Magnetospheric Signatures of STEVE

Total Page:16

File Type:pdf, Size:1020Kb

Magnetospheric Signatures of STEVE RESEARCH LETTER Magnetospheric Signatures of STEVE: Implications 10.1029/2019GL082460 for the Magnetospheric Energy Source and Key Points: • Magnetosphere observations show Interhemispheric Conjugacy that STEVE corresponds to SAID, Y. Nishimura1,2 , B. Gallardo‐Lacourt3 , Y. Zou4,5 , E. Mishin6 , D. J. Knudsen3 , plasmapause, structured plasma 3 7 8 boundaries, and waves in the E. F. Donovan , V. Angelopoulos , and R. Raybell magnetosphere 1 • The picket fence is driven by Department of Electrical and Computer Engineering and Center for Space Physics, Boston University, Boston, MA, USA, electron precipitation; the red arc is 2Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA, 3Department of fl driven by heat ux or frictional Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada, 4Department of Astronomy and Center for Space heating Physics, Boston University, Boston, MA, USA, 5Cooperative Programs for the Advancement of Earth System Science, • Simultaneous conjugate 6 observations show that part of University Corporation for Atmospheric Research, Boulder, CO, USA, Space Vehicles Directorate, Air Force Research STEVE has interhemispheric Laboratory, Kirtland AFB, Albuquerque, NM, USA, 7Department of Earth, Planetary, and Space Sciences, University of conjugacy California, Los Angeles, CA, USA, 8Citizen scientist, Seattle, WA, USA Abstract We present three STEVE (strong thermal emission velocity enhancement) events in Correspondence to: Y. Nishimura, conjunction with Time History of Events and Macroscale Interactions (THEMIS) in the magnetosphere [email protected] and Defense Meteorological Satellite Program (DMSP) and Swarm in the ionosphere, for determining equatorial and interhemispheric signatures of the STEVE purple/mauve arc and picket fence. Both types of Citation: STEVE emissions are associated with subauroral ion drifts (SAID), electron heating, and plasma waves. The Nishimura, Y., Gallardo‐Lacourt, B., magnetosphere observations show structured electrons and flows and waves (likely kinetic Alfven, Zou, Y., Mishin, E., Knudsen, D. J., magnetosonic, or lower‐hybrid waves) just outside the plasmasphere. Interestingly, the event with the picket Donovan, E. F., et al. (2019). fi ‐ Magnetospheric signatures of STEVE: fence had a >~1 keV electron structure detached from the electron plasma sheet, upward eld aligned Implications for the magnetospheric currents (FACs), and ultraviolet emissions in the conjugate hemisphere, while the event with only the energy source and interhemispheric mauve arc did not have precipitation or ultraviolet emission. We suggest that the electron precipitation conjugacy. Geophysical Research Letters, 46, 5637–5644. https://doi.org/10.1029/ drives the picket fence, and heating drives the mauve as thermal emission. 2019GL082460 Plain Language Summary STEVE (strong thermal emission velocity enhancement) has Received 14 FEB 2019 become increasingly popular among citizen scientists due to its distinct colors and structures of Accepted 9 APR 2019 emission in the night sky and its occurrence over more populated areas than for typical aurora in the Accepted article online 16 APR 2019 auroral oval. This study addresses two major questions of STEVE: What is the energy source of the Published online 4 JUN 2019 STEVE purple or mauve colored arc and green picket fence up in space? and Does STEVE occur in the Northern and Southern Hemispheres at the same time? Using a set of imaging and satellite observations, this study found that STEVE is connected to fast plasma flows, sharp plasma boundaries, and intense waves 25,000 km (15,000 miles) up in space. Photographs taken by citizen scientists have played a key role in finding STEVE and its morphology. Plasma heating due to the fast flows and waves is suggested to drive the mauve colored arc. But this mechanism does not explain the picket fence. We found that energetic particle precipitation drives the picket fence. The picket fence is found to occur in both hemispheres at the same time, supporting that the energy source far up in space feeds energy to both hemispheres. 1. Introduction STEVE (strong thermal emission velocity enhancement) is a recently discovered upper atmospheric emis- sion in the subauroral ionosphere (MacDonald et al., 2018). Its primary feature is the purple or mauve color arc that is approximately east‐west aligned, which is distinctly different from aurora near the equatorward boundary of the auroral oval. STEVE arcs sometimes also exhibit green‐colored rays known as picket fence, which appear to form at lower altitudes than the mauve arc (MacDonald et al., 2018). STEVE arcs occur at premidnight MLTs (Gallardo‐Lacourt, Nishimura, et al., 2018) and are associated with the subauroral ion drifts (SAID), enhanced electron temperature, and downward field‐aligned currents (FACs) at the midlati- ‐ ©2019. American Geophysical Union. tude trough (MacDonald et al., 2018). The event studied by Gallardo Lacourt, Liang, et al. (2018) does not All Rights Reserved. show any substantial precipitation of energetic particles over the STEVE arc, suggesting that the arc is not NISHIMURA ET AL. 5637 Geophysical Research Letters 10.1029/2019GL082460 aurora but thermal emission due to elevated the elevated temperature that is caused by heat flux or ion‐neutral frictional heating. Regardless of precipitation, a possible energy source is substorm injections because STEVE arcs tend to occur during the substorm recovery phase (Gallardo‐Lacourt, Nishimura, et al., 2018). This is consistent with the occurrence characteristics of SAID (Anderson et al., 1993, 2001). A type of stable auroral red (SAR) arc also shows a connection to substorms (Takagi et al., 2018), although STEVE arcs are distinct from SAR arcs because of their different spectral characteristics. Past studies of STEVE arcs have been limited to observations by ground‐based imaging and low‐altitude satellites. It is unknown what the magnetosphere counterpart of STEVE arcs (for both the purple/mauve arc and picket fence) is and whether STEVE arcs simultaneously occur in both hemispheres. Another major question is what process makes a difference between the mauve arc and green picket fence. Although the emission in the F region ionosphere could be explained by thermal emission under elevated temperature (also known as the mechanism of SAR arcs; such as Nagy et al., 1970; Sazykin et al., 2002), there have been no studies of the magnetospheric source of the purple/mauve arc. Moreover, the F region heating process does not create substantial green line emission, suggesting that additional unresolved processes exist asso- ciated with STEVE arcs. To address these questions, we examined magnetosphere signatures of STEVE arcs by using three conjunc- tion events with Time History of Events and Macroscale Interactions (THEMIS), whose footprints passed within 1‐hr magnetic local time (MLT) from the areas of STEVE arcs detected by the citizen scientist coauthors or by the THEMIS all‐sky imager (ASI) network. The northern footprints of the Defense Meteorological Satellite Program (DMSP) and Swarm satellites also passed through during the STEVE arcs analyzed here. The magnetospheric satellites provide measurements of DC and AC electric and magnetic fields and particle energy spectra in the inner magnetosphere. The ASIs and low‐altitude satellites were used to check that the arcs of interest were located equatorward of the auroral oval. DMSP measures ionospheric density, velocity, magnetic field, and precipitating particles every 1 s and temperature every 4 s at ~800‐km altitude. Radiation belt contamination in the particle data has been subtracted. The Special Sensor Ultraviolet Spectrographic Imager (SSUSI) instrument onboard DMSP detects far ultraviolet (FUV) emis- sions at 165‐ to 180‐nm wavelength along the orbits, which are sensitive to energetic electron precipitation. Swarm at 400‐ to 500‐km altitude provides a similar set of data except for energetic particles. Swarm also gives 16‐Hz flow (electric field) and 50‐Hz magnetic field for wave analysis. 2. Results 2.1. The 8 May 2016 Event (With Picket Fence) A STEVE arc was measured at the West Coast of North America near 55° magnetic latitude on 8 May 2016. The arc existed at least between 5:50 and 6:34 UT based on multiple citizen scientist reports. It occurred during the storm main phase (−55 nT Dst) and high auroral activity (~1,000 nT AE). One of the photographs taken at 6:00 UT is shown in Figure 1a. The mauve (or red to white)‐colored emission of STEVE was approxi- mately east‐west aligned and located equatorward of the premidnight auroral oval (seen as green diffuse aurora near the northern horizon, also seen as the equatorward boundary of white light aurora in Figure 1b), which are the typical properties of STEVE. This event also shows a distinct picket fence as green quasiperiodic rays. Using the star positions, the red channel of the image was projected to 250‐km altitude (see MacDonald et al. (2018) for the projection altitude) and is overlaid on Figure 1b. STEVE was located ~1.5–2° equatorward of the auroral oval equatorward boundary (dashed line). Fortunately, the northern magnetic footprints of DMSP, Swarm, and THEMIS‐E passed over the area during the lifetime of the STEVE arc. Although DMSP F17 and Swarm‐A were in the Southern Hemisphere, the SSUSI data on DMSP F17 show that the STEVE arc in this event was a conjugate phenomenon (Figure 1c, showing the detached arc at ~55° magnetic latitude and ~20 MLT).
Recommended publications
  • Bibliography
    Annotated List of Works Cited Primary Sources Newspapers “Apollo 11 se Vraci na Zemi.” Rude Pravo [Czechoslovakia] 22 July 1969. 1. Print. This was helpful for us because it showed how the U.S. wasn’t the only ones effected by this event. This added more to our project so we had views from outside the US. Barbuor, John. “Alunizaron, Bajaron, Caminaron, Trabajaron: Proeza Lograda.” Excelsior [Mexico] 21 July 1969. 1. Print. The front page of this newspaper was extremely helpful to our project because we used it to see how this event impacted the whole world not just America. Beloff, Nora. “The Space Race: Experts Not Keen on Getting a Man on the Moon.” Age [Melbourne] 24 April 1962. 2. Print. This was an incredibly important article to use in out presentation so that we could see different opinions. This article talked about how some people did not want to go to the moon; we didn’t find many articles like this one. In most everything we have read it talks about the advantages of going to the moon. This is why this article was so unique and important. Canadian Press. “Half-billion Watch the Moon Spectacular.” Gazette [Montreal] 21 July 1969. 4. Print. This source gave us a clear idea about how big this event really was, not only was it a big deal in America, but everywhere else in the world. This article told how Russia and China didn’t have TV’s so they had to find other ways to hear about this event like listening to the radio.
    [Show full text]
  • MTGC] Constraining Spacetime Torsion with the Moon and Mercury Theoretical Predictions and Experimental Limits on New Gravitational Physics
    Constraining Spacetime Torsion with Lunar Laser Ranging, Mercury Radar Ranging, LAGEOS, next lunar surface missions and BepiColombo Riccardo March1,3, Giovanni Belletini2,3, Roberto Tauraso2,3, Simone Dell’Agnello3,* 1 Istituto per le Applicazioni del Calcolo (IAC), CNR, Via dei Taurini 19, 00185 Roma, Italy 2 Dipart. di Matematica, Univ. di Roma “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy 3 Italian National Institute for Nuclear Physics, Laboratori Nazionali di Frascati (INFN-LNF), Via Enrico Fermi 40, Frascati (Rome), 00044, Italy 17th International Laser Workshop on Laser Ranging - Bad Koetzting, Germany, May 16-20, 2011 * Presented by S. Dell’Agnello Outline • Introduction • Spacetime torsion predictions • Constraints with Moon and Mercury • Constraints with the LAser GEOdynamics Satellite (LAGEOS) • LLR prospects and opportunities • Conclusions • In the spare slides: further reference material • See also talk of Claudio Cantone (ETRUSCO-2), talk and poster by Alessandro Boni (LAGEOS Sector, Hollow reflector) and, especially, the talk of Doug Currie (LLR for the 21st century) 17th Workshop on Laser Ranging. Germany May 16, 2011 R. March, G. Bellettini, R. Tauraso, S. Dell’Agnello 2 INFN (brief and partial overview) • INFN; public research institute – Main mission: study of fundamental forces (including gravity), particle, nuclear and astroparticle physics and of its technological and industrial applications (SLR, LLR, GNSS, space geodesy…) • Prominent participation in major astroparticle physics missions: – FERMI, PAMELA, AGILE (all launched) – AMS-02, to be launched by STS-134 Endeavor to the International Space Station (ISS) on May 16, 2011 • VIRGO, gravitational wave interferometer (teamed up with LIGO) • …. More, see http://www.infn.it 17th Workshop on Laser Ranging.
    [Show full text]
  • From the Editor
    FROM THE EDITOR he fIrst thing I did when we click away on the computer keys, arrived home from vacation he spins around on his activity wheel Tthe other day was to look in and we both savor the classical music the den. from the stereo in the background. "The rat is still alive," I whispered At least, I think I saw him smile the to Kate, my wife. other day. "The rat" is Marvin, our 2-year- A few months ago, a French old pet hamster. Marvin joined our cable TV crew came to our house family two years ago. I was out of to document the life of a part-time town at a professional conference telecommuter. While most ofthe when Maggie, then 2, and Casey, then report focused on me typing away at 5, talked Kate into the purchase. the computer, there were fIve bizarre Casey was allowed to name the seconds of Marvin spinning around On the cover: With such rodent; she still can't explain where on his wheel. huge exposure in more than 120 countries, HP is turning she came up with the name. The analogy was eerie. the corner on sponsorships As animals go, hamsters rank right Sadly, while 2 is an extremely for many diverse sports up there with turtles and goldfIsh as young age for most ofus, it's typically teams. Team Jordan's Rubens Barrichello is shown low-maintenance pets. A little water, a lifetime for hamsters. So Kate and turning hard enough to get some hamster food and a spinning I are preparing to explain the eventu­ daylight under a tire of his activity wheel will keep a hamster ality of death to Casey and Maggie.
    [Show full text]
  • ESA Bulletin February 2003
    SMART-1/2 3/3/03 3:56 PM Page 14 Science A Solar-Powered Visit to the Moon “As the first spacecraft to use primary electric propulsion in conjunction with gravity manoeuvres,and as Europe’s first mission to the Moon, SMART-1 opens up new horizons in space engineering and scientific discovery.Moreover,we promise frequent news and pictures,so that everyone can share in our lunar adventure.” Giuseppe Racca, ESA’s Smart-1 Project Manager. 14 SMART-1/2 3/3/03 3:56 PM Page 15 SMART-1 The SMART-1 Mission Giuseppe Racca, Bernard Foing, and the SMART-1 Project Team ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands y July 2003 a hitchhiking team of engineers and scientists will be at Europe’s spaceport at Kourou in French Guiana, thumbing Ba lift for a neat little spacecraft, ESA’s SMART-1, on the next Ariane-5 launcher that has room to spare. It’s not very big - just a box a metre wide with folded solar panels attached - and six strong men could lift it. It weighs less than 370 kilograms, compared with thousands of kilos for Ariane’s usual customers’satellites. So it should pose no problems as an auxiliary passenger. SMART stands for Small Missions for Advanced Research in Technology. They pave the way for the novel and ambitious science projects of the future, by testing the new technologies that will be needed. But a SMART project is also required to be cheap - about one- fifth of the cost of a major science mission for ESA - which is why SMART-1 has no launcher of its own.
    [Show full text]
  • In Situ Observations of the Preexisting Auroral Arc by THEMIS All Sky Imagers and the FAST Spacecraft
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, A05211, doi:10.1029/2011JA017128, 2012 In situ observations of the “preexisting auroral arc” by THEMIS all sky imagers and the FAST spacecraft Feifei Jiang,1 Robert J. Strangeway,1 Margaret G. Kivelson,1,2 James M. Weygand,1 Raymond J. Walker,1 Krishan K. Khurana,1 Yukitoshi Nishimura,3 Vassilis Angelopoulos,1 and Eric Donovan4 Received 6 September 2011; revised 25 January 2012; accepted 6 March 2012; published 5 May 2012. [1] Auroral substorms were first described more than 40 years ago, and their atmospheric and magnetospheric signatures have been investigated extensively. However, because magnetic mapping from the ionosphere to the equator is uncertain especially during active times, the magnetospheric source regions of the substorm-associated features in the upper atmosphere remain poorly understood. In optical images, auroral substorms always involve brightening followed by poleward expansion of a discrete auroral arc. The arc that brightens is usually the most equatorward of several auroral arcs that remain quiescent for 30 min or more before the break-up commences. In order to identify the magnetospheric region that is magnetically conjugate to this preexisting arc, we combine auroral images from ground-based imagers, magnetic field and particle data from low-altitude spacecraft, and maps of field-aligned currents based on ground magnetometer arrays. We surveyed data from the THEMIS all sky imager (ASI) array and the FAST spacecraft from 2007 to April 2009 and obtained 5 events in which the low altitude FAST spacecraft crossed magnetic flux tubes linked to a preexisting auroral arc imaged by THEMIS ASI prior to substorm onset.
    [Show full text]
  • Next-Generation Laser Retroreflectors for Precision Tests of General
    UNIVERSITA` DEGLI STUDI “ROMA TRE” DOTTORATO DI RICERCA IN FISICA XXVIII CICLO Next-generation Laser Retroreflectors for Precision Tests of General Relativity Relazione sull’attivit`adi Dottorato di Manuele Martini Relatore Interno: Prof. Aldo Altamore Relatore Esterno: Dr. Simone Dell’Agnello, LNF-INFN Coordinatore: Prof. Roberto Raimondi Anno Accademico 2015/2016 Alla mia famiglia... Contents List of Acronyms v Preface vii Why this work at LNF-INFN . vii Whatmycontributionis ............................ viii Workinthefieldofoptics ........................ ix Industrial & quality assurance . ix Physics analysis . x 1 Satellite/Lunar Laser Ranging 1 1.1 The ILRS . 2 1.2 Howitworks ............................... 4 1.3 Corner Cube Retroreflectors . 6 1.3.1 Apollo & Lunokhod Corner Cube Retroreflector (CCR) . 8 2GeneralRelativitytests 11 2.1 TestsoriginallyproposedbyEinstein . 11 2.1.1 Mercury perihelion precession . 11 2.1.2 Deflection of light . 12 2.1.3 Gravitational redshift . 18 i 2.1.4 Shapirotimedelay ........................ 20 2.2 ParametrizedPost-Newtonianformalism . 20 3 The SCF Lab 23 3.1 SCF-GCryostat.............................. 25 3.2 Vacuum & Cryogenic System . 27 3.3 Control and acquisition electronics . 30 3.4 Solar Simulator . 33 3.5 IR Thermacam . 36 3.6 Optical layout . 40 3.6.1 Angularcalibration . 42 4 The MoonLIGHT-2 experiment 45 4.1 MoonLIGHT-ILN............................. 46 4.2 MoonLIGHT-2payload. 49 4.2.1 Optical modeling . 49 4.3 Structural design . 55 4.3.1 Sunshade vs sunshade-less . 58 4.3.2 Falcon-9 test . 61 4.3.3 Actual Moon Laser Instrumentation for General relativity High accuracyTests(MoonLIGHT)-2design . 65 4.4 INRRI................................... 65 5 The SCF-TEST 69 5.1 The MoonLIGHT-2 SCF-TESTs: general description .
    [Show full text]
  • Scrolls of Love Ruth and the Song of Songs Scrolls of Love
    Edited by Peter S. Hawkins and Lesleigh Cushing Stahlberg Scrolls of Love ruth and the song of songs Scrolls of Love ................. 16151$ $$FM 10-13-06 10:48:57 PS PAGE i ................. 16151$ $$FM 10-13-06 10:48:57 PS PAGE ii Scrolls of Love reading ruth and the song of songs Edited by Peter S. Hawkins and Lesleigh Cushing Stahlberg FORDHAM UNIVERSITY PRESS New York / 2006 ................. 16151$ $$FM 10-13-06 10:49:01 PS PAGE iii Copyright ᭧ 2006 Fordham University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, me- chanical, photocopy, recording, or any other—except for brief quotations in printed reviews, without the prior permission of the publisher. Library of Congress Cataloging-in-Publication Data Scrolls of love : reading Ruth and the Song of songs / edited by Peter S. Hawkins and Lesleigh Cushing Stahlberg.—1st ed. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-8232-2571-2 (cloth : alk. paper) ISBN-10: 0-8232-2571-2 (cloth : alk. paper) ISBN-13: 978-0-8232-2526-2 (pbk. : alk. paper) ISBN-10: 0-8232-2526-7 (pbk. : alk. paper) 1. Bible. O.T. Ruth—Criticism interpretation, etc. 2. Bible. O.T. Song of Solomon—Criticism, interpretation, etc. I. Hawkins, Peter S. II. Stahlberg, Lesleigh Cushing. BS1315.52.S37 2006 222Ј.3506—dc22 2006029474 Printed in the United States of America 08 07 06 5 4 3 2 1 First edition ................. 16151$ $$FM 10-13-06 10:49:01 PS PAGE iv For John Clayton (1943–2003), mentor and friend ................
    [Show full text]
  • KISS Lunar Volatiles Workshop 7-22-2013
    Future Lunar Missions: Plans and Opportunities Leon Alkalai, JPL New Approaches to Lunar Ice Detection and Mapping Workshop Keck Institute of Space Studies July 22nd – July 25th, 2013 California Institute of Technology Some Lunar Robotic Science & Exploration Mission Formulation Studies at JPL (2003 – 2013) MoonRise New Frontiers GRAIL (2005-2007) Moonlight (2003-2004) (2005-2012) Lunette – Discovery Proposal Pre-Phase A Network of small landers (2005-2011) MIRANDA: cold trap access (2010) Lunar Impactor (2006) Other Lunar Science & Exploration Studies at JPL (2003 – 2013) • Sample Acquisition and Transfer Systems (SATS) • Landers: hard landers, soft landers, powered descent, hazard avoidance, nuclear powered lander and rover • Sub-surface access: penetrators deployed from orbit, drills, heat- flow probe, etc. • Surface mobility: Short-range, long-range, access to cold traps in deep craters • CubeSats and other micro-spacecraft deployed e.g. gravity mapping • International Studies & Discussions: – MoonLITE lunar orbiter and probes with UKSA – Farside network of lunar landers, with ESA, CNES, IPGP – Lunar Exploration Orbiter (LEO) with DLR – Lunar Com Relay Satellite with ISRO – Canadian Space Agency: robotics, surface mobility – In-situ science with RSA, landers, rovers – JAXA lunar landers, rovers – Korean Space Agency 7/23/2013 L. Alkalai, JPL 3 Robotic Missions to the Moon: Just in the last decade: 2003 - 2013 • Smart-1 ESA September 2003 • Chang’e-1 China October 2007 • SELENE-1 Japan September 2007 • Chandrayaan-1 India October 2008 – M3, Mini-SAR USA • LRO USA June 2009 • LCROSS USA June 2009 • Chang’e-2 China October 2010 • GRAIL USA September 2011 • LADEE USA September 6 th , 2013 7/23/2013 L.
    [Show full text]
  • Time History of Events and Macroscale Interactions During Substorms: Themis
    TIME HISTORY OF EVENTS AND MACROSCALE INTERACTIONS DURING SUBSTORMS: THEMIS PROPOSAL SUBMITTED FOR: SENIOR REVIEW 2010 OF THE MISSION OPERATIONS AND DATA ANALYSIS PROGRAM FOR THE HELIOPHYSICS OPERATING MISSIONS MARCH 08, 2010 V. Angelopoulos D. G. Sibeck THEMIS Principal Investigator THEMIS Project Scientist University of California NASA/GSFC TIME HISTORY OF EVENTS AND MACROSCALE INTERACTIONS DURING SUBSTORMS PROPOSAL SUBMITTED FOR: SENIOR REVIEW 2010 OF THE MISSION OPERATIONS AND DATA ANALYSIS PROGRAM FOR THE HELIOPHYSICS OPERATING MISSIONS Table of Contents 1. Executive Summary ______________________________________________________________ 1 2. Overview: Past, Present and Future __________________________________________________ 3 3. Closure on Prime Mission Objectives ________________________________________________ 11 3.1 MAGNETOTAIL ___________________________________________________________ 11 3.2 TIME HISTORY OF EVENTS: _________________________________________________ 12 3.3 MACROSCALE INTERACTIONS: ______________________________________________ 13 3.4 RADIATION BELTS _________________________________________________________ 17 3.5 DAYSIDE _________________________________________________________________ 18 4. THEMIS FY11/12 Extension _______________________________________________________ 19 4.1 MAGNETOTAIL SCIENCE ____________________________________________________ 20 4.2 DAYSIDE SCIENCE _________________________________________________________ 21 4.3 INNER MAGNETOSPHERE SCIENCE ____________________________________________ 22
    [Show full text]
  • Sangria in the Sangreal: "The Great Gatsby" As Grail Quest Author(S): D
    Sangria in the Sangreal: "The Great Gatsby" as Grail Quest Author(s): D. G. Kehl and Allene Cooper Source: Rocky Mountain Review of Language and Literature, Vol. 47, No. 4 (1993), pp. 203- 217 Published by: Rocky Mountain Modern Language Association Stable URL: http://www.jstor.org/stable/1348307 Accessed: 30-05-2016 22:16 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Rocky Mountain Modern Language Association is collaborating with JSTOR to digitize, preserve and extend access to Rocky Mountain Review of Language and Literature This content downloaded from 128.82.252.58 on Mon, 30 May 2016 22:16:55 UTC All use subject to http://about.jstor.org/terms Sangria in the Sangreal: The Great Gatsby as Grail Quest D. G. Kehl Arizona State University Allene Cooper Boise State University Near the end of Fitzgerald's This Side of Paradise, Amory Blaine, returning to Princeton after his disillusioning sojourn in Atlantic City, concludes that he knows one thing: "If living isn't a seeking for the grail it may be a damned amusing game" (278). For Fitzgerald, by the time he wrote The Great Gatsby five years later, living had become both a quest for the grail and "a damned amusing game," with emphasis sometimes on the quest and sometimes on the game.
    [Show full text]
  • By Margaret Feinberg Awaken to the Nearness Of
    CHAPTER EXTRACTS WONDER STRUCK BY MARGARET FEINBERG AWAKEN TO THE NEARNESS OF GOD In Wonderstruck, Margaret invites you to unearth the extraordinary moments in every day life, recognize the presence of God in the midst of your routine, and discover peace in knowing you’re wildly loved. Winsome yet compelling, whimsical yet profound, the stories from Wonderstruck will inspire you to fall in love anew with God. Wonderstruck consists of eleven chapters full of practical steps, challenging questions, intimate stories, and Biblical insights culminating in a 30 Days of Wonder Challenge. This book and Bible study are for anyone who wants to live astounded by God and walk in the fullness of all He offers. 1 TRANSFORMATIONAL COMMUNITY COMMUNITY TRANSFORMATIONAL “[Feinberg] succeeds in keeping the reader engaged, entertained, and edified . [She] raises questions that linger in the mind after the book is closed.” PUBLISHERS WEEKLY Margaret Feinberg is a modern-day David. With eyes on the heavens, His Word in hand, and all her heart turned towards His, she tells the wonders of His love in ways you’ve never known. Who in the world doesn’t need joy like this? ANN VOSKAMP Author of One Thousand Gifts “Feinberg turns exegesis into an art, delivering findings that invite the audience to touch, taste, smell, and see God’s handiwork throughout the Scriptures and in their own lives.” ED STETZER President, LifeWay Research We dangerously underestimate the power of wonder . Margaret recenters wonder at the heart of our relationship with God, with seismic results. This book shook my soul awake and made it impossible for me to continue following a God of my own design.
    [Show full text]
  • New Video Releases!
    May 2019 Edition: Explore Moon to Mars This year marks the 50th anniversary of the Apollo 11 mission to the Moon. In recognition of that incredible accomplishment, we've curated new NASA eClipsTM videos and resources on the Moon and asteroids in addition to sharing other lunar and #Apollo50 resources. If you want engaging and hands-on resources to inspire kids and spark their imaginations before summer, then look no further! photo credit: NASA New Video Releases! What's the difference between rotation and revolution of the Moon? Learn from NAS A's S ubject Matter Experts (S MEs) about how these repeatable patterns create lunar phases and tides and how NAS A plans to explore the Moon's surface. Our World: Moon Phases What causes the phases of the Moon? From New Moon to Full Moon, the Earth-Sun- Moon system is responsible for the Moon’s changing phases. Learn more about rotation, revolution and this repeatable pattern. (Grades K-5) Our World: The Moon's Impact on Earth The Moon impacts Earth through tides and moonlight. NASA missions to the Moon continue to help us discover more about our nearest neighbor. Learn more about Moon mapping and resources. (Grades K-5) Fun Fact: C​​ urrently, NA SA has detected 795,015 asteroids! Every year, near-Earth asteroids have close approaches-- less than 1 lunar distance (384,410 km; 238,860 mi) -- from Earth. That means that asteroids pass between the Moon and Earth! Real World: Small Bodies Real World: Close Orbiting the Sun Encounters with an Asteroid In addition to planets and their moons, Picture this.
    [Show full text]