Electrical Networks of Corpower Wave Farms Economic Assessment and Grid Integration Analysis of Voltage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aquamarine Power – Oyster* Biopower Systems – Biowave
Wave Energy Converters (WECs) Aquamarine Power – Oyster* The Oyster is uniquely designed to harness wave energy in a near-shore environment. It is composed primarily of a simple mechanical hinged flap connected to the seabed at a depth of about 10 meters and is gravity moored. Each passing wave moves the flap, driving hydraulic pistons to deliver high pressure water via a pipeline to an onshore electrical turbine. AWS Ocean Energy – Archimedes Wave Swing™* The Archimedes Wave Swing is a seabed point-absorbing wave energy converter with a large air-filled cylinder that is submerged beneath the waves. As a wave crest approaches, the water pressure on the top of the cylinder increases and the upper part or 'floater' compresses the air within the cylinder to balance the pressures. The reverse happens as the wave trough passes and the cylinder expands. The relative movement between the floater and the fixed lower part is converted directly to electricity by means of a linear power take-off. BioPower Systems – bioWAVE™ The bioWAVE oscillating wave surge converter system is based on the swaying motion of sea plants in the presence of ocean waves. In extreme wave conditions, the device automatically ceases operation and assumes a safe position lying flat against the seabed. This eliminates exposure to extreme forces, allowing for light-weight designs. Centipod* The Centipod is a Wave Energy Conversion device currently under construction by Dehlsen Associates, LLC. It operates in water depths of 40-44m and uses a two point mooring system with four lines. Its methodology for wave energy conversion is similar to other devices. -
Evaluating the Future Efficiency of Wave Energy Converters Along The
energies Article Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula Américo S. Ribeiro 1,* , Maite deCastro 2 , Liliana Rusu 3, Mariana Bernardino 4, João M. Dias 1 and Moncho Gomez-Gesteira 2 1 CESAM, Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] 2 Environmental Physics Laboratory (EphysLab), CIM-UVIGO, University of Vigo, Campus da Auga building, 32004 Ourense, Spain; [email protected] (M.d.); [email protected] (M.G.-G.) 3 Department of Mechanical Engineering, Faculty of Engineering, ‘Dunarea de Jos’ University of Galati, 47 Domneasca Street, 800 201 Galati, Romania; [email protected] 4 Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; [email protected] * Correspondence: [email protected] Received: 3 June 2020; Accepted: 9 July 2020; Published: 10 July 2020 Abstract: The efficiency of wave energy converters (WECs) is generally evaluated in terms of historical wave conditions that do not necessarily represent the conditions that those devices will encounter when put into operation. The main objective of the study is to assess the historical and near future efficiency and energy cost of two WECs (Aqua Buoy and Pelamis). A SWAN model was used to downscale the wave parameters along the NW coast of the Iberian Peninsula both for a historical period (1979–2005) and the near future (2026–2045) under the RCP 8.5 greenhouse scenario. The past and future efficiency of both WECs were computed in terms of two parameters that capture the relationship between sea states and the WEC power matrices: the load factor and the capture width. -
WES Development Guidance – Lessons Learnt from Real Sea Deployments
WES Development Guidance – Lessons Learnt from Real Sea Deployments Approach and Supply Chain WES_KH03_ER_01 Revision Date Purpose of issue 1.0 22/03/2017 WES External Issue Copyright © Wave Energy Scotland Limited 2017 All rights reserved. No part of this work may be modified, reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, graphic, electronic or mechanical, including photocopying and recording, or used for any purpose other than its designated purpose without the prior written permission of Wave Energy Scotland Limited, the copyright owner. If any unauthorised acts are carried out in relation to this copyright work, a civil claim for damages may be made and/or a criminal prosecution may result. Disclaimer This report (including any enclosures and attachments) has been commissioned by Wave Energy Scotland Limited (“WES”) and prepared for the exclusive use and benefit of WES and solely for the purpose for which it was provided. No representation, warranty or undertaking (express or implied) is made, and no responsibility is accepted as to the adequacy, accuracy or completeness of this report or any of its contents. WES does not assume any liability with respect to use of or damages resulting from the use of any information disclosed in this document. The statements and opinions contained in this report are those of the author and do not necessarily reflect those of WES. v2 WES_KH03_ER_01 - Approach and Supply Chain.docx i Contents 1 Introduction 1 2 Knowledge Capture Approach 3 3 Guidance Documents 6 3.1 Compliance 6 3.2 Handling 6 3.3 Installation 7 3.4 Operations and Maintenance (O&M) 7 4 Company Profiles 8 List of Figures Figure 1. -
IMPLEMENTING AGREEMENT on OCEAN ENERGY SYSTEMS
ANNUAL REPORT IMPLEMENTING AGREEMENT on OCEAN ENERGY SYSTEMS 2014 ANNUAL REPORT IMPLEMENTING AGREEMENT on OCEAN ENERGY SYSTEMS 2014 2014 ANNUAL REPORT Published by: The Executive Committee of Ocean Energy Systems Edited by: Ana Brito e Melo and José Luis Villate Designed by: Formas do Possível | www.formasdopossivel.com Disclaimer: Ocean Energy Systems (OES), also known as the Implementing Agreement on Ocean Energy Systems, functions within a framework created by the International Energy Agency (IEA). Views, findings and publications of the OES do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries. CONTENTS CHAIRMAN’S MESSAGE 04 6. COUNTRY REPORTS PORTUGAL 44 EXECUTIVE SUMMARY 05 DENMARK 49 UNITED KINGDOM 52 1. INTRODUCTION IRELAND 64 Vision, Role and Values 11 CANADA 69 The OES Vision for International Deployment of UNITED STATES OF AMERICA 75 Ocean Energy 12 BELGIUM 84 Benefits from International Collaboration 13 NORWAY 86 Key OES Achievements in 2014 14 MEXICO 89 SPAIN 92 2. REPORT OF THE EXECUTIVE ITALY 96 COMMITTEE NEW ZEALAND 102 Membership 15 SWEDEN 104 Executive Committee 18 SOUTH AFRICA 110 Management & Work Programme 19 REPUBLIC OF KOREA 111 Interaction with the IEA 20 CHINA 116 NIGERIA 120 3. DISSEMINATION AND OUTREACH MONACO 120 Collection and Exchange of Information 21 SINGAPORE 122 Sponsorship and Co-hosting of Conferences and Workshops 23 THE NETHERLANDS 129 Presence in Main Events 25 Promotional Material 26 7. STATISTICAL OVERVIEW OF OCEAN ENERGY IN 2014 4. ONGOING COLLABORATIVE PROJECTS Worldwide Ocean Power Installed Capacity 132 Open Sea Testing Assessment of Environmental Effects and Monitoring 134 Efforts (Annex IV) 27 Major Industry Players Involved in R&D and Demonstration Projects 135 Exchange and Assessment of Ocean Energy Device Project Information and Experience (Annex V) 31 Worldwide Web GIS Database for Ocean Energy 33 8. -
Lessons Learned from Orkney Island: the Possibility of Waves to Churn out Enery and Economic Returns in the U.S
Lessons Learned from Orkney Island: The Possibility of Waves to Churn Out Enery and Economic Returns in the U.S. by Marisa McNatt About the Author Marisa McNatt is pursuing her PhD in Environmental Studies with a renewable energy policy focus at the University of Colorado-Boulder. She earned a Master’s in Journalism and Broadcast and a Certificate in Environment, Policy, and Society from CU-Boulder in 2011. This past summer, she traveled to Europe as a Heinrich Böll Climate Media fellow with the goal of researching EU renewable energy policies, with an emphasis on marine renewables, and communicating lessons learned to U.S. policy-makers and other relevant stakeholders. Published by the Heinrich Böll Stiftung Washington, DC, March 2014 Creative Commons Attribution NonCommercial-NoDerivs 3.0 Unported License Author: Marisa McNatt Design: Anna Liesa Fero Cover: ScottishPower Renewables „Wave energy device that turns energy from the waves into electricity at the European Marine Energy Center’s full-scale wave test site off the coast of Orkney Island. Pelamis P2-002 was developed by Pelamis Wave Power and is owned by ScottishPower Renewables.” Heinrich Böll Stiftung North America 1432 K Street NW Suite 500 Washington, DC 20005 United States T +1 202 462 7512 F +1 202 462 5230 E [email protected] www.us.boell.org 2 Lessons Learned from Orkney Island: The Possibility of Waves to Churn Out Enery and Economic Returns in the U.S. by Marisa McNatt A remote island off the Northern tip of Scotland, begins, including obtaining the necessary permits from long known for its waves and currents, is channeling energy and environmental regulatory agencies, as well attention from the U.S. -
Innovation Outlook: Ocean Energy Technologies, International Renewable Energy Agency, Abu Dhabi
INNOVATION OUTLOOK OCEAN ENERGY TECHNOLOGIES A contribution to the Small Island Developing States Lighthouses Initiative 2.0 Copyright © IRENA 2020 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. ISBN 978-92-9260-287-1 For further information or to provide feedback, please contact IRENA at: [email protected] This report is available for download from: www.irena.org/Publications Citation: IRENA (2020), Innovation outlook: Ocean energy technologies, International Renewable Energy Agency, Abu Dhabi. About IRENA The International Renewable Energy Agency (IRENA) serves as the principal platform for international co-operation, a centre of excellence, a repository of policy, technology, resource and financial knowledge, and a driver of action on the ground to advance the transformation of the global energy system. An intergovernmental organisation established in 2011, IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. Acknowledgements IRENA appreciates the technical review provided by: Jan Steinkohl (EC), Davide Magagna (EU JRC), Jonathan Colby (IECRE), David Hanlon, Antoinette Price (International Electrotechnical Commission), Peter Scheijgrond (MET- support BV), Rémi Gruet, Donagh Cagney, Rémi Collombet (Ocean Energy Europe), Marlène Moutel (Sabella) and Paul Komor. -
Towards Integration of Low Carbon Energy and Biodiversity Policies
Towards integration of low carbon energy and biodiversity policies An assessment of impacts of low carbon energy scenarios on biodiversity in the UK and abroad and an assessment of a framework for determining ILUC impacts based on UK bio-energy demand scenarios SUPPORTING DOCUMENT – LITERATURE REVIEW OF IMPACTS ON BIODIVERSITY Defra 29 March 2013 In collaboration with: Supporting document – Literature review on impacts on biodiversity Document information CLIENT Defra REPORT TITLE Supporting document – Literature review of impacts on biodiversity PROJECT NAME Towards integration of low carbon energy and biodiversity policies PROJECT CODE WC1012 PROJECT TEAM BIO Intelligence Service, IEEP, CEH PROJECT OFFICER Mr. Andy Williams, Defra Mrs. Helen Pontier, Defra DATE 29 March 2013 AUTHORS Mr. Shailendra Mudgal, Bio Intelligence Service Ms. Sandra Berman, Bio Intelligence Service Dr. Adrian Tan, Bio Intelligence Service Ms. Sarah Lockwood, Bio Intelligence Service Dr. Anne Turbé, Bio Intelligence Service Dr. Graham Tucker, IEEP Mr. Andrew J. Mac Conville, IEEP Ms. Bettina Kretschmer, IEEP Dr. David Howard, CEH KEY CONTACTS Sébastien Soleille [email protected] Or Constance Von Briskorn [email protected] DISCLAIMER The project team does not accept any liability for any direct or indirect damage resulting from the use of this report or its content. This report contains the results of research by the authors and is not to be perceived as the opinion of Defra. Photo credit: cover @ Per Ola Wiberg ©BIO Intelligence Service 2013 2 | Towards -
The RSPB's 2050 Energy Vision
Section heading The RSPB’s 2050 energy vision Meeting the UK’s climate targets in harmony with nature Technical report The RSPB’s vision for the UK’s energy future 3 Contents Executive Summary ................................................................................................................................. 3 Authors .................................................................................................................................................. 11 Acknowledgements ............................................................................................................................... 11 List of abbreviations .............................................................................................................................. 12 List of figures and tables ....................................................................................................................... 15 1. Introduction ...................................................................................................................................... 17 1.1 Background ....................................................................................................................................... 17 1.2 Aims and scope ................................................................................................................................. 18 1.3 Limitations to the analysis ................................................................................................................ 19 1.4 Structure of the -
Estimation of Wave Energy from Wind Velocity
Technological University Dublin ARROW@TU Dublin Articles School of Electrical and Electronic Engineering 2013 Estimation of Wave Energy from Wind Velocity Jonathan Blackledge Technological University Dublin, [email protected] Eugene Coyle Technological University Dublin, [email protected] Derek Kearney Technological University Dublin, [email protected] See next page for additional authors Follow this and additional works at: https://arrow.tudublin.ie/engscheleart2 Part of the Electrical and Computer Engineering Commons Recommended Citation Blackledge, J., Coyle, E., Kearney, D., McGuirk, R., Norton, B. (2013) Estimation of Wave Energy from Wind Velocity.Accepted for publication in in IAENG Engineering Letters, 2013, Issue 4, p.158-170. doi:10.21427/ D71P6P This Article is brought to you for free and open access by the School of Electrical and Electronic Engineering at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Authors Jonathan Blackledge, Eugene Coyle, Derek Kearney, Ronan McGuirk, and Brian Norton This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/engscheleart2/64 Estimation of Wave Energy from Wind Velocity Jonathan Blackledge, Eugene Coyle, Derek Kearney, Ronan McGuirk and Brian Norton Abstract—The aim of this paper is to report on a possible between the energy associated with a sea surface wave stream correlation between the Levy´ index for wind velocity and the and the wind velocity time series characterised by the Levy´ mean Energy Density of sea surface waves in the same location. -
Marine Hydrokinetic Energy Site Identification and Ranking Methodology Part I: Wave Energy Levi Kilcher and Robert Thresher
Marine Hydrokinetic Energy Site Identification and Ranking Methodology Part I: Wave Energy Levi Kilcher and Robert Thresher NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5000-66038 October 2016 Contract No. DE-AC36-08GO28308 Marine Hydrokinetic Energy Site Identification and Ranking Methodology Part I: Wave Energy Levi Kilcher and Robert Thresher Prepared under Task No. WA152001 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5000-66038 Golden, CO 80401 303-275-3000 • www.nrel.gov October 2016 Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
Power of the Tides by Mi C H a E L Sa N D S T R O M Arnessing Just 0.1% of the Potential and Lighthouses
Volume 28, No. 2 THE HUDSON VALLEY SUMMER 2008 REEN IMES G A publication of Hudson Valley Grass T Roots Energy & Environmental Network Power of the Tides BY MICHAEL SAND S TRO M arnessing just 0.1% of the potential and lighthouses. Portugal plans to build power they will get and when. renewable energy of the ocean a 2.25 megawatt wave farm.1 There are, tidal turbines are somewhat better for could produce enough electric- however, still many difficulties that make the environment than the heavy metals H 3 ity to power the whole world. Scientists wave power less feasible than free-flow used to make solar cells. Since the sun studying the issue say tidal power could tidal power for large-scale energy pro- only shines on average for half a day, solar solve a major part of the complex puzzle duction, including unpredictable storm is not always as predictable due to cloud of balancing a growing population’s need waves, loss of ocean space, and the diffi- coverage. for more energy with protecting an envi- culty of transferring electricity to shore. Although tidal and wind share the ronment suffering from its production Oceanic thermal energy is produced same basic mechanics for generating and use. by the temperature difference existing electricity, wind turbines can only oper- There are three different ways to tap between the surface water and the water ate when there is sufficient wind and they the ocean for electricity: tidal power (free- at the bottom of the ocean, which allows a are sometimes considered aesthetically flowing or dammed hydro), wave power, heat engine to make electricity. -
On the Analysis of a Wave Energy Farm with Focus on Maintenance Operations
Journal of Marine Science and Engineering Article On the Analysis of a Wave Energy Farm with Focus on Maintenance Operations Giovanni Rinaldi 1,*, Philipp R. Thies 1, Richard Walker 2 and Lars Johanning 1 1 Renewable Energy Group, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK; [email protected] (P.R.T.); [email protected] (L.J.) 2 Mojo Maritime Ltd., Falmouth Business Park, Falmouth, Cornwall TR11 4SZ, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-754-202-8282 Academic Editors: Raúl Guanche García and Dong-Sheng Jeng Received: 29 June 2016; Accepted: 11 August 2016; Published: 23 August 2016 Abstract: Wave energy has a promising technical potential that could contribute to the future energy mix. However, costs related to the deployment of wave energy converters (WECs) are still high compared to other technologies. In order to reduce these costs, two principle options are available, a reduction in cost and an increase in productivity. This paper presents a reliability-based computational tool to identify typical decision problems and to shed light on the complexity of optimising a wave power farm. The proposed tool is used to investigate productivity and availability of a wave energy farm during 10 years of operational life. A number of optimization possibilities to improve productivity, namely vessel choice, maintenance regime, failure rate and component redundancy, are then explored in order to assess their effectiveness. The paper quantifies the yield increase and provides a practical approach to evaluate the effectiveness of strategic and operational decision options.