IMPLEMENTING AGREEMENT on OCEAN ENERGY SYSTEMS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WES Development Guidance – Lessons Learnt from Real Sea Deployments
WES Development Guidance – Lessons Learnt from Real Sea Deployments Approach and Supply Chain WES_KH03_ER_01 Revision Date Purpose of issue 1.0 22/03/2017 WES External Issue Copyright © Wave Energy Scotland Limited 2017 All rights reserved. No part of this work may be modified, reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, graphic, electronic or mechanical, including photocopying and recording, or used for any purpose other than its designated purpose without the prior written permission of Wave Energy Scotland Limited, the copyright owner. If any unauthorised acts are carried out in relation to this copyright work, a civil claim for damages may be made and/or a criminal prosecution may result. Disclaimer This report (including any enclosures and attachments) has been commissioned by Wave Energy Scotland Limited (“WES”) and prepared for the exclusive use and benefit of WES and solely for the purpose for which it was provided. No representation, warranty or undertaking (express or implied) is made, and no responsibility is accepted as to the adequacy, accuracy or completeness of this report or any of its contents. WES does not assume any liability with respect to use of or damages resulting from the use of any information disclosed in this document. The statements and opinions contained in this report are those of the author and do not necessarily reflect those of WES. v2 WES_KH03_ER_01 - Approach and Supply Chain.docx i Contents 1 Introduction 1 2 Knowledge Capture Approach 3 3 Guidance Documents 6 3.1 Compliance 6 3.2 Handling 6 3.3 Installation 7 3.4 Operations and Maintenance (O&M) 7 4 Company Profiles 8 List of Figures Figure 1. -
Innovation Outlook: Ocean Energy Technologies, International Renewable Energy Agency, Abu Dhabi
INNOVATION OUTLOOK OCEAN ENERGY TECHNOLOGIES A contribution to the Small Island Developing States Lighthouses Initiative 2.0 Copyright © IRENA 2020 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. ISBN 978-92-9260-287-1 For further information or to provide feedback, please contact IRENA at: [email protected] This report is available for download from: www.irena.org/Publications Citation: IRENA (2020), Innovation outlook: Ocean energy technologies, International Renewable Energy Agency, Abu Dhabi. About IRENA The International Renewable Energy Agency (IRENA) serves as the principal platform for international co-operation, a centre of excellence, a repository of policy, technology, resource and financial knowledge, and a driver of action on the ground to advance the transformation of the global energy system. An intergovernmental organisation established in 2011, IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. Acknowledgements IRENA appreciates the technical review provided by: Jan Steinkohl (EC), Davide Magagna (EU JRC), Jonathan Colby (IECRE), David Hanlon, Antoinette Price (International Electrotechnical Commission), Peter Scheijgrond (MET- support BV), Rémi Gruet, Donagh Cagney, Rémi Collombet (Ocean Energy Europe), Marlène Moutel (Sabella) and Paul Komor. -
The RSPB's 2050 Energy Vision
Section heading The RSPB’s 2050 energy vision Meeting the UK’s climate targets in harmony with nature Technical report The RSPB’s vision for the UK’s energy future 3 Contents Executive Summary ................................................................................................................................. 3 Authors .................................................................................................................................................. 11 Acknowledgements ............................................................................................................................... 11 List of abbreviations .............................................................................................................................. 12 List of figures and tables ....................................................................................................................... 15 1. Introduction ...................................................................................................................................... 17 1.1 Background ....................................................................................................................................... 17 1.2 Aims and scope ................................................................................................................................. 18 1.3 Limitations to the analysis ................................................................................................................ 19 1.4 Structure of the -
EERR M 03 Energías De Las Olas, Mareas
Energías Renovables Marinas Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar información (libros, …) y elaborar sus propios apuntes Departamento: Ingeniería Eléctrica y Energética Area: Máquinas y Motores Térmicos CARLOS J RENEDO [email protected] Despachos: ETSN 236 / ETSIIT S-3 28 http://personales.unican.es/renedoc/index.htm Tlfn: ETSN 942 20 13 44 / ETSIIT 942 20 13 82 1 Energías Renovables Marinas • Introducción • Panorama Energético Nacional • Algunas “Curiosidades” Parte 1ª • Las EERR en la Unión Europea • Visión de las Energías Renovables • Búsqueda de Información Científica Parte 2ª Virtual • Energías de las Olas y Mareas Parte 3ª • Tecnologías de Aprovechamiento Parte 4ª Virtual • Energía Térmica Marina Parte 5ª • Turbinas Hidráulicas Parte 6ª • Algas Marinas Parte 7ª 2 Energías Renovables Marinas Centrales en Europa: 3 Energías Renovables Marinas Centrales en Europa: Objetivo en 2020 paso de 3.6 a 2.2 GW 4 Energías Renovables Marinas Energía de las Mareas (Tidal Energy) http://en.wikipedia.org/wiki/Main_Page Centrales en Operación (2010) CENTRAL MW PAIS AÑO Sihwa Lake Tidal Power Station 254 South Korea 2011 Rance Tidal Power Station 240 France 1966 Annapolis Royal Generating Station 20 Canada 1984 Jiangxia Tidal Power Station 3.2 China 1980 Kislaya Guba Tidal Power Station 1.7 Russia 1968 Uldolmok Tidal Power Station 1.5 South Korea 2009 Strangford Lough SeaGen 1.2 United Kingdom 2008 Centrales en Construcción -
Members' Directory 2019-2020
Directory Sponsor MEMBERS’ DIRECTORY RenewableUK 2019-2020 Members’ Directory 2019-2020 Members’ Directory Micro Grid Renewables Generation Solar Electricity Trading Transmission Distribution Demand-Side Centralised Power Response Generation Smart Storage Cities Wind Smart Homes User Demand EVs 25 EUR million Sales in more than Established 6 manufacturing State of the art average annual investments facilities (last 3 years) 50 countries 1950 plants in 3 countries Who we are Tracing its industrial roots back to 1950, Cablel® Hellenic Cables has evolved into a leading European provider of reliable and competitive cable solutions. With 6 manufacturing plants across 3 countries, Cablel® Hellenic Cables covers a wide range of cable products and solutions, from Land and Submarine Power cables to Fiber Optics, Telecommunication cables and Magnet Wires. Cablel® Hellenic Cables offers a wide range of integrated solutions, including design, manufacturing, planning, project management and installation. In-house R&D and testing facilities guarantee continuous product development and innovation. As the world’s need for sustainable and reliable flow of energy and information continues to increase, we remain focused on our mission to provide top-quality products and services meeting the highest technical and sustainability standards set by our customers. HEAD OFFICE: 33, Amaroussiou - Halandriou Str., 151 25 Maroussi, Athens, GREECE Tel.: +30 210 6787 416, +30 210 6787 900, Fax: +30 210 6787 406 [email protected] www.cablel.com 09-13-2019_KX_CABLEL_168x240mm_FINAL.indd -
2017 the Wave and Tidal Resource of Scotland
The wave and tidal resource of Scotland ANGOR UNIVERSITY Neill, Simon; Vogler, Arne; Goward-Brown, Alice J.; Baston, Susan; Lewis, Matthew; Gillibrand, Philip A.; Waldman, Simon ; Woolf, David K. Renewable Energy DOI: 10.1016/j.renene.2017.03.027 PRIFYSGOL BANGOR / B Published: 01/12/2017 Version created as part of publication process; publisher's layout; not normally made publicly available Cyswllt i'r cyhoeddiad / Link to publication Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Neill, S., Vogler, A., Goward-Brown, A. J., Baston, S., Lewis, M., Gillibrand, P. A., Waldman, S., & Woolf, D. K. (2017). The wave and tidal resource of Scotland. Renewable Energy, 114(Part A), 3-17. https://doi.org/10.1016/j.renene.2017.03.027 Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 10. Oct. 2021 Renewable Energy xxx (2017) 1e15 Contents lists available at ScienceDirect Renewable Energy journal homepage: www.elsevier.com/locate/renene The wave and tidal resource of Scotland * Simon P. -
Adaptation of Wave Power Plants to Regions with High Tides
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1795 Adaptation of wave power plants to regions with high tides MOHD NASIR AYOB ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0627-8 UPPSALA urn:nbn:se:uu:diva-381169 2019 Dissertation presented at Uppsala University to be publicly examined in Room 2001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Wednesday, 22 May 2019 at 09:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Ian Masters (Swansea University). Abstract Ayob, M. N. 2019. Adaptation of wave power plants to regions with high tides. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1795. 53 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0627-8. The wave energy converter (WEC) developed at Uppsala University is based on the concept of a heaving point absorber with a linear generator placed on the seafloor. The translator inside the generator oscillates in a linear fashion and is connected via a steel wire to a point absorbing buoy. The power production from this device is optimal when the translator’s oscillations are centered with respect to the stator. However, due to the tides, the mean translator position may shift towards the upper or lower limits of the generator’s stroke length, thereby affecting the power production. This effect will be severe if the WEC operates in an area characterized by a high tidal range. The translator may be stuck at the top or rest at the bottom of the generator for a considerable amount of time daily. -
Electrical Networks of Corpower Wave Farms Economic Assessment and Grid Integration Analysis of Voltage
DEGREE PROJECT IN ELECTRICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 Electrical Networks of CorPower Wave Farms Economic Assessment and Grid Integration Analysis of Voltage NIERAJ RAJ KUMAR BHARATHI KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING Electrical Networks of CorPower Wave Farms Economic Assessment and Grid Integration Analysis of Voltage NIERAJ RAJ KUMAR BHARATHI Supervisors Ryan O’Donnell and Jéromine Maillet CorPower Ocean Mohammad Nazari Royal Institute of Technology, Stockholm Examiner Lennart Söder Royal Institute of Technology, Stockholm Master of Science Degree Project in Electric Power Systems at the School of Electrical Engineering Royal Institute of Technology Stockholm, Sweden, November 2017. Abstract On the path towards the commercialisation of wave energy, there are still certain developmental challenges to be tackled by industry and academia. One of these challenges is the grid integration of wave farms along with the development of the offshore electrical networks for the farms. These networks are distinct from those of offshore wind farms on certain features – connection layouts, electrical interface equipment (subsea connectors), power ratings and cable lengths amongst many others. These differences apart from some challenges unique to wave farms make the corresponding research attractive. CorPower Ocean AB has been developing a 250 푘푊 point-absorber type Wave Energy Converter (WEC) and the thesis investigates the afore-mentioned challenges with a stage- wise analysis of wave farms comprising the CorPower WECs. Prior research on electrical networks for CorPower WECs is limited and in this regard the objective is to gain a preliminary insight into the electrical architecture of a pre-commercial wave farm. -
(2018) Renewable Energy in Scotland: Extending the Transition-Periphery Dynamics Approach
Munro, Fiona Robertson (2018) Renewable energy in Scotland: Extending the transition-periphery dynamics approach. PhD thesis. https://theses.gla.ac.uk/8714/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] Renewable energy in Scotland: Extending the transition- periphery dynamics approach by Fiona Robertson Munro Masters in Resource and Environmental Management (Planning), Simon Fraser University, 2013 Bachelor of Arts (Honours) Medial in Environmental Studies and Geography, Queen’s University, 2011 Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Interdisciplinary Studies College of Social Science University of Glasgow August 2017 Abstract Scotland is being transformed as renewable energy resources are being exploited through new developments and infrastructure as part of an energy transition. Scotland has a significant amount of potential onshore and offshore renewable energy available for capture largely located in rural and isolated regions. Some of this potential renewable energy has been developed and contributes to the increasing amount of energy from low carbon sources in the UK, aiding in the UK reaching its greenhouse gas (GHG) emission targets. -
Catalogue of Wave Energy Test Centres
Deliverable D.2.1 Catalogue of Wave Energy Test Centres March 20111 1Update September 2012 Grant Agreement IEE/09/809/SI2.558291 (1/10/2010 -30/09/2013), 4/11/2010 SOWFIA Streamlining of Ocean Wave Farms Impact Assessment SOWFIA project synopsis The Streamlining of Ocean Wave Farms Impact Assessment (SOWFIA) Project (IEE/09/809/ SI2.558291) is an EU Intelligent Energy Europe (IEE) funded project that draws together ten partners, across eight European countries, who are actively involved with planned wave farm test centres. The SOWFIA project aims to achieve the sharing and consolidation of pan- European experience of consenting processes and environmental and socio-economic impact assessment (IA) best practices for offshore wave energy conversion developments. Studies of wave farm demonstration projects in each of the collaborating EU nations are contributing to the findings. The study sites comprise a wide range of device technologies, environmental settings and stakeholder interests. Through project workshops, meetings, ongoing communication and networking amongst project partners, ideas and experiences relating to IA and policy are being shared, and co-ordinated studies addressing key questions for wave energy development are being carried out. The overall goal of the SOWFIA project is to provide recommendations for approval process streamlining and European-wide streamlining of IA processes, thereby helping to remove legal, environmental and socio-economic barriers to the development of offshore power generation from waves. By utilising the findings from technology-specific monitoring at multiple sites, SOWFIA will accelerate knowledge transfer and promote European-wide expertise on environmental and socio-economic impact assessments of wave energy projects. -
The Role of Renewables
Future prospects and challenges for the Wave and Tidal Stream Energy Sectors Presentation to Coastal Futures 2015 Wednesday 21 January 2015 Dr Stephanie Merry Marine Sector Advisor Renewable Energy Association OCEAN ENERGY GROUP Today’s presentation • Current state of the UK industry • Challenges to progress: – Technological – Regulatory and lack of infrastructure – Lack of long term policy and support • Potential government enabling actions OCEAN ENERGY GROUP UK: acknowledged global leader in marine renewable energy • Plentiful marine energy resource • Unrivalled test facilities – EMEC, Wavehub, FaBTest, NaREC • Historically supportive government policies • Skills base: Creative engineers plus transfer from offshore O&G sector • Pentland leasing rounds OCEAN ENERGY GROUP 2014: Body-blow announcements for the wave and tidal energy sector • Pelamis Wave Power in administration • Siemens suspends MCT projects; offers the technology for sale • 30 redundancies at Aquamarine Power • Voith and RES exit marine renewables OCEAN ENERGY GROUP Seagen: a UK world first! • 1.2 MW demonstrator in Strangford Lough, Northern Ireland • Generated more than 9 GWh to the national grid • Accredited as a UK generating station by Ofgem and is eligible for ROCs OCEAN ENERGY GROUP Tidal energy devices, clockwise from top left: Atlantis, TGL, Hammerfest, Open Hydro OCEAN ENERGY GROUP Smaller scale tidal turbines UK designed and developed • Scotrenewables: – Floating cylindrical tube with 2 horizontal axis rotors – 250 kW • DeltaStream – 400kW full-scale demonstrator -
Wave Energy from the North Sea: Experiences from the Lysekil Research Site
Surv Geophys (2008) 29:221–240 DOI 10.1007/s10712-008-9047-x ORIGINAL PAPER Wave Energy from the North Sea: Experiences from the Lysekil Research Site Mats Leijon Æ Cecilia Bostro¨m Æ Oskar Danielsson Æ Stefan Gustafsson Æ Kalle Haikonen Æ Olivia Langhamer Æ Erland Stro¨mstedt Æ Magnus Sta˚lberg Æ Jan Sundberg Æ Olle Svensson Æ Simon Tyrberg Æ Rafael Waters Received: 9 April 2008 / Accepted: 23 September 2008 / Published online: 10 October 2008 Ó The Author(s) 2008. This article is published with open access at Springerlink.com Abstract This paper provides a status update on the development of the Swedish wave energy research area located close to Lysekil on the Swedish West coast. The Lysekil project is run by the Centre for Renewable Electric Energy Conversion at Uppsala Uni- versity. The project was started in 2004 and currently has permission to run until the end of 2013. During this time period 10 grid-connected wave energy converters, 30 buoys for studies on environmental impact, and a surveillance tower for monitoring the interaction between waves and converters will be installed and studied. To date the research area holds one complete wave energy converter connected to a measuring station on shore via a sea cable, a Wave RiderTM buoy for wave measurements, 25 buoys for studies on environ- mental impact, and a surveillance tower. The wave energy converter is based on a linear synchronous generator which is placed on the sea bed and driven by a heaving point absorber at the ocean surface. The converter is directly driven, i.e.