The RSPB's 2050 Energy Vision

Total Page:16

File Type:pdf, Size:1020Kb

The RSPB's 2050 Energy Vision Section heading The RSPB’s 2050 energy vision Meeting the UK’s climate targets in harmony with nature Technical report The RSPB’s vision for the UK’s energy future 3 Contents Executive Summary ................................................................................................................................. 3 Authors .................................................................................................................................................. 11 Acknowledgements ............................................................................................................................... 11 List of abbreviations .............................................................................................................................. 12 List of figures and tables ....................................................................................................................... 15 1. Introduction ...................................................................................................................................... 17 1.1 Background ....................................................................................................................................... 17 1.2 Aims and scope ................................................................................................................................. 18 1.3 Limitations to the analysis ................................................................................................................ 19 1.4 Structure of the report ...................................................................................................................... 21 2. Approach to analysis ......................................................................................................................... 22 2.1 Ecological risk classification of renewable energy technologies ...................................................... 22 2.2 Assessing deployment potential of renewable energy technologies ............................................... 24 2.3 Modelling energy scenarios for 2050 ............................................................................................... 26 3.1 High ecological risk renewable energy technologies ........................................................................ 30 3.2 Medium ecological risk renewable energy technologies .................................................................. 32 3.3 Low ecological risk renewable energy technologies ......................................................................... 55 3.4 Other low carbon technologies and approaches to reducing energy sector emissions ................... 65 4. Low ecological risk 2050 energy scenarios ....................................................................................... 73 4.1 Developing the low ecological risk (LER) scenarios .......................................................................... 73 4.2 Renewable energy technologies in the LER scenarios ...................................................................... 77 4.3 Other low carbon technologies in the LER scenarios........................................................................ 84 4.4 Energy demand in the LER scenarios ................................................................................................ 86 5. Discussion .......................................................................................................................................... 94 5.1 Overview of the LER scenarios .......................................................................................................... 94 5.2 Conclusions ..................................................................................................................................... 100 6. Policy recommendations................................................................................................................. 106 References .......................................................................................................................................... 112 Annex 1. Spatial Analysis of Medium Risk Renewable Energy Technologies ..................................... 130 1 A1.1 Assessing the future capacity of medium ecological risk technologies........................................ 130 A1.2 Opportunity Mapping ................................................................................................................... 134 A1.3 Constraints Mapping .................................................................................................................... 136 A1.4 Ecological sensitivity mapping ...................................................................................................... 141 A1.5 Spatial analysis results .................................................................................................................. 158 A1.6 Discussion of spatial analysis results ............................................................................................ 164 2 Executive Summary Why energy matters to the RSPB The way that we currently generate and use energy in the UK is not sustainable and is driving us towards dangerous climate change – one of the greatest long-term threats to wildlife. The UK has started to decarbonise its energy supply, but has a long way to go and must make this transition in a way that avoids harming wildlife. Poorly-planned energy infrastructure can seriously harm wildlife, adding to existing pressures, including those caused by climate change. Putting nature in the “energy trilemma” We need a system that delivers environmentally sustainable, secure and affordable energy – the “energy trilemma”. However, the trilemma as it currently stands tends to equate environmental sustainability solely with low carbon energy, overlooking ecological impacts. Planning our energy future requires us to take the natural environment into account. Our challenge in this report is to put nature firmly within the energy trilemma. Our approach: mapping energy futures In order to understand how the UK can decarbonise in harmony with nature, we have: Analysed ecological risks of all major renewable energy technologies. Mapped where technologies which require large areas of land or sea could be deployed at low ecological risk (see Figures 1 and 2). Conducted a literature review of key ecological risks of other renewable technologies. Using these results, estimated the energy generation potential of each technology. Used the DECC 2050 Pathways Calculator1 to develop three low ecological risk (LER) 2050 energy scenarios for the UK, balancing other elements of the energy trilemma. Step 1: Map where the energy resource is technically viable e.g. sufficient wind speed for wind turbines Step 2: Exclude areas with physical constraints that prevent deployment (e.g. buildings, roads) Step 3: Exclude areas where there are policy constraints to deployment (e.g. heritage designations) Step 4: Exclude areas of high and medium ecological sensitivity (e.g. Natura 2000 sites) Result: Indicative area where technology may potentially be located with low ecological risk Figure 1. Framework for assessing the deployment potential of renewable energy technologies within areas of high, medium and low/unknown ecological sensitivity (adapted from SQW Energy 2010) 1 A UK Government tool for developing energy scenarios: http://2050-calculator-tool.decc.gov.uk/#/home 3 We created maps for onshore wind, solar farms, bioenergy crops, offshore wind, wave and tidal stream. The full methodology and results have been peer-reviewed and published (see Gove et al 2016), and are also in the Annex of this report. Figure 2 shows maps produced for solar farms, as an example. Green areas in Map D indicate where solar farms could be sited with low ecological risk, based on current understanding of distribution of priority species and habitats. Maps are not intended for fine-scale use to identify sites, but provide a high-level indication of aggregate areas of land suitable for development. Figure 2. Indicative areas of (A) resource availability, (B) physical constraints, (C) policy constraints and (D) ecological sensitivity for solar farms in the UK 4 Results of the spatial analysis The spatial analysis indicates that up to 6,277 TWh/year of renewable energy could be generated with low ecological risk by the technologies assessed. The UK’s final energy consumption in 2014 was 1661 TWh (DECC 2015a), suggesting that approximately four times the UK’s current energy use could be generated from renewables by 2050, if carefully sited. This assumes no change to overall energy demand in 2050, meaning that this figure could be considerably higher if demand is reduced (although other considerations relating to the requirements of the overall energy system have to be considered). There is significant scope for the low ecological risk deployment of all technologies considered, especially onshore wind, floating wind and solar. The joint energy generation potential for onshore wind and solar is equivalent to roughly a quarter (23%) of the UK’s current energy consumption. Offshore wind could generate up to three and a half times the UK’s current energy consumption (up to 5,558 TWh/yr), though most suitable areas identified are far from shore, so would require floating turbines and may not be economically viable. Data on marine species distribution is limited, so figures could change as data and therefore understanding of ecological
Recommended publications
  • Download a Copy
    Cover image: Courtesey of EDF Energy — www.edfenergy.com/energy CONTENTS... 1 AT A GLANCE... 2 A BRIEF HISTORY OF NUCLEAR ENERGY... 4 BENEFITS OF NUCLEAR ENERGY... 5 WHAT THE PUBLIC THINK... 6 HOW NUCLEAR CREATES ENERGY... 7 HOW A REACTOR WORKS... 8 THE NUCLEAR FUEL CYCLE... 9 MANAGING WASTE... 10 RADIATION EXPLAINED... 12 NUCLEAR AROUND THE WORLD... 14 UK NUCLEAR SITES... 16 NUCLEAR NEW BUILD... 17 NEW BUILD IN NUMBERS... 18 LOOKING TO THE FUTURE... 19 DECOMMISSIONING... 20 CAREERS IN NUCLEAR... 21 FUTHER INFORMATION... AT A GLANCE... Nuclear is a major part of our energy mix. Today it accounts for 21% of electricity generated in the UK and has been providing secure low carbon electricity for over 60 years. Low carbon energy, including There are 15 nuclear power and renewables, nuclear power account for almost 51% of the reactors operating UK’s generation electricity mix across eight sites in the UK In 2016 nuclear energy avoided 22.7 million metric tonnes of CO2 emissions in the UK BEIS,Digest of UK Energy Statistics 2018 That’s equivalent to taking around a third of all cars in the UK off the road Civil nuclear contributes over £6 billion to the jobs in the UK civil nuclear sector UK economy as much as aerospace manufacturing 12,159 Women in civil nuclear 1,981 People on apprenticeships Three quarters of the public 914 believe nuclear should be part People on graduate schemes of the clean energy mix Jobs Map figures generated from participating NIA members 1 This simple timeline charts some of the key people, events and legislation A BRIEF HISTORY OF NUCLEAR ENERGY..
    [Show full text]
  • Sellafield Magazine: Issue 7
    Editor's Letter Editor’s Letter British engineering making a hole lot of difference page 54 his issue of Sellafield Magazine comes later than originally advertised. As a publicly funded organisation we minimised our communication Tactivity in the run up to the General Election in June. It is our home within the civil service and as a subsidiary of the Nuclear Aspiring young writers visit Sellafield Decommissioning Authority that prompted another highlight from the page 70 last few months. Our digital home has moved. We are now part of the GOV.UK platform. You can read more about the transition of our website on page 63 and don’t forget to save our new address to your favourites: www.gov.uk/sellafieldltd We have been busy since our last issue so our pages are bursting with stories about the progress we are making on the Sellafield site. You can read about the doors we have installed into the side of an old waste silo on page 54; about the robots our supply chain partner Forth Engineering have developed to help us complete radiological surveys on page 12; and find out everything you need to know about our Site Ion Exchange Plant in the latest of our ‘In Focus’ series on page 50. Our new website: www.gov.uk/sellafieldltd is now live page 63 At a corporate level, we have published our new strategy as well as our transformation plan. Together they provide an overview of our direction and our approach to fundamental and far-reaching changes in our organisation.
    [Show full text]
  • WES Development Guidance – Lessons Learnt from Real Sea Deployments
    WES Development Guidance – Lessons Learnt from Real Sea Deployments Approach and Supply Chain WES_KH03_ER_01 Revision Date Purpose of issue 1.0 22/03/2017 WES External Issue Copyright © Wave Energy Scotland Limited 2017 All rights reserved. No part of this work may be modified, reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, graphic, electronic or mechanical, including photocopying and recording, or used for any purpose other than its designated purpose without the prior written permission of Wave Energy Scotland Limited, the copyright owner. If any unauthorised acts are carried out in relation to this copyright work, a civil claim for damages may be made and/or a criminal prosecution may result. Disclaimer This report (including any enclosures and attachments) has been commissioned by Wave Energy Scotland Limited (“WES”) and prepared for the exclusive use and benefit of WES and solely for the purpose for which it was provided. No representation, warranty or undertaking (express or implied) is made, and no responsibility is accepted as to the adequacy, accuracy or completeness of this report or any of its contents. WES does not assume any liability with respect to use of or damages resulting from the use of any information disclosed in this document. The statements and opinions contained in this report are those of the author and do not necessarily reflect those of WES. v2 WES_KH03_ER_01 - Approach and Supply Chain.docx i Contents 1 Introduction 1 2 Knowledge Capture Approach 3 3 Guidance Documents 6 3.1 Compliance 6 3.2 Handling 6 3.3 Installation 7 3.4 Operations and Maintenance (O&M) 7 4 Company Profiles 8 List of Figures Figure 1.
    [Show full text]
  • IMPLEMENTING AGREEMENT on OCEAN ENERGY SYSTEMS
    ANNUAL REPORT IMPLEMENTING AGREEMENT on OCEAN ENERGY SYSTEMS 2014 ANNUAL REPORT IMPLEMENTING AGREEMENT on OCEAN ENERGY SYSTEMS 2014 2014 ANNUAL REPORT Published by: The Executive Committee of Ocean Energy Systems Edited by: Ana Brito e Melo and José Luis Villate Designed by: Formas do Possível | www.formasdopossivel.com Disclaimer: Ocean Energy Systems (OES), also known as the Implementing Agreement on Ocean Energy Systems, functions within a framework created by the International Energy Agency (IEA). Views, findings and publications of the OES do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries. CONTENTS CHAIRMAN’S MESSAGE 04 6. COUNTRY REPORTS PORTUGAL 44 EXECUTIVE SUMMARY 05 DENMARK 49 UNITED KINGDOM 52 1. INTRODUCTION IRELAND 64 Vision, Role and Values 11 CANADA 69 The OES Vision for International Deployment of UNITED STATES OF AMERICA 75 Ocean Energy 12 BELGIUM 84 Benefits from International Collaboration 13 NORWAY 86 Key OES Achievements in 2014 14 MEXICO 89 SPAIN 92 2. REPORT OF THE EXECUTIVE ITALY 96 COMMITTEE NEW ZEALAND 102 Membership 15 SWEDEN 104 Executive Committee 18 SOUTH AFRICA 110 Management & Work Programme 19 REPUBLIC OF KOREA 111 Interaction with the IEA 20 CHINA 116 NIGERIA 120 3. DISSEMINATION AND OUTREACH MONACO 120 Collection and Exchange of Information 21 SINGAPORE 122 Sponsorship and Co-hosting of Conferences and Workshops 23 THE NETHERLANDS 129 Presence in Main Events 25 Promotional Material 26 7. STATISTICAL OVERVIEW OF OCEAN ENERGY IN 2014 4. ONGOING COLLABORATIVE PROJECTS Worldwide Ocean Power Installed Capacity 132 Open Sea Testing Assessment of Environmental Effects and Monitoring 134 Efforts (Annex IV) 27 Major Industry Players Involved in R&D and Demonstration Projects 135 Exchange and Assessment of Ocean Energy Device Project Information and Experience (Annex V) 31 Worldwide Web GIS Database for Ocean Energy 33 8.
    [Show full text]
  • Powering Ahead! Making Sense of Business Models in Electric Vehicle Charging
    Powering ahead! Making sense of business models in electric vehicle charging October 2018 In association with Contents Acknowledgements 1 Foreword from Energy UK 2 Setting the scene 4 Our approach 5 Key findings 6 How the charging market stacks up 11 Where does charging take place and 14 how does it work? Bringing your business model to life 26 Deep dive on business models 28 What should you do next? 33 Strategy& is PwC’s global strategy consulting team. We help you transform your business by creating strategy that starts with your greatest strengths and builds in execution at every step. We call this strategy that works, and it delivers immediate impact and lasting value for you. As part of the PwC network, we combine 100 years of strategy consulting experience with PwC’s deep industry and functional capabilities. PwC has more than 250,000 people in 158 countries committed to delivering quality in assurance, tax, and advisory services. Acknowledgements To research and fully understand the constantly evolving landscape that is the electric vehicle charging market, we had the good fortune to speak to a number of companies and individuals who are at the very heart of this transformation. We would like to thank everyone who contributed to the report for their insights and time. Addison Lee – Andrew Wescott and Justin Patterson Chargemaster – Tom Callow Ecotricity – Mark Meyrick EDF Energy – Roy Collins ELEXON – Kevin Spencer Elsden Consultants – Miles Elsden Energy UK – Sam Hollister InstaVolt – Tim Payne National Grid – Graeme Cooper and Thomas Maidonis Ovo Energy – Tom Packenham Pivot Power – Matt Allen Pod Point – James McKemey ScottishPower – Malcom Paterson Tesla Western Power Distribution – Ben Godfrey Powering ahead! Making sense of business models in electric vehicle charging 1 Foreword from Energy UK Lawrence Slade Chief Executive I am delighted to work with PwC to bring their insight to investigating the market dynamics of The EV revolution is already upon us.
    [Show full text]
  • Documenting and Popularising British Nuclear Power: Exploring Science Infotainment
    InMedia The French Journal of Media Studies 7.2. | 2019 Documentary and Entertainment Documenting and Popularising British nuclear power: Exploring science infotainment Lucie de Carvalho Electronic version URL: http://journals.openedition.org/inmedia/1607 DOI: 10.4000/inmedia.1607 ISSN: 2259-4728 Publisher Center for Research on the English-Speaking World (CREW) Printed version Date of publication: 15 December 2019 Electronic reference Lucie de Carvalho, “Documenting and Popularising British nuclear power: Exploring science infotainment ”, InMedia [Online], 7.2. | 2019, Online since 16 December 2019, connection on 26 January 2021. URL: http://journals.openedition.org/inmedia/1607 ; DOI: https://doi.org/10.4000/inmedia.1607 This text was automatically generated on 26 January 2021. © InMedia Documenting and Popularising British nuclear power: Exploring science infotai... 1 Documenting and Popularising British nuclear power: Exploring science infotainment Lucie de Carvalho Introduction 1 When Stephen Hawking passed away on March 14, 2018, much of the tribute paid underscored his iconic popularising skills. With the likes of Richard Attenborough or Jeremy Vine, Hawking rose to the status of documentary voice and British national public treasure. He also helped build bridges between science and the British public both through books and documentaries. The latter in particular have held a place of pride in the popularising techniques regarding the sometimes-esoteric world of natural or experimental sciences. As a television sub-genre, documentaries are distinct from news-providing or fiction programmes but borrow elements from both. For Bill Nichols, “The appearance of documentary involves the combination of three pre- existing elements--photographic realism, narrative structure, and modernist fragmentation—along with a new emphasis on the rhetoric of social persuasion.”1 It means that a documentary is based on chronicling the “real” through images and sounds, mostly with an activist intent.
    [Show full text]
  • Innovation Outlook: Ocean Energy Technologies, International Renewable Energy Agency, Abu Dhabi
    INNOVATION OUTLOOK OCEAN ENERGY TECHNOLOGIES A contribution to the Small Island Developing States Lighthouses Initiative 2.0 Copyright © IRENA 2020 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. ISBN 978-92-9260-287-1 For further information or to provide feedback, please contact IRENA at: [email protected] This report is available for download from: www.irena.org/Publications Citation: IRENA (2020), Innovation outlook: Ocean energy technologies, International Renewable Energy Agency, Abu Dhabi. About IRENA The International Renewable Energy Agency (IRENA) serves as the principal platform for international co-operation, a centre of excellence, a repository of policy, technology, resource and financial knowledge, and a driver of action on the ground to advance the transformation of the global energy system. An intergovernmental organisation established in 2011, IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. Acknowledgements IRENA appreciates the technical review provided by: Jan Steinkohl (EC), Davide Magagna (EU JRC), Jonathan Colby (IECRE), David Hanlon, Antoinette Price (International Electrotechnical Commission), Peter Scheijgrond (MET- support BV), Rémi Gruet, Donagh Cagney, Rémi Collombet (Ocean Energy Europe), Marlène Moutel (Sabella) and Paul Komor.
    [Show full text]
  • Sellafield What to Do in a Radiation Emergency Booklet
    WHAT TO DO IN AN Emergency At Sellafield This information is prepared for everyone within the Detailed Emergency Planning Zone and the Inner Emergency Planning Zone for the Sellafield Site. EMERGENCY INFORMATION Listen to local radio. Monitor social media platforms. Dial the Sellafield Emergency Information Line on 29th September 2021 It is important that you study this booklet carefully and keep it in a safe and prominent place. WHAT TO DO IN AN EMERGENCY Introduction • This booklet gives advice on what to do in the event of an emergency at the Sellafield Site. • Sellafield is Europe’s largest single nuclear site and stores and handles industrial size quantities of radioactive material. Although unlikely, an emergency could occur involving material being stored and processed on the Site. In addition, Sellafield also holds a large inventory of other hazardous substances and again although unlikely an emergency could occur involving the chemicals being utilised on the Site. • It must be stressed that the possibility of such emergencies occurring is remote and that the design and operation of all plants on the site are independently monitored by the Office for Nuclear Regulation (ONR), Health and Safety Executive (HSE) and Environment Agency (EA). • Current assessments of the radiological hazards indicate that areas between 6.1km & 8km from the centre of the Sellafield Site could be the most likely areas to be directly affected during and following a radiation emergency, this area is referred to as the Detailed Emergency Planning Zone (DEPZ). To see its geographical extent please see map A (pg13) & C (pg20). • In addition, other assessments of the chemical hazards indicate that an area up to 2km from the centre of the Sellafield Site could be the most likely area to be directly affected during and following a chemical emergency, this area is referred to as the Inner Emergency Planning Zone (IEPZ).
    [Show full text]
  • Shaping Subtransmission South West 2018
    Strategic Investment Options Shaping Subtransmission South West – July 2018 Strategic Investment Options: Shaping Subtransmission Version Control Issue Date 1 26/07/2016 2 18/07/2018 Contact Details Email [email protected] Postal Network Strategy Team Western Power Distribution Feeder Road Bristol BS2 0TB Disclaimer Neither WPD, nor any person acting on its behalf, makes any warranty, express or implied, with respect to the use of any information, method or process disclosed in this document or that such use may not infringe the rights of any third party or assumes any liabilities with respect to the use of, or for damage resulting in any way from the use of, any information, apparatus, method or process disclosed in the document. © Western Power Distribution 2018 Contains OS data © Crown copyright and database right 2018 No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means electronic, mechanical, photocopying, recording or otherwise, without the written permission of the Network Strategy and Innovation Manager, who can be contacted at the addresses given above. 2 South West – July 2018 Contents 1 – Executive Summary ...................................................................................................................... 4 2 – Objective of this Report ................................................................................................................ 7 3 – Background ..................................................................................................................................
    [Show full text]
  • The Nuclear Decommissioning Authority Progress with Reducing Risk at Sellafield
    A picture of the National Audit Office logo Report by the Comptroller and Auditor General The Nuclear Decommissioning Authority The Nuclear Decommissioning Authority: progress with reducing risk at Sellafield HC 1126 SESSION 2017–2019 20 JUNE 2018 Our vision is to help the nation spend wisely. Our public audit perspective helps Parliament hold government to account and improve public services. The National Audit Office scrutinises public spending for Parliament and is independent of government. The Comptroller and Auditor General (C&AG), Sir Amyas Morse KCB, is an Officer of the House of Commons and leads the NAO. The C&AG certifies the accounts of all government departments and many other public sector bodies. He has statutory authority to examine and report to Parliament on whether departments and the bodies they fund, nationally and locally, have used their resources efficiently, effectively, and with economy. The C&AG does this through a range of outputs including value-for-money reports on matters of public interest; investigations to establish the underlying facts in circumstances where concerns have been raised by others or observed through our wider work; landscape reviews to aid transparency; and good-practice guides. Our work ensures that those responsible for the use of public money are held to account and helps government to improve public services, leading to audited savings of £734 million in 2016. The Nuclear Decommissioning Authority The Nuclear Decommissioning Authority: progress with reducing risk at Sellafield Report by the Comptroller and Auditor General Ordered by the House of Commons to be printed on 18 June 2018 This report has been prepared under Section 6 of the National Audit Act 1983 for presentation to the House of Commons in accordance with Section 9 of the Act Sir Amyas Morse KCB Comptroller and Auditor General National Audit Office 15 June 2018 HC 1126 | £10.00 This report examines the Nuclear Decommissioning Authority’s progress with reducing risk and hazard at its largest and most hazardous site, Sellafield.
    [Show full text]
  • Your Guide to Going Green
    YOUR GUIDE TO GOING GREEN An Energy Toolkit for Hospitality In partnership with Ecotricity Sustainable Restaurant Association What’s Purpose 3 Understanding the energy market 4 inside Tariffs 4 Other terms 5 Process 7 this Price 10 People 11 Five actions you can take 12 guide References 13 Carbon Emissions = Climate Change 2 Your Guide to Going Green Linking energy more closely to the food, service and Electricity and gas: all foodservice businesses use one, if not both, to store and cook food, ventilate and light their space. Energy use accounts for 4-6% of daily operating costs for the average food service business, space while constituting a significant environmental impact too. A 20% reduction in energy use can represent the same benefit as a 5% increase in sales. This toolkit aims to help you build an energy policy that drives down the carbon footprint of your business and give you the lowdown on green energy to support you in making the switch. Energy is everywhere in your business, On an annual basis the from the embedded energy required to produce food to the running of fridges, British hospitality in- stoves and gas rings, lighting, ventilation, dustry produces more and even the fuel from the truck that carbon emissions than comes to empty the bins. This energy the entire country of leaves a carbon footprint, contributing to Costa Rica. global emissions, bit by bit. On an annual basis, the British hospitality industry produces more carbon emissions than Costa Rica. Burning fossil fuels such as coal and natural gas has provided much of humanity’s energy needs since the Industrial Revolution, but that’s changing in a big way.
    [Show full text]
  • Wave Hub Appendix N to the Environmental Statement
    South West of England Regional Development Agency Wave Hub Appendix N to the Environmental Statement June 2006 Report No: 2006R001 South West Wave Hub Hayle, Cornwall Archaeological assessment Historic Environment Service (Projects) Cornwall County Council A Report for Halcrow South West Wave Hub, Hayle, Cornwall Archaeological assessment Kevin Camidge Dip Arch, MIFA Charles Johns BA, MIFA Philip Rees, FGS, C.Geol Bryn Perry Tapper, BA April 2006 Report No: 2006R001 Historic Environment Service, Environment and Heritage, Cornwall County Council Kennall Building, Old County Hall, Station Road, Truro, Cornwall, TR1 3AY tel (01872) 323603 fax (01872) 323811 E-mail [email protected] www.cornwall.gov.uk 3 Acknowledgements This study was commissioned by Halcrow and carried out by the projects team of the Historic Environment Service (formerly Cornwall Archaeological Unit), Environment and Heritage, Cornwall County Council in partnership with marine consultants Kevin Camidge and Phillip Rees. Help with the historical research was provided by the Cornish Studies Library, Redruth, Jonathan Holmes and Jeremy Rice of Penlee House Museum, Penzance; Angela Broome of the Royal Institution of Cornwall, Truro and Guy Hannaford of the United Kingdom Hydrographic Office, Taunton. The drawing of the medieval carved slate from Crane Godrevy (Fig 43) is reproduced courtesy of Charles Thomas. Within the Historic Environment Service, the Project Manager was Charles Johns, who also undertook the terrestrial assessment and walkover survey. Bryn Perry Tapper undertook the GIS mapping, computer generated models and illustrations. Marine consultants for the project were Kevin Camidge, who interpreted and reported on the marine geophysical survey results and Phillip Rees who provided valuable advice.
    [Show full text]