................................................. x Atlassers ........................................................................................................................................................ x 1. INTRODUCTION..................................................................................................................................... x Background ....................................................................................................................................... x Scope (objectives) ............................................................................................................................. x Species............................................................................................................................................... x Geographical
    [Show full text]
  • Sand Mine Near Robertson, Western Cape Province
    SAND MINE NEAR ROBERTSON, WESTERN CAPE PROVINCE BOTANICAL STUDY AND ASSESSMENT Version: 1.0 Date: 06 April 2020 Authors: Gerhard Botha & Dr. Jan -Hendrik Keet PROPOSED EXPANSION OF THE SAND MINE AREA ON PORTION4 OF THE FARM ZANDBERG FONTEIN 97, SOUTH OF ROBERTSON, WESTERN CAPE PROVINCE Report Title: Botanical Study and Assessment Authors: Mr. Gerhard Botha and Dr. Jan-Hendrik Keet Project Name: Proposed expansion of the sand mine area on Portion 4 of the far Zandberg Fontein 97 south of Robertson, Western Cape Province Status of report: Version 1.0 Date: 6th April 2020 Prepared for: Greenmined Environmental Postnet Suite 62, Private Bag X15 Somerset West 7129 Cell: 082 734 5113 Email: [email protected] Prepared by Nkurenkuru Ecology and Biodiversity 3 Jock Meiring Street Park West Bloemfontein 9301 Cell: 083 412 1705 Email: gabotha11@gmail com Suggested report citation Nkurenkuru Ecology and Biodiversity, 2020. Section 102 Application (Expansion of mining footprint) and Final Basic Assessment & Environmental Management Plan for the proposed expansion of the sand mine on Portion 4 of the Farm Zandberg Fontein 97, Western Cape Province. Botanical Study and Assessment Report. Unpublished report prepared by Nkurenkuru Ecology and Biodiversity for GreenMined Environmental. Version 1.0, 6 April 2020. Proposed expansion of the zandberg sand mine April 2020 botanical STUDY AND ASSESSMENT I. DECLARATION OF CONSULTANTS INDEPENDENCE » act/ed as the independent specialist in this application; » regard the information contained in this
    [Show full text]
  • Anatomical Adaptations in the Leaves of Selected Fynbos Species
    S.Afr.J.Bot., 1994, 60(2): 99 - 107 99 Anatomical adaptations in the leaves of selected fynbos species Al ison M. van der Merwe (nee Summerfield),· J.J.A. van der Walt and Elizabeth M. Marais Department of Botany, University of Stellenbosch, Stellenbosch, 7600 Republic of South Africa Received 23 August 1993; revised 6 December 1993 Fynbos plants experience very harsh conditions during the hot and dry summer months and their leaves are adapt­ ed to reduce the loss of water due to transpiration. The leaves of 46 selected fynbos species of 24 families were examined to determine which anatomical adaptations contribute to the reduced rate of transpiration and subse­ quent reduced water loss. Without exception, all species examined show leaf adaptations typical of xerophytic species. Four typical leaf types are recognized and proposed as models of leaf adaptation: 1. Myrsine type - dorsi ventral or isobilateral leaves; more palisade parenchyma present than spongy parenchyma; tissues contain large amounts of phenolic substances. 2. Meta/asia type - small dorsiventral leaves with involute margins and a single groove in the adaxial surface; mesophyll is usually inverted. 3. Retzia type - dorsi ventral or isobilateral leaves with revolute margins and one or two grooves in the abaxial surface; spongy parenchyma is the main component of the mesophyll. 4. Spatalla type - small centric or near-centric leaves; little or no spongy parenchy­ ma tissue. Fynbos plante ondervind uiterste toestande tydens die warm, droa somermaande, en hulle blare is aangepas om waterverlies tydens transpirasie te beperk. Blare van geselekteerde fynbos-spesies uit 24 families is ondersoek am die bydrae van die verskillende anatomiese aanpassings tot verminderde transpirasietempo en gevolglike water­ verlies, vas te stel.
    [Show full text]
  • Nectar Distribution and Nectarivorous Bird Foraging Behaviour at Different Spatial Scales
    Nectar distribution and nectarivorous bird foraging behaviour at different spatial scales by Anina Coetzee Dissertation presented for the Degree of Doctor of Philosophy in the Faculty of Science, at Stellenbosch University Supervisor: Prof. Anton Pauw Co-supervisor: Dr. Phoebe Barnard March 2016 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own original work, that I am the authorship owner thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2016 Copyright © 2016 Stellenbosch University of Stellenbosch All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract While foraging strategies of animals may be shaped by the distribution of their food resources, these strategies in turn also affect the ecology and evolution of their resources. In this regard, African systems, of all the different bird-pollination systems worldwide, have been least studied. I investigated the relationships between these aspects at population, community and landscape levels in the bird-pollination systems of the Cape Floristic Region. This biodiversity hotspot in the southwest of South Africa contains an unusually high number of bird-pollinated plant species relative to the number of pollinating bird species. Chapter 2 describes how I experimentally tested which nectar resource traits affect sunbird foraging behaviour at the small scale within populations. Sunbirds’ behaviour was largely determined by visual signals and distances between nectar resources. The birds showed flower colour preferences, but no flower constancy (selective foraging only on one flower type).
    [Show full text]
  • The One Hundred Tree Species Prioritized for Planting in the Tropics and Subtropics As Indicated by Database Mining
    The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining Roeland Kindt, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini, James M Roshetko, Meine van Noordwijk, Lars Graudal, Ramni Jamnadass The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining Roeland Kindt, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini, James M Roshetko, Meine van Noordwijk, Lars Graudal, Ramni Jamnadass LIMITED CIRCULATION Correct citation: Kindt R, Dawson IK, Lillesø J-PB, Muchugi A, Pedercini F, Roshetko JM, van Noordwijk M, Graudal L, Jamnadass R. 2021. The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining. Working Paper No. 312. World Agroforestry, Nairobi, Kenya. DOI http://dx.doi.org/10.5716/WP21001.PDF The titles of the Working Paper Series are intended to disseminate provisional results of agroforestry research and practices and to stimulate feedback from the scientific community. Other World Agroforestry publication series include Technical Manuals, Occasional Papers and the Trees for Change Series. Published by World Agroforestry (ICRAF) PO Box 30677, GPO 00100 Nairobi, Kenya Tel: +254(0)20 7224000, via USA +1 650 833 6645 Fax: +254(0)20 7224001, via USA +1 650 833 6646 Email: [email protected] Website: www.worldagroforestry.org © World Agroforestry 2021 Working Paper No. 312 The views expressed in this publication are those of the authors and not necessarily those of World Agroforestry. Articles appearing in this publication series may be quoted or reproduced without charge, provided the source is acknowledged.
    [Show full text]