Ocean Energy Development Programme

Total Page:16

File Type:pdf, Size:1020Kb

Ocean Energy Development Programme Ocean Energy Development Programme Annual Report 2011 Contents Contact Persons 04 This is Ocean Energy Business Development and Management Introduction and Site Development 06 The Aegir Shetland Project 08 Partnership with executive summary Veijo Huusko Jörgen Josefsson Göran Franzén the Local Community +46 70 242 80 70 +46 70 620 33 22 +46 72 245 99 83 09 Tonn and AMETS veijo.huusko jorgen.josefsson goran.franzen @vattenfall.com @vattenfall.com @vattenfall.com I am pleased to present the first annual report for Vattenfall’s Ocean Energy Development Programme (OEDP). This annual Technology Development Technology Development report describes last year’s achievements of the OEDP and 10 Pelamis 10 Technology Readiness Level additionally provides a comprehensive overview of Vattenfall’s 10 Monitoring Wave Developers positioning in the field of ocean energy. 11 Standpoint Project 2011 11 Seabased Wave Energy – Project Maren Gunilla Andrée Björn Bolund Oskar D Fängström +46 76 141 35 85 +46 72 234 24 38 +46 703 86 34 70 Since 2006, Vattenfall AB R&D Projects has been investigating gunilla.andree bjorn.bolund oskar.danielsson-fangstrom the potential for ocean energy to offer a major new renewable @vattenfall.com @vattenfall.com @poyry.com energy source, and in 2009 Vattenfall established a formal Business Development ocean energy programme. Our early work focused on reviewing 12 Country by Country Overview conversion technologies to determine when and where they could be viable. 14 Industrial Partnerships In early 2011 we completed our investigations and finalized 15 Environmental Responsibility a comprehensive business review of the ocean opportunity. Our proposed business plan was approved by the EGM in April Per Holmberg Eoghan Maguire 2011. The bottom line of the business plan is to focus our efforts +46 70 378 35 73 +44 78 25 32 94 22 on a demonstration of one of the existing leading technologies per.holmberg eoghan.maguire and also to concentrate on a leading market for ocean energy. @vattenfall.com @vattenfall.com In this report we present the status of the ocean energy oppor- tunity. You will learn why and how we have decided to focus on Scotland as the leading market for early projects. The report Site Development also introduces Pelamis – the ocean energy technology that we Veijo Huusko. Photo: Elisabeth Redlig are pursuing. You can read about our first 10MW wave farm project in Shetland, using this technology, and why we are ex- In 2012 we will continue to intensively pursue these themes. For cited by the relationship with the local community organisations the coming year, I hope we can have enough confidence in our on Shetland. technical evaluations and industrial partnerships to order our As you read this report, I hope you will see three common first 1MW machine for deployment in Orkney, Scotland in 2014. themes that we have deliberately adopted in our strategy for This would provide us with the competence and confidence to consider ordering machines for our 10MW farm in 2016, which Kristin Andersen Erik Sparrevik Colin Stewart Harvey Appelbe ocean R&D: +46 70 618 38 97 +46 70 384 47 94 +44 79 72 13 14 34 +35 38 68 22 69 92 in turn might allow us to consider more than 40MW by 2018, kristin.andersen erik.sparrevik colin.stewart harvey.appelbe when we expect several technologies to be ready and proven. @vattenfall.com @vattenfall.com @vattenfall.com @tonnenergy.ie l Value: We are working on ocean energy before it is commer- cial because we are creating measurable value for Vattenfall To summarize, I am very pleased with our first year of results in terms of competence and a credible position that can be and also excited about the potential of the ocean energy devel- realised when the commercial market opens. Working now opment programme in the near future; not least because of the Communications is more valuable than waiting and trying to buy in later. strong team of smart people we have working on it. Once you have read this report, I encourage you to contact them directly to learn more about their work. I know you will find it compelling. l Partners: We are minimising the risks and costs of accu- mulating this value by working through partnerships, where others contribute competence and cash to the work that Veijo Huusko needs to be done in a way that fits with value creation for Director, Low Emitting Generation Vattenfall. Vattenfall AB Maria Parent +46 76 807 65 50 l Companies: We accumulate the value of our investment in maria.parent @vattenfall.com ocean R&D by doing the work through purpose-built com- panies in the local market, where the value of the company © Vattenfall Photo: Pelamis Wave Power Ltd. increases as our work succeeds. Ocean Energy Annual Report 2011 3 This is Ocean Energy Ocean energy is a huge untapped renewable energy resource that represents a major growth opportunity for the coastal regions of Northern Europe. According to EU targets, this massive natural renewable energy resource off Northern Europe’s western coasts could be harvested by about 188GW installed capacity by 2050. The wave energy industry could soon how a region like Scotland is currently continue to reduce at a pace faster than become the next wind industry, with a leading this race largely due to its clearly offshore wind. Furthermore, there are similar level of economic activity and articulated political commitment. Conse- substantial benefits of having both wave decarbonisation potential, but it will not quently, Vattenfall’s investments in ocean and wind on the grid, since wave energy happen automatically. As with any new energy will happen first in Scotland, close continues to arrive from the large oceans energy source, it will take a concerted to the leading technologies, strong wave long after winds have calmed after the effort to convert this opportunity for resources and adequate feed-in supports. storm and is so much more predictable. Europe. In time there is hope that Ireland, with While the benefits of ocean energy are its massive natural ocean resources, compelling, they are far from inevitable. Among the pioneers of wave power will follow suite, although policy building A concerted effort will be required to Those communities and organisations blocks remain to be put in place. Recent overcome the remaining hurdles. that move early will have the best chance announcements from the Isles project of benefitting from the opportunities are suggesting a subsea grid will further Upcoming challenges linked to ocean energy. Consequently, unlock the marine renewables there. This By working at this early stage Vattenfall Vattenfall initiated some ocean energy will be critical to realising the export di- can carve out a valuable position by de- projects in 2006, in order to remain mension of Scotland and Ireland’s marine veloping its competence and credibility in among the leaders of sustainable energy potential, which is much larger than the time to exploit the emerging opportunity. production. The team completed an initial domestic market can accept. The British The company is motivated to work in review phase in 2010 and has concluded Isles alone should contribute some 5GW ocean energy to show the opportunity to a thorough evaluation of the ocean energy of clean ocean energy to Europe by 2035. the existing large industrial players and opportunity. They were convinced that communities so that they will pick up the the first ‘pilot’ wave farms of 10MW from Constraints that ocean energy faces 2015 should be in Shetland to the North Although the technology has been devel- of Scotland. If all goes as expected, oped since the 1970s and a few full scale Vattenfall plans to ramp up to farms of devices are in the water producing power, 50MW and then commercial scale farms the products remains in an embryonic high of >100MW after 2020. But this is still a state. The current lack of capital has medium long way to go. slowed this development. Industry as- low sociations estimate that capital required very low Adding value to Vattenfall’s production by these small companies collectively is portfolio just EUR 157 million. Still, private capital Ocean energy could make a significant is not available to them and the recent contribution to decarbonising Vattenfall’s funding announcements from the EC of power generation portfolio, because a EUR 22 million, the UK Government of large quantity of energy can be harnessed EUR 24 million and the Scottish Govern- from the ocean movement with negligible ment of EUR 43 million are welcome, but CO2 emissions. Offshore wave is consid- public funds are not sufficient. Wave resource distribution in Europe ered a relatively environmental benign en- Graphic: Vattenfall, Source: Aquaret ergy source, with limited negative impact A promising outlook on the local environment. For some spe- Like any new energy source it will take baton, bringing to bear their significant cies the impact could even be positive. time to refine the emerging wave conver- capabilities and financial capacity to However, important knowledge gaps still sion technology to survive and operate commercialise the opportunity. However, exist and Vattenfall is closely involved in viably in the violent oceans. It could take there remains a lot of difficult R&D work the ongoing research within the field. as long as 20 years before wave electri- to be done in the challenging open ocean city is at the same level as offshore wind environment, before this type of energy Suitable regions for ocean energy today. This is still compelling because could be regarded as a viable new energy Pelamis, a Scottish technology, illustrates the cost of wave energy could potentially source. ■ The launch of one machine segment at Pelamis docs in Leith, Scotland.
Recommended publications
  • Aquamarine Power – Oyster* Biopower Systems – Biowave
    Wave Energy Converters (WECs) Aquamarine Power – Oyster* The Oyster is uniquely designed to harness wave energy in a near-shore environment. It is composed primarily of a simple mechanical hinged flap connected to the seabed at a depth of about 10 meters and is gravity moored. Each passing wave moves the flap, driving hydraulic pistons to deliver high pressure water via a pipeline to an onshore electrical turbine. AWS Ocean Energy – Archimedes Wave Swing™* The Archimedes Wave Swing is a seabed point-absorbing wave energy converter with a large air-filled cylinder that is submerged beneath the waves. As a wave crest approaches, the water pressure on the top of the cylinder increases and the upper part or 'floater' compresses the air within the cylinder to balance the pressures. The reverse happens as the wave trough passes and the cylinder expands. The relative movement between the floater and the fixed lower part is converted directly to electricity by means of a linear power take-off. BioPower Systems – bioWAVE™ The bioWAVE oscillating wave surge converter system is based on the swaying motion of sea plants in the presence of ocean waves. In extreme wave conditions, the device automatically ceases operation and assumes a safe position lying flat against the seabed. This eliminates exposure to extreme forces, allowing for light-weight designs. Centipod* The Centipod is a Wave Energy Conversion device currently under construction by Dehlsen Associates, LLC. It operates in water depths of 40-44m and uses a two point mooring system with four lines. Its methodology for wave energy conversion is similar to other devices.
    [Show full text]
  • An Offshore Renewables Capacity Study for Dorset Dorset C-SCOPE Project
    An Offshore Renewables Capacity Study for Dorset Dorset C-SCOPE Project Dorset Coast Forum 1 April 2010 Final Report 9V5867 Stratus House Emperor Way Exeter, Devon EX1 3QS United Kingdom +44 (0)1392 447999 Telephone Fax [email protected] E-mail www.royalhaskoning.com Internet Document title An Offshore Renewables Capacity Study for Dorset Dorset C-SCOPE Project Document short title Offshore Renewables Capacity Study Status Final Report Date 1 April 2010 Project name Offshore Renewables Capacity Study Project number 9V5867 Client Dorset Coast Forum Reference 9V5867/R/303424/Exet Drafted by J. Trendall, G. Chapman & P. Gaches Checked by Peter Gaches Date/initials check …………………. …………………. Approved by Steve Challinor Date/initials approval …………………. …………………. This report has been produced by Haskoning UK Ltd. solely for Dorset Coast Forum in accordance with the terms of appointment for Dorset Offshore Renewables Capacity Study dated 01.02.2010 and should not be relied upon by third parties for any use whatsoever without express permission in writing from Haskoning UK Ltd. All rights reserved. No part of this publication may be reproduced in any form, including photocopying or, transmitted by electronic means, or stored in an electronic retrieval system without express permission in writing from Haskoning UK Ltd. CONTENTS Page 1 INTRODUCTION 1 1.1 Study Overview 2 2 CURRENT TECHNOLOGIES REVIEW 2 2.1 Offshore Wind Technology Overview 2 2.2 Offshore Tidal Stream Technology Overview 9 2.3 Offshore Wave Technology Overview 9 2.4 Wave
    [Show full text]
  • Lessons Learned from Orkney Island: the Possibility of Waves to Churn out Enery and Economic Returns in the U.S
    Lessons Learned from Orkney Island: The Possibility of Waves to Churn Out Enery and Economic Returns in the U.S. by Marisa McNatt About the Author Marisa McNatt is pursuing her PhD in Environmental Studies with a renewable energy policy focus at the University of Colorado-Boulder. She earned a Master’s in Journalism and Broadcast and a Certificate in Environment, Policy, and Society from CU-Boulder in 2011. This past summer, she traveled to Europe as a Heinrich Böll Climate Media fellow with the goal of researching EU renewable energy policies, with an emphasis on marine renewables, and communicating lessons learned to U.S. policy-makers and other relevant stakeholders. Published by the Heinrich Böll Stiftung Washington, DC, March 2014 Creative Commons Attribution NonCommercial-NoDerivs 3.0 Unported License Author: Marisa McNatt Design: Anna Liesa Fero Cover: ScottishPower Renewables „Wave energy device that turns energy from the waves into electricity at the European Marine Energy Center’s full-scale wave test site off the coast of Orkney Island. Pelamis P2-002 was developed by Pelamis Wave Power and is owned by ScottishPower Renewables.” Heinrich Böll Stiftung North America 1432 K Street NW Suite 500 Washington, DC 20005 United States T +1 202 462 7512 F +1 202 462 5230 E [email protected] www.us.boell.org 2 Lessons Learned from Orkney Island: The Possibility of Waves to Churn Out Enery and Economic Returns in the U.S. by Marisa McNatt A remote island off the Northern tip of Scotland, begins, including obtaining the necessary permits from long known for its waves and currents, is channeling energy and environmental regulatory agencies, as well attention from the U.S.
    [Show full text]
  • Offshore Technology Yearbook
    Offshore Technology Yearbook 2 O19 Generation V: power for generations Since we released our fi rst offshore direct drive turbines, we have been driven to offer our customers the best possible offshore solutions while maintaining low risk. Our SG 10.0-193 DD offshore wind turbine does this by integrating the combined knowledge of almost 30 years of industry experience. With 94 m long blades and a 10 MW capacity, it generates ~30 % more energy per year compared to its predecessor. So that together, we can provide power for generations. www.siemensgamesa.com 2 O19 20 June 2019 03 elcome to reNEWS Offshore Technology are also becoming more capable and the scope of Yearbook 2019, the fourth edition of contracts more advanced as the industry seeks to Wour comprehensive reference for the drive down costs ever further. hardware and assets required to deliver an As the growth of the offshore wind industry offshore wind farm. continues apace, so does OTY. Building on previous The offshore wind industry is undergoing growth OTYs, this 100-page edition includes a section on in every aspect of the sector and that is reflected in crew transfer vessel operators, which play a vital this latest edition of OTY. Turbines and foundations role in servicing the industry. are getting physically larger and so are the vessels As these pages document, CTVs and their used to install and service them. operators are evolving to meet the changing needs The growing geographical spread of the sector of the offshore wind development community. So is leading to new players in the fabrication space too are suppliers of installation vessels, cable-lay springing up and players in other markets entering vessels, turbines and other components.
    [Show full text]
  • Sustainability in the Power Sector 2010 Update Europe
    Sustainability in the Power Sector 2010 Update - Europe Tim Steinweg, Albert ten Kate & Kristóf Rácz November 2010 Sustainability in the Power Sector 2010 Update - Europe Sustainability in the Power Sector 2010 update: Europe Tim Steinweg, Albert ten Kate & Kristóf Rácz (SOMO) Amsterdam, November 2010 1 Colophon Sustainability in the Power Sector 2010 Update - Europe November 2010 Authors: Tim Steinweg, Albert ten Kate & Kristóf Rácz Cover design: Annelies Vlasblom ISBN: 978-90-71284-63-2 Funding This publication has been produced with the financial assistance of Greenpeace Nederland. The content of this publication is the sole responsibility of SOMO and can in no way be taken to reflect the views of Greenpeace Nederland. Published by Stichting Onderzoek Multinationale Ondernemingen Centre for Research on Multinational Corporations Sarphatistraat 30 1018 GL Amsterdam The Netherlands Tel: + 31 (20) 6391291 Fax: + 31 (20) 6391321 E-mail: [email protected] Website: www.somo.nl This document is licensed under the Creative Commons Attribution-NonCommercial-NoDerivateWorks 2.5 License. 2 Sustainability in the Power Sector 2010 Update - Europe Contents Contents .......................................................................................................................... 3 List of Figures................................................................................................................. 5 List of Tables .................................................................................................................. 5 Abbreviations
    [Show full text]
  • Towards Integration of Low Carbon Energy and Biodiversity Policies
    Towards integration of low carbon energy and biodiversity policies An assessment of impacts of low carbon energy scenarios on biodiversity in the UK and abroad and an assessment of a framework for determining ILUC impacts based on UK bio-energy demand scenarios SUPPORTING DOCUMENT – LITERATURE REVIEW OF IMPACTS ON BIODIVERSITY Defra 29 March 2013 In collaboration with: Supporting document – Literature review on impacts on biodiversity Document information CLIENT Defra REPORT TITLE Supporting document – Literature review of impacts on biodiversity PROJECT NAME Towards integration of low carbon energy and biodiversity policies PROJECT CODE WC1012 PROJECT TEAM BIO Intelligence Service, IEEP, CEH PROJECT OFFICER Mr. Andy Williams, Defra Mrs. Helen Pontier, Defra DATE 29 March 2013 AUTHORS Mr. Shailendra Mudgal, Bio Intelligence Service Ms. Sandra Berman, Bio Intelligence Service Dr. Adrian Tan, Bio Intelligence Service Ms. Sarah Lockwood, Bio Intelligence Service Dr. Anne Turbé, Bio Intelligence Service Dr. Graham Tucker, IEEP Mr. Andrew J. Mac Conville, IEEP Ms. Bettina Kretschmer, IEEP Dr. David Howard, CEH KEY CONTACTS Sébastien Soleille [email protected] Or Constance Von Briskorn [email protected] DISCLAIMER The project team does not accept any liability for any direct or indirect damage resulting from the use of this report or its content. This report contains the results of research by the authors and is not to be perceived as the opinion of Defra. Photo credit: cover @ Per Ola Wiberg ©BIO Intelligence Service 2013 2 | Towards
    [Show full text]
  • Aegir Wave Power - South West Shetland
    Last Updated 08/10/2013 Aegir Wave Power - South West Shetland Developer: Pelamis Wave Power Site size: The farm will occupy roughly 2km²° Site location: The Aegir wave farm project site is located off the west coast of Shetland in an “Area of Search” between Kettla Ness and Muckle Sound, roughly 5km from the coast at its closet point Swell is predominantly from the west. Surf beaches in the south of Shetland could be affected. Image courtesy of Pelamis Wave Power Ltd Technology: Aegir is developing a 10MW wave farm off the southwest coast of Shetland. The farm, which was awarded an agreement for lease from The Crown Estate in May 2011, will consist of between 10 to 14 Pelamis wave machines. Each machine consists of 5 tube sections joined axially with 4 universal joints. The bending movements (induced by the peaks and troughs of the waves) around the universal joints are harnessed by hydraulic rams to generate electricity; with each single machine having a total rated Last Updated 08/10/2013 export capacity of 750 kW (0.75 MW). The machine is ballasted so that it is approximately 60% submerged i.e. less than 2 m protrusion above the surface of the sea. The overall machine length is approximately 180 m Pelamis is held on station by a compliant mooring spread consisting mainly of steel chain and synthetic tethers. The primary choice for anchors is embedment anchors (the same as used for floating oil rigs), which require sites with sedimentary cover. Embedment anchors are the preferred choice for a number of reasons including that they are a more cost effective method than pilling or drilling which Aegir do not intend to do.
    [Show full text]
  • Ocean Energy: Technologies, Patents, Deployment Status And
    IRENA International Renewable Energy Agency OCEAN ENERGY TECHNOLOGY READINESS, PATENTS, DEPLOYMENT STATUS AND OUTLOOK REPORT AUGUST 2014 Copyright © IRENA 2014 OTEC Patents Unless otherwise indicated, material in this publication may be used freely, shared or reprinted, so long The following table summarises international PCT applications related to OTEC in 2013. as IRENA is acknowledged as the source. Summary of international OTEC PCT applications published in 2013 International Country Applicant Date About IRENA Publication Number of Applicant WO 2013/000948 A2 DCNS 03 Jan 2013 France The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that WO 2013/013231 A2 Kalex LLC 24 Jan 2013 USA supports countries in their transition to a sustainable energy future, and serves as the principal platform WO 2013/025797 A2 The Abell Foundation, Inc. 21 Feb 2013 USA for international co-operation, a centre of excellence, and a repository of policy, technology, resource and financial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable WO 2013/025802 A2 The Abell Foundation, Inc. 21 Feb 2013 USA use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and WO 2013/025807 A2 The Abell Foundation, Inc. 21 Feb 2013 USA wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon WO 2013/050666 A1 IFP Energies Nouvelles 11 Apr 2013 France economic growth and prosperity. www.irena.org WO 2013/078339 A2 Lockheed Martin Corporation 30 May 2013 USA WO 2013/090796 A1 Lockheed Martin Corporation 20 Jun 2013 USA Acknowledgements This report was produced in collaboration with Garrad Hassan & Partners Ltd (trading as DNV GL) Salinity Gradient Patents under contract.
    [Show full text]
  • Proposed Marwick Head Wave Farm Request for a Scoping Opinion December 2012
    Proposed Marwick Head Wave Farm Request for a Scoping Opinion December 2012 This page is intentionally blank CONTENTS CONTENTS I EXECUTIVE SUMMARY 1 1. INTRODUCTION 4 1.1. BACKGROUND 4 1.2. DOCUMENT PURPOSE 4 1.3. DOCUMENT STRUCTURE 5 2. POLICY & LEGISLATIVE CONTEXT 6 2.1. CLIMATE CHANGE 6 2.2. RENEWABLE ENERGY 6 2.3. PLANNING CONTEXT 7 2.3.1. Terrestrial Planning 7 2.3.2. Marine Planning 8 2.4. DEVELOPMENT CONTROL AND EIA 9 2.4.1. Consents and Licensing 9 2.4.2. EIA Regulations 10 2.4.3. Other Consents and Licenses 13 2.4.4. Legislation 14 3. DESCRIPTION OF THE DEVELOPMENT 15 3.1. SITE SELECTION 15 3.2. SITE LOCATION 15 3.3. NATURE OF THE PROPOSED WAVE FARM 18 3.3.1. Candidate Technology 18 3.3.2. Pelamis Wave Energy Converter 18 3.3.3. Components 18 3.3.4. Converter Spacing 19 3.3.5. Mooring 20 3.3.6. Installation Methodology 20 3.3.7. Installation Infrastructure 20 3.3.8. Monitoring Devices - Met masts / Wave buoys 21 3.3.9. Inter-Array Cabling 21 3.3.10. Export Cabling/Grid Connection 21 ________________________________________________________________________________________________________ ScottishPower Renewables i 3.3.11. Operations and Maintenance Strategy 21 3.3.12. Operations and Maintenance Infrastructure 22 3.3.13. Decommissioning 23 4. ENVIRONMENTAL BASELINE & POTENTIAL EFFECTS 24 4.1. INTRODUCTION 24 4.1.1. Assessment Methodology 24 4.1.2. Cumulative and In-Combination Impacts 24 4.2. PHYSICAL ENVIRONMENT 25 4.2.1. Marine and Coastal Processes 25 4.2.2.
    [Show full text]
  • Sustainable Energy – Without the Hot Air
    Sustainable Energy – without the hot air David J.C. MacKay Draft 2.9.0 – August 28, 2008 Department of Physics University of Cambridge http://www.withouthotair.com/ ii Back-cover blurb Sustainable energy — without the hot air Category: Science. How can we replace fossil fuels? How can we ensure security of energy supply? How can we solve climate change? We’re often told that “huge amounts of renewable power are available” – wind, wave, tide, and so forth. But our current power consumption is also huge! To understand our sustainable energy crisis, we need to know how the one “huge” compares with the other. We need numbers, not adjectives. In this book, David MacKay, Professor in Physics at Cambridge Univer- sity, shows how to estimate the numbers, and what those numbers depend on. As a case study, the presentation focuses on the United Kingdom, ask- ing first “could Britain live on sustainable energy resources alone?” and second “how can Britain make a realistic post-fossil-fuel energy plan that The author, July 2008. adds up?” Photo by David Stern. These numbers bring home the size of the changes that society must undergo if sustainable living is to be achieved. Don’t be afraid of this book’s emphasis on numbers. It’s all basic stuff, accessible to high school students, policy-makers and the thinking pub- lic. To have a meaningful discussion about sustainable energy, we need numbers. This is Draft 2.9.0 (August 28, 2008). You are looking at the low- resolution edition (i.e., some images are low-resolution to save bandwidth).
    [Show full text]
  • Aberdeen Project
    Aberdeen Offshore Wind Farm: Socio-Economic Impacts Monitoring Study Technical Report 4: European Offshore Wind Deployment Centre (EOWDC) (Aberdeen Offshore Wind Farm): Socio-Economic Impacts Monitoring Study Final Report John Glasson, Bridget Durning, Tokunbo Olorundami and Kellie Welch Impacts Assessment Unit, Oxford Brookes University https://doi.org/10.24384/v8nf-ja69 1 Aberdeen Offshore Wind Farm: Socio-Economic Impacts Monitoring Study Contents Executive Summary 3 PART A: INTRODUCTION AND OVERVIEW 5 1. Research approach 5 PART B: EOWDC ECONOMIC IMPACTS 9 2. ES economic impact predictions 9 3. Actual economic impacts – pre-construction 10 4. Actual economic impacts – construction overview 11 5. Actual economic Impacts – construction onshore 12 6. Actual economic Impacts – construction offshore 14 7. Actual economic Impacts – operation and maintenance 16 PART C: EOWDC SOCIAL IMPACTS 18 8. Social impacts – ES predictions 18 9. Actual social impacts – pre-construction 18 10. Actual social impacts – construction stage 22 11. Actual social impacts – operation and management stage 29 PART D : ABERDEENSHIRE FLOATING OFFSHORE WIND FARM 35 COMPARATIVE SOCIO-ECONOMIC IMPACT STUDIES 12. Introduction 35 13. Hywind Scotland Pilot Park Project (off Peterhead) 35 14. Kincardine Offshore Windfarm 38 PART E: CONCLUSIONS 42 15. Conclusions on the EOWDC (Aberdeen) OWF socio-economic 42 impacts 16. Conclusions on comparative projects and cumulative impacts 46 References 50 Appendices — in separate volume 2 Aberdeen Offshore Wind Farm: Socio-Economic Impacts Monitoring Study Executive Summary Aims: This study is one element of the European Offshore Wind Deployment Centre (EOWDC) Environmental Research and Monitoring Programme supported by Vattenfall. The focus of this element of the whole programme is on the socio-economic impacts of Offshore Wind Farm (OWF) projects on the human environment.
    [Show full text]
  • THE SCHOOL of ENGINEERING at the University of Edinburgh
    THE SCHOOL of ENGINEERING at The University of Edinburgh Course Guide For UCAS Applicants Mechanical Engineering THE SCHOOL of ENGINEERING at The University of Edinburgh Course Guide For UCAS Applicants Mechanical Engineering 03 THE SCHOOL of ENGINEERING at The University of Edinburgh Course Guide For UCAS Applicants Mechanical Engineering 03 The first part of the document lists the modules undertaken in each of the degree programmes. The second part of the document gives short descriptions of each of these modules. At the end of the document is a list of host companies where students have had placements during their degree. Prospective students should refer to the Undergraduate pages of the University website (http://www.ed.ac.uk/) to find out more about studying at the University of Edinburgh. The modules and programmes described in this document are meant as a guide only and therefore you might find when you are undertaking the degree programme the modules are different from that stated in this document. If you have any questions about the information contained in this document, please contact us: School of Engineering The University of Edinburgh Kings Buildings Mayfield Road Edinburgh, EH9 3JL Tel: 0131 650 7352 Fax: 0131 650 5893 Email: [email protected] THE SCHOOL of ENGINEERING at The University of Edinburgh Course Guide For UCAS Applicants Mechanical Engineering 04 Mechanical Engineering (BEng) Degree Type: Single UCAS Code: H300 Year of Course Credit Year of Course Credit Programme Programme 1 Engineering 1 20 3 Solid Mechanics
    [Show full text]