COVID-19, Chikungunya, Dengue and Zika Diseases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arizona Arboviral Handbook for Chikungunya, Dengue, and Zika Viruses
ARIZONA ARBOVIRAL HANDBOOK FOR CHIKUNGUNYA, DENGUE, AND ZIKA VIRUSES 7/31/2017 Arizona Department of Health Services | P a g e 1 Arizona Arboviral Handbook for Chikungunya, Dengue, and Zika Viruses Arizona Arboviral Handbook for Chikungunya, Dengue, and Zika Viruses OBJECTIVES .............................................................................................................. 4 I: CHIKUNGUNYA ..................................................................................................... 5 Chikungunya Ecology and Transmission ....................................... 6 Chikungunya Clinical Disease and Case Management ............... 7 Chikungunya Laboratory Testing .................................................. 8 Chikungunya Case Definitions ...................................................... 9 Chikungunya Case Classification Algorithm ............................... 11 II: DENGUE .............................................................................................................. 12 Dengue Ecology and Transmission .............................................. 14 Dengue Clinical Disease and Case Management ...................... 14 Dengue Laboratory Testing ......................................................... 17 Dengue Case Definitions ............................................................ 19 Dengue Case Classification Algorithm ....................................... 23 III: ZIKA .................................................................................................................. -
Arboviral Infection Surveillance Protocol
April 2013 Arboviral Infection Surveillance Protocol Arboviruses endemic to the U.S. include Eastern equine encephalitis virus (EEE), La Crosse encephalitis virus (LAC), Saint Louis encephalitis virus (SLE), West Nile virus (WNV), Western equine encephalitis virus (WEE), and the tickborne Powassan encephalitis virus (POW). See other materials for information on non-endemic arboviruses (e.g., dengue fever and yellow fever) Provider Responsibilities 1. Report suspect and confirmed cases of arbovirus infection (including copies of lab results) to the local health department within one week of diagnosis. Supply requested clinical information to the local health department to assist with case ascertainment. 2. Assure appropriate testing is completed for patients with suspected arboviral infection. The preferred diagnostic test is testing of virus-specific IgM antibodies in serum or cerebrospinal fluid (CSF). In West Virginia, appropriate arbovirus testing should include EEE, LAC, SLE, and WNV. Testing for a complete arboviral panel is available free of charge through the West Virginia Office of Laboratory Services (OLS). Laboratory Responsibilities 1. Report positive laboratory results for arbovirus infection to the local health department within 1 week. 2. Submit positive arboviral samples to the Office of Laboratory Services within 1 week. 3. Appropriate testing for patients with suspected arboviral infection includes testing of virus-specific IgM antibodies in serum or CSF. In West Virginia, testing should routinely be conducted for WNV, EEE, SLE, and LAC. A complete arboviral panel is available free of charge through OLS. For more information go to: http://www.wvdhhr.org/labservices/labs/virology/arbovirus.cfm Local Health Responsibilities 1. Conduct an appropriate case investigation. -
February 17, 2021
January 30 – February 17, 2021 This weekly science review is a snapshot of the new and emerging scientific evidence related to COVID-19 during the period specified. It is a review of important topics and articles, not a guide for policy or program implementation. The findings captured are subject to change as new information is made available. We welcome comments and feedback at [email protected]. In depth: Should second doses of COVID-19 vaccines be delayed? Main message: While the rollout of multiple vaccines has offered hope to control or end the COVID-19 pandemic, global vaccine demand will continue to outpace supply for the foreseeable future. To date, people in 130 countries have not yet received a single dose of COVID-19 vaccine. In countries where vaccination has begun, limited supplies of vaccine in combination with surges in cases and deaths have overwhelmed health care systems. Further, the emergence of more transmissible SARS-CoV-2 variants has led many to question existing vaccine rollout plans and propose alternative strategies. Some countries and experts have recommended delaying second doses of vaccine to maximize the number of people who receive at least one dose. This raises a critical question: What do we know about vaccines, especially the vaccines for COVID-19, that may allow flexibility in vaccine schedules? This is a complex question and there may not be a straightforward answer. Our knowledge is evolving rapidly as vaccine trials progress and rollout continues, and we must keep in mind that different approaches to vaccine scheduling may be appropriate in different settings. -
MDHHS BOL Mosquito-Borne and Tick-Borne Disease Testing
MDHHS BUREAU OF LABORATORIES MOSQUITO-BORNE AND TICK-BORNE DISEASE TESTING MOSQUITO-BORNE DISEASES The Michigan Department of Health and Human Services Bureau of Laboratories (MDHHS BOL) offers comprehensive testing on clinical specimens for the following viral mosquito-borne diseases (also known as arboviruses) of concern in Michigan: California Group encephalitis viruses including La Crosse encephalitis virus (LAC) and Jamestown Canyon virus (JCV), Eastern Equine encephalitis virus (EEE), St. Louis encephalitis virus (SLE), and West Nile virus (WNV). Testing is available free of charge through Michigan healthcare providers for their patients. Testing for mosquito-borne viruses should be considered in patients presenting with meningitis, encephalitis, or other acute neurologic illness in which an infectious etiology is suspected during the summer months in Michigan. Methodologies include: • IgM detection for five arboviruses (LAC, JCV, EEE, SLE, WNV) • Molecular detection (PCR) for WNV only • Plaque Reduction Neutralization Test (PRNT) is also available and may be performed on select samples when indicated The preferred sample for arbovirus serology at MDHHS BOL is cerebral spinal fluid (CSF), followed by paired serum samples (acute and convalescent). In cases where CSF volume may be small, it is recommended to also include an acute serum sample. Please see the following document for detailed instructions on specimen requirements, shipping and handling instructions: http://www.michigan.gov/documents/LSGArbovirus_IgM_Antibody_Panel_8347_7.doc Michigan residents may also be exposed to mosquito-borne viruses when traveling domestically or internationally. In recent years, the most common arboviruses impacting travelers include dengue, Zika and chikungunya virus. MDHHS has the capacity to perform PCR for dengue, chikungunya and Zika virus and IgM for dengue and Zika virus to confirm commercial laboratory arbovirus findings or for complicated medical investigations. -
What Is Veterinary Public Health? Zoonosis
Your Zoonosis Connection Veterinary Public Health Division Volume 4, Issue 1 March 2012 612 Canino Rd., Houston, Texas 77076 Phone: 281-999-3191 Fax: 281-847-1911 Harris County Rabies Update Inside this issue: Rabies continues to be a serious health threat to people and domestic What is Veterinary 2 animals. In the United States prior to 1960, the majority of all animal cases re- Public Health ported to the Centers for Disease Control and Prevention were seen in do- Rabies Submissions 3 mestic animals. Now more than 90% of the cases occur in wild animals. Since the 1950s, human rabies deaths have declined from more than a 100 annually Continuing Education 3 to a couple each year. This reduction in the number of human deaths associat- ed with rabies can be attributed to the implementation of rabies vaccination Zoonosis Trivia 4 laws, oral rabies vaccination programs, improved public health practices and the increased administration of post-exposure prophylaxis. Did you know? Veterinarians are In Harris County, rabies was last documented in a dog in 1979 and in a cat in uniquely qualified to 1986. However, rabies continues to be enzootic in our bat population. In address issues and 2011, 4.3% of bats submitted for testing were positive for rabies, which has de- concerns related to clined from 7.9% in 2010 (see table below). Last year, one horse and two the interactions of skunks tested positive for rabies in Harris County. The horse was infected people, animals, and with the South Central Skunk strain of rabies, which often spills over into oth- the environment. -
Chikungunya Fever: Epidemiology, Clinical Syndrome, Pathogenesis
Antiviral Research 99 (2013) 345–370 Contents lists available at SciVerse ScienceDirect Antiviral Research journal homepage: www.elsevier.com/locate/antiviral Review Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy ⇑ Simon-Djamel Thiberville a,b, , Nanikaly Moyen a,b, Laurence Dupuis-Maguiraga c,d, Antoine Nougairede a,b, Ernest A. Gould a,b, Pierre Roques c,d, Xavier de Lamballerie a,b a UMR_D 190 ‘‘Emergence des Pathologies Virales’’ (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France b University Hospital Institute for Infectious Disease and Tropical Medicine, Marseille, France c CEA, Division of Immuno-Virologie, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses, France d UMR E1, University Paris Sud 11, Orsay, France article info abstract Article history: Chikungunya virus (CHIKV) is the aetiological agent of the mosquito-borne disease chikungunya fever, a Received 7 April 2013 debilitating arthritic disease that, during the past 7 years, has caused immeasurable morbidity and some Revised 21 May 2013 mortality in humans, including newborn babies, following its emergence and dispersal out of Africa to the Accepted 18 June 2013 Indian Ocean islands and Asia. Since the first reports of its existence in Africa in the 1950s, more than Available online 28 June 2013 1500 scientific publications on the different aspects of the disease and its causative agent have been pro- duced. Analysis of these publications shows that, following a number of studies in the 1960s and 1970s, Keywords: and in the absence of autochthonous cases in developed countries, the interest of the scientific commu- Chikungunya virus nity remained low. -
Dengue Fever and Dengue Hemorrhagic Fever (Dhf)
DENGUE FEVER AND DENGUE HEMORRHAGIC FEVER (DHF) What are DENGUE and DHF? Dengue and DHF are viral diseases transmitted by mosquitoes in tropical and subtropical regions of the world. Cases of dengue and DHF are confirmed every year in travelers returning to the United States after visits to regions such as the South Pacific, Asia, the Caribbean, the Americas and Africa. How is dengue fever spread? Dengue virus is transmitted to people by the bite of an infected mosquito. Dengue cannot be spread directly from person to person. What are the symptoms of dengue fever? The most common symptoms of dengue are high fever for 2–7 days, severe headache, backache, joint pains, nausea and vomiting, eye pain and rash. The rash is frequently not visible in dark-skinned people. Young children typically have a milder illness than older children and adults. Most patients report a non-specific flu-like illness. Many patients infected with dengue will not show any symptoms. DHF is a more severe form of dengue. Initial symptoms are the same as dengue but are followed by bleeding problems such as easy bruising, skin hemorrhages, bleeding from the nose or gums, and possible bleeding of the internal organs. DHF is very rare. How soon after exposure do symptoms appear? Symptoms of dengue can occur from 3-14 days, commonly 4-7 days, after the bite of an infected mosquito. What is the treatment for dengue fever? There is no specific treatment for dengue. Treatment usually involves treating symptoms such as managing fever, general aches and pains. Persons who have traveled to a tropical or sub-tropical region should consult their physician if they develop symptoms. -
Takeda Vaccines Innovation for Global Impact
TAKEDA VACCINES INNOVATION FOR GLOBAL IMPACT CHOO BENG GOH, MD Regional Lead for Medical Affairs Asia, Global Vaccine Business Unit OUR MISSION Develop and deliver innovative vaccines that tackle the toughest problems in public health and improve the lives of people around the world 2 WE HAVE BUILT A GLOBAL VACCINE BUSINESS UPON A STRONG FOUNDATION IN JAPAN Global pivotal Phase 3 PARTNERSHIPS clinical trial of dengue ACQUISITIONS Polio vaccine vaccine candidate initiated: candidate Japan vaccine business Global vaccine business Dengue vaccine 20,100 participants in 8 Bill & Melinda Gates Foundation established established candidate countries in 2 regions Norovirus vaccine Zika vaccine candidate 1946 2012 candidate 2016 U.S. Government‐ BARDA 1947 2010 2014 2018 1st Takeda Multiple vaccine products Partnered with Japan Phase 3 clinical trial results of manufactured vaccine manufactured internally government to develop and dengue vaccine candidate is and marketed in Japan supply pandemic influenza expected in H2 FY18 vaccines for people in Japan 3 THE VACCINE MARKET IS AN ATTRACTIVE PLACE FOR INVESTMENT Vaccine sales growth projected at 7.1% between Durability in sales with limited impact 2017 and 2024, reaching $44.6 billions in 20241 of patent expiry Blockbuster potential in newly launched vaccines Threat of emerging and existing infectious diseases with epidemic potential 1 Evaluate Pharma report 2018 4 OUR STRATEGY Develop vaccines with global BUILD A GLOBAL TACKLE Target the greatest opportunity relevance and business potential PIPELINE -
Dengue and Yellow Fever
GBL42 11/27/03 4:02 PM Page 262 CHAPTER 42 Dengue and Yellow Fever Dengue, 262 Yellow fever, 265 Further reading, 266 While the most important viral haemorrhagic tor (Aedes aegypti) as well as reinfestation of this fevers numerically (dengue and yellow fever) are insect into Central and South America (it was transmitted exclusively by arthropods, other largely eradicated in the 1960s). Other factors arboviral haemorrhagic fevers (Crimean– include intercontinental transport of car tyres Congo and Rift Valley fevers) can also be trans- containing Aedes albopictus eggs, overcrowding mitted directly by body fluids. A third group of of refugee and urban populations and increasing haemorrhagic fever viruses (Lassa, Ebola, Mar- human travel. In hyperendemic areas of Asia, burg) are only transmitted directly, and are not disease is seen mainly in children. transmitted by arthropods at all. The directly Aedes mosquitoes are ‘peri-domestic’: they transmissible viral haemorrhagic fevers are dis- breed in collections of fresh water around the cussed in Chapter 41. house (e.g. water storage jars).They feed on hu- mans (anthrophilic), mainly by day, and feed re- peatedly on different hosts (enhancing their role Dengue as vectors). Dengue virus is numerically the most important Clinical features arbovirus infecting humans, with an estimated Dengue virus may cause a non-specific febrile 100 million cases per year and 2.5 billion people illness or asymptomatic infection, especially in at risk.There are four serotypes of dengue virus, young children. However, there are two main transmitted by Aedes mosquitoes, and it is un- clinical dengue syndromes: dengue fever (DF) usual among arboviruses in that humans are the and dengue haemorrhagic fever (DHF). -
Antibody-Mediated Enhancement Aggravates Chikungunya Virus
www.nature.com/scientificreports OPEN Antibody-mediated enhancement aggravates chikungunya virus infection and disease severity Received: 14 July 2017 Fok-Moon Lum 1,2, Thérèse Couderc3,4, Bing-Shao Chia1,8, Ruo-Yan Ong1,9, Zhisheng Her1,10, Accepted: 17 January 2018 Angela Chow5, Yee-Sin Leo5, Yiu-Wing Kam1, Laurent Rénia1, Marc Lecuit 3,4,6 & Published: xx xx xxxx Lisa F. P. Ng1,2,7 The arthropod-transmitted chikungunya virus (CHIKV) causes a fu-like disease that is characterized by incapacitating arthralgia. The re-emergence of CHIKV and the continual risk of new epidemics have reignited research in CHIKV pathogenesis. Virus-specifc antibodies have been shown to control virus clearance, but antibodies present at sub-neutralizing concentrations can also augment virus infection that exacerbates disease severity. To explore this occurrence, CHIKV infection was investigated in the presence of CHIKV-specifc antibodies in both primary human cells and a murine macrophage cell line, RAW264.7. Enhanced attachment of CHIKV to the primary human monocytes and B cells was observed while increased viral replication was detected in RAW264.7 cells. Blocking of specifc Fc receptors (FcγRs) led to the abrogation of these observations. Furthermore, experimental infection in adult mice showed that animals had higher viral RNA loads and endured more severe joint infammation in the presence of sub-neutralizing concentrations of CHIKV-specifc antibodies. In addition, CHIKV infection in 11 days old mice under enhancing condition resulted in higher muscles viral RNA load detected and death. These observations provide the frst evidence of antibody-mediated enhancement in CHIKV infection and pathogenesis and could also be relevant for other important arboviruses such as Zika virus. -
Florida Arbovirus Surveillance Week 13: March 28-April 3, 2021
Florida Arbovirus Surveillance Week 13: March 28-April 3, 2021 Arbovirus surveillance in Florida includes endemic mosquito-borne viruses such as West Nile virus (WNV), Eastern equine encephalitis virus (EEEV), and St. Louis encephalitis virus (SLEV), as well as exotic viruses such as dengue virus (DENV), chikungunya virus (CHIKV), Zika virus (ZIKV), and California encephalitis group viruses (CEV). Malaria, a parasitic mosquito-borne disease is also included. During the period of March 28- April 3, 2021, the following arboviral activity was recorded in Florida. WNV activity: No human cases of WNV infection were reported this week. No horses with WNV infection were reported this week. No sentinel chickens tested positive for antibodies to WNV this week. In 2021, positive samples from two sentinel chickens has been reported from two counties. SLEV activity: No human cases of SLEV infection were reported this week. No sentinel chickens tested positive for antibodies to SLEV this week. In 2021, no positive samples have been reported. EEEV activity: No human cases of EEEV infection were reported this week. No horses with EEEV infection were reported this week. No sentinel chickens tested positive for antibodies to EEEV this week. In 2021, positive samples from one horse and 14 sentinel chickens have been reported from four counties. International Travel-Associated Dengue Fever Cases: No cases of dengue fever were reported this week in persons that had international travel. In 2021, one travel-associated dengue fever case has been reported. Dengue Fever Cases Acquired in Florida: No cases of locally acquired dengue fever were reported this week. In 2021, no cases of locally acquired dengue fever have been reported. -
HPV Vaccine Update
Dengue modeling Andrea Vicari Comprehensive Family Immunization Unit Family, Gender and Life Course Department Outline • Framing modeling within policy cycle • Purposes of infectious disease modeling • Overview of dengue modeling • Final considerations Five stages of a policy cycle Agenda setting • Problem recognition Policy formulation • Proposal of solution Decision-making • Choice of solution Policy implementation • Putting solution into effect Policy evaluation • Monitoring results Howlett & Ramesh, Studying public policy: Policy cycles and policy subsystems, 1995 Identify the decision situation and A decision- understand objectives analysis process Identify alternatives flowchart Decompose and model the problem: 1. Model of problem structure 2. Model of uncertainty 3. Model of preferences Choose best alternatives Sensitivity analysis Is further YES analysis necessary? NO Implement chosen alternative Clemen and Reilly, Making hard decisions, 2002. Main purposes of infectious disease modeling • To understand fundamental driving forces of disease ecology and epidemiology • To measure epidemiological parameters that cannot be directly measured with field or laboratory data • To make predictions of future disease incidence under specified conditions • To forecast impact of different prevention/control measures and their combination Adapted from: WHO-VMI Dengue Vaccine Modeling Group, PLoS Negl Trop Dis 2012, 6:e1450 Classical Ross-Macdonald model for malaria transmission (1) Classical Ross-Macdonald model for malaria transmission (2) m