Stratigraphy Notes: Terms, Laws, and Practice

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphy Notes: Terms, Laws, and Practice Name: ___________________________________KEY – Return to Ms. Renée Date: ___________ Hour: ________ Stratigraphy Notes: Terms, Laws, and Practice Good video links: https://www.youtube.com/watch?v=M2Ex5DIjtfU (4.10 minutes) https://www.youtube.com/watch?v=CiL8WCbhqmg (4.39 minutes) https://www.youtube.com/watch?v=RZcGtrP29pA (11.14 minutes) https://www.youtube.com/watch?v=fYSeM63Fv0s (26.27 minutes – after notes) Stratigraphy is a branch of geology which studies rock layering in an effort to understand Earth’s history. Graphs or maps are made and analyzed to determine the relative age of rock layers and geological events, like faults. Relative Age: How old one thing is compared to another thing. Absolute Age: Using a number to describe how old something is. Practice relative vs. absolute age Use the pictures below to describe the people’s relative and absolute age. To determine their ages, assume the year is 2000 – makes the math easier! PETER ALAN ROY (born in 1975) (born in 1999) (born in 1920) Relative age: _______________Roy is the oldest and _______________Alan is the youngest. Peter is older than _______________Alan but younger than _______________.Roy Absolute age: Peter is _______25 years old, Alan is _______1 year old, and Roy is _______80 1 2 rock salt years old. 3 shale or siltstone 4 limestone Stratigraphy uses relative age, so we will be determining which rock layers are older than other rock layers and whether features like faults and intrusions are older or younger than the rock layers in the picture. Symbols are often used to identify types of rocks and physical features. You will need to use your Stratigraphy Symbols sheet while working through this unit. The pictures or graphs used in Stratigraphy are often cross sections or outcrops. A cross section shows what is inside the Earth – it is like slicing an orange in half and looking inside. An outcrop shows exposed layers of the Earth that are visible at the surface. These layers have been exposed through uplift and/or weathering. There are several Laws and terms involved in Stratigraphy that will help you correctly analyze these maps/graphs. We will look at their definitions and analyze examples. 1. Law of Horizontality: All sedimentary layers were originally deposited in horizontal layers. If the layers do not appear horizontal, they were later deforms by uplift, tilting, folding, or other geological processes. Figure 1: Original layers – deposited Figure 2: Layers after uplift and tilting – horizontally the original horizontal layers were tilted 2. Law of Superposition: In any horizontal, undisturbed layers of sedimentary rock, the oldest layer is at the bottom and the youngest layer is at the top. Figure 3: Law of Superposition Example: Figure 3 Fill in the blanks to correctly analyze the picture in Figure 3. Always start with the oldest layer and work your way up to the youngest. Use the YOUNGEST symbols and the Law of Superposition to help you. Youngest: # ______1 made of ___________________gray shale # ______2 made of ___________________rock salt # ______3 made of ___________________shale or siltstone OLDEST Oldest: # ______4 made of ___________________limestone 3. Extrusion: When molten rock reaches the surface of the Earth it is called lava. An extrusion shows where lava has cooled and solidified on the surface. (igneous rock) Figure 4: Extrusion – a layer of Figure 5: Extrusions can get lava on the surface of the Earth covered by additional layers and no longer be at the surface. Extrusion – layer of lava What type of rock is the extrusion? _____________basalt 4. Intrusion: When magma cools and solidifies Figure 6: Intrusion – magma that before it reaches the surface. (igneous rock) never makes it to the surface Intrusions will cut through other layers of rock. The intrusion will be younger than the rocks it cuts through, because the original rock layers had to be there first for the intrusion to cut through them. What type of rock is the Intrusion – cuts intrusion? through layers of other rock _____________basalt There are three major types of intrusions: Figure 7: Label the three types of intrusions 1) Sill: A sill forms when magma injects itself between the rock layers, sill forming a horizontal ________: horizontal sheet of igneous rock. sheet of igneous 2) Dyke: A dyke forms when rock magma pushes up towards the surface through cracks in the rock, forming a vertical sheet of igneous rock. 3) Batholith: A batholith is a magma chamber or large pool ________:dyke ______________:batholith of magma that cools vertical sheet chamber of below the surface. of igneous rock igneous rock Look at Figure 5 on the previous page. It could be really hard to tell whether the igneous rock is an intrusion or extrusion if we were not told what it was. But, when symbols for contact metamorphism are added, it makes it much easier. Contact metamorphism provides evidence of whether a feature is an intrusion or extrusion. 5. Contact Metamorphism: When rock is changed by coming in contact with magma. The hot magma will burn the original rock, changing its texture and minerals, creating a new, different type of rock. The symbol for contact metamorphism looks like this: Contrast Figure 8 and 9 below. Describe how they are different: ________________ ______________________________________________________________________Figure 9 shows contact metamorphisis above the basalt, Figure 8 does not. ______________________________________________________________________ Figure 8: Extrusion Figure 9: Intrusion We know because the top We know because the top layer has not been burned – it layer has been burned – it was wasn’t there to be burned there to be burned Look at figure 8. Note there was no contact metamorphism above the basalt (igneous rock) – only below it; the top layer of sandstone was NOT burned. This tells us the top layer was NOT there when the molten rock came in; therefore it was lava – an extrusion. Look at figure 9. Note there WAS contact metamorphism above the basalt (igneous rock) as well as below it; the top layer of sandstone WAS burned. This tells us the top layer WAS there when the molten rock came in; therefore it was magma – an intrusion. 6. Cross Cutting Law: Any feature like an intrusion or fault that cuts across one or more rock layers is younger than the layers it cuts across. This is logical - the rock layers must have already been there for the igneous intrusion or fault to cut across them. Youngest: ________I Figure 8: ________G I ________H H G ________F F ________E E D ________D C ________C B ________B A Oldest: ________A Youngest: ________G Figure 9: ________H I ________I H ________F G F ________E E ________D D ________C C B ________B A Oldest: ________A 7. Fault Line: A fault is a fracture, or crack, in the rock along which movement happens. Rock can only move along a fault if the rock was there when the fault happened, therefore a fault line will be younger than the rock layers it affected. Youngest: ________G Figure 10: Fault Line ________F ________E ________D ________C G ________B Oldest: ________A Figure 11: Fault Line Plus…. G Youngest: ________H which is an ________________intrusion made of _______________granite ________R which is made of __________________________shale ________M which is made of __________________________sandstone ________G which is a ________________________________Fault line ________F which is made of ___________________________limestone ________B which is made of _________________shale __________ Oldest: ________I which is made of siltstone 8. Unconformity: Where rock was uplifted, parts were weathered and eroded away then the rock probably sunk back down into water and was covered by more layers of sediments. This causes missing information in the rock record. This is symbolized by an uneven line BELOW the surface. *** Note this is different than uneven line at the surface. This type of line at the surface just shows weathering and erosion. Figure 12: Unconformity F G In Figure 12 above, letter F shows an unconformity. We cannot see the top of layer B – it was weathered away, so we cannot tell if it was an extrusion or an intrusion. We do not know what happened to the top of layers E and B before layer C formed on top of them. Letter G’s symbol is a little different than the symbol I gave you, but you can easily infer that it shows _______________________contact _________________________________.metamorphism Therefore we know letter B was either an __________________________extrusion or an __________intrusion______________, and is therefore younger than layer ___________E which it cut through. Youngest: ________A which is ___________shale , a type of _______sedimentary_______________ rock. ________D which is ___________,sandstone a type of ______________________sedimentary rock. ________C which is ___________,limestone a type of ______________________sedimentary rock. ________F which is a(n) ______________________unconformity_____ ___________ line. ________G which is a(n) ___________________________contact metamorphism_____ ______ line. ________B which is ___________,granite a type of ______________________igneous rock. Oldest: ________E which is ___________,schist a type of ______________________metamorphic rock. Figure 13: Unconformity, Fault Line, In/Extrusion Youngest: ________S S ________R R ________O Q ________N ________Q P ________P M Oldest: ________M M N O ********** ON YOUR OWN ********** ON YOUR OWN ********** ON YOUR OWN ********** Look at Figure 14 below to answer these questions: 1. Letter B is made
Recommended publications
  • Editorial for Special Issue “Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes”
    minerals Editorial Editorial for Special Issue “Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes” Pavel A. Serov Geological Institute of the Kola Science Centre, Russian Academy of Sciences, 184209 Apatity, Russia; [email protected] Magmatism, ore genesis and metamorphism are commonly associated processes that define fundamental features of the Earth’s crustal evolution from the earliest Precambrian to Phanerozoic. Basically, the need and importance of studying the role of metamorphic processes in formation and transformation of deposits is of great value when discussing the origin of deposits confined to varied geological settings. In synthesis, the signatures imprinted by metamorphic episodes during the evolution largely indicate complicated and multistage patterns of ore-forming processes, as well as the polygenic nature of the mineralization generated by magmatic, postmagmatic, and metamorphic processes. Rapid industrialization and expanding demand for various types of mineral raw ma- terials require increasing rates of mining operations. The current Special Issue is dedicated to the latest achievements in geochemistry, mineralogy, and geochronology of ore and metamorphic complexes, their interrelation, and the potential for further prospecting. The issue contains six practical and theoretical studies that provide for a better understanding of the age and nature of metamorphic and metasomatic transformations, as well as their contribution to mineralization in various geological complexes. The first article, by Jiang et al. [1], reports results of the first mineralogical–geochemical Citation: Serov, P.A. Editorial for studies of gem-quality nephrite from the major Yinggelike deposit (Xinjiang, NW China). Special Issue “Ore Genesis and The authors used a set of advanced analytical techniques, that is, electron probe microanaly- Metamorphism: Geochemistry, sis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry Mineralogy, and Isotopes”.
    [Show full text]
  • Metamorphic Rocks (Lab )
    Figure 3.12 Igneous Rocks (Lab ) The RockSedimentary Cycle Rocks (Lab ) Metamorphic Rocks (Lab ) Areas of regional metamorphism Compressive Compressive Stress Stress Products of Regional Metamorphism Products of Contact Metamorphism Foliated texture forms Non-foliated texture forms during compression during static pressure Texture Minerals Other Diagnostic Metamorphic Protolith Features Rock Name Non-foliated calcite, dolomite cleavage faces of Marble Limestone calcite usually visible quartz quartz grains are Quartzite Quartz Sandstone intergrown Foliated clay looks like shale but Slate Shale breaks into layers muscovite, biotite very fine-grained, but Phyllite Shale has a sheen like satin muscovite, biotite, minerals are large Schist Shale may have garnet enough to see easily, muscovite and biotite grains are parallel to each other feldspar, biotite, has layers of different Gneiss Any protolith muscovite, quartz, minerals garnet amphibole layered black Amphibolite Basalt or Andesite amphibole grains Texture Minerals Other Diagnostic Metamorphic Protolith Features Rock Name Non-foliated calcite, dolomite cleavage faces of Marble Limestone calcite usually visible quartz quartz grains are Quartzite Quartz Sandstone intergrown Foliated clay looks like shale but Slate Shale breaks into layers muscovite, biotite very fine-grained, but Phyllite Shale has a sheen like satin muscovite, biotite, minerals are large Schist Shale may have garnet enough to see easily, muscovite and biotite grains are parallel to each other feldspar, biotite, has layers of different Gneiss Any protolith muscovite, quartz, minerals garnet amphibole layered black Amphibolite Basalt or Andesite amphibole grains Identification of Metamorphic Rocks 12 samples 7 are metamorphic 5 are igneous or sedimentary Protoliths and Geologic History For 2 of the metamorphic rocks: Match the metamorphic rock to its protolith (both from Part One) Write a short geologic history of the sample 1.
    [Show full text]
  • MSA PRESIDENTIAL ADDRESS Metamorphism and the Evolution of Subduction on Earth
    American Mineralogist, Volume 104, pages 1065–1082, 2019 MSA PRESIDENTIAL ADDRESS Metamorphism and the evolution of subduction on Earth MICHAEL BROWN1,* AND TIM JOHNSON2,3 1Laboratory for Crustal Petrology, Department of Geology, University of Maryland, College Park, Maryland 20742, U.S.A. Orcid 0000-0003-2187-616X 2School of Earth and Planetary Sciences, The Institute for Geoscience Research (TIGeR), Curtin University, GPO Box U1987, Perth, West Australia 6845, Australia. Orcid 0000-0001-8704-4396 3Center for Global Tectonics, State Key Laboratory for Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei Province, 430074, China ABSTRACT Subduction is a component of plate tectonics, which is widely accepted as having operated in a manner similar to the present-day back through the Phanerozoic Eon. However, whether Earth always had plate tectonics or, if not, when and how a globally linked network of narrow plate boundaries emerged are mat- ters of ongoing debate. Earth’s mantle may have been as much as 200–300 °C warmer in the Mesoarchean compared to the present day, which potentially required an alternative tectonic regime during part or all of the Archean Eon. Here we use a data set of the pressure (P), temperature (T), and age of metamorphic rocks from 564 localities that vary in age from the Paleoarchean to the Cenozoic to evaluate the petrogenesis and secular change of metamorphic rocks associated with subduction and collisional orogenesis at convergent plate boundaries. Based on the thermobaric ratio (T/P), metamorphic rocks are classified into three natural groups: high T/P type (T/P > 775 °C/GPa, mean T/P ~1105 °C/GPa), intermediate T/P type (T/P between 775 and 375 °C/GPa, mean T/P ~575 °C/GPa), and low T/P type (T/P < 375 °C/GPa, mean T/P ~255 °C/GPa).
    [Show full text]
  • The Metamorphosis of Metamorphic Petrology
    Downloaded from specialpapers.gsapubs.org on May 16, 2016 The Geological Society of America Special Paper 523 The metamorphosis of metamorphic petrology Frank S. Spear Department of Earth and Environmental Sciences, JRSC 1W19, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590, USA David R.M. Pattison Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada John T. Cheney Department of Geology, Amherst College, Amherst, Massachusetts 01002, USA ABSTRACT The past half-century has seen an explosion in the breadth and depth of studies of metamorphic terranes and of the processes that shaped them. These developments have come from a number of different disciplines and have culminated in an unprece- dented understanding of the phase equilibria of natural systems, the mechanisms and rates of metamorphic processes, the relationship between lithospheric tecton- ics and metamorphism, and the evolution of Earth’s crust and lithospheric mantle. Experimental petrologists have experienced a golden age of systematic investigations of metamorphic mineral stabilities and reactions. This work has provided the basis for the quantifi cation of the pressure-temperature (P-T) conditions associated with various metamorphic facies and eventually led to the development of internally con- sistent databases of thermodynamic data on nearly all important crustal minerals. In parallel, the development of the thermodynamic theory of multicomponent, multi- phase complex systems underpinned development of the major methods of quantita- tive phase equilibrium analysis and P-T estimation used today: geothermobarometry, petrogenetic grids, and, most recently, isochemical phase diagrams. New analytical capabilities, in particular, the development of the electron micro- probe, played an enabling role by providing the means of analyzing small volumes of materials in different textural settings in intact rock samples.
    [Show full text]
  • Petrology of the Metamorphic Rocks
    Petrology of the metamorphic rocks Second Edition Roger Mason London UNWIN HYMAN Boston Sydney Wellington © R. Mason, 1990 This book is copyright under the Berne Convention. No reproduction without permission. All rights reserved. Published by the Academic Division of Unwin Hyman Ltd 15/17 Broadwick Street, London WIV IFP, UK Unwin Hyman Inc. 955 Massachusetts Avenue, Cambridge, MA 02139, USA Allen & Unwin (Australia) Ltd 8 Napier Street, North Sydney, NSW 2060, Australia Allen & Unwin (New Zealand) Ltd in association with the Port Nicholson Press Ltd Compusales Building, 75 Ghuznee Street, Wellington I, New Zealand First published in 1990 British Library Cataioguing in Publication Data Mason, Roger 1941- Petrology of the metamorphic rocks. - 2nd ed. I. Metamorphic rocks. Petrology I. Title 552.4 ISBN 978-0-04-552028-2 ISBN 978-94-010-9603-4 (eBook) DOI 10.1007/978-94-010-9603-4 Library of Congress Cataioging-in-Publication Data Mason, Roger, 1941- Petrology of the metamorphic rocks/Roger Mason. - 2nd ed. p. cm. Includes bibliographical references. 1. Rocks, Metamorphic. I. Title. QE475.A2M394 1990 552·.~c20 90-35106 CIP Typeset in 10 on 12 point Times by Computape (Pickering) Ltd, North Yorkshire Preface There has been a great advance in the understanding of processes of meta­ morphism and of metamorphic rocks since the last edition of this book appeared. Methods for determining temperatures and pressures have become almost routine, and there is a wide appreciation that there is not a single temperature and pressure of metamorphism, but that rocks may preserve, in their minerals, chemistry and textures, traces of their history of burial, heating, deformation and permeation by fluids.
    [Show full text]
  • Metamorphic Rocks
    Metamorphism and metamorphic rocks GEOL115 Alexander Lusk Outline: • Metamorphic rocks – Defini>on and major types of metamorphism – Rock cycle • Metamorphic processes • Deformaon and development of a foliaon/ schistosity/cleavage • Progressive (prograde) metamorphic series • Environments of metamorphism • Metamorphic facies Metamorphic rocks If pre-exis>ng rocks (e.g. igneous, sedimentary, metamorphic) are buried within in the Earth, new minerals can grow in the solid rock through recrystallizaon and the rock can deform in response to tectonic forces. This rock may have started off as a sediment of mud or clay, which later become a sedimentary rock such as mudstone or shale … What minerals are present? Recall the rock cycle: Recall where different rock types form: Types of metamorphism Regional metamorphism: as rocks are buried deeper and deeper within the earth they are subject to increasingly higher pressures and temperatures, which result in recrystallization. The directed pressures (stresses) produce planar structures called foliation. Contact metamorphism: rocks within the crust that are intruded by magma are recrystallized by the magma’s high temperatures. These rocks are commonly not deformed (foliated). Processes involved: 1. Neomineralizaon – growth of new minerals replacing minerals that become unstable. 2. Grain growth – growth of new or exis>ng mineral grains. 3. Deformaon – creates a schistosity or foliaon defined by the orientaon of platy or elongate mineral grains. Neomineralizaon Porphyroblasts: Porphyroclasts: Grain growth:
    [Show full text]
  • Relative Dating of Rock Sequences Rocks Tell Their Stories All That Remains Is for Us to Observe and Infer Their History. 1
    Relative Dating of Rock Sequences Rocks Tell Their Stories All that remains is for us to observe and infer their history. Look at the 2 illustrations in this lesson which show several horizontally layered sedimentary rock layers, igneous intrusions and faults. They have been numbered and lettered for ease of reference. In this lesson we will tell the "story" of the rock sequences by observing certain characteristics: 1- The order in which the rock layers appear. 2- Erosional Surfaces 3- Unconformities If you need help with the submergence , emergence and unconformity issues, go to Submergence and Emergence of Rock Layers With Respect to Sea Level, look at the illustrations and read the captions. The Key: Be sure to look at the key before observing the series of illustrations. Notice that not only do symbols exist for sandstone, shale and conglomerate, but also for the loose sediments that will eventually lithify to become these rock types. Go On To Page 2 Let the Stories Begin! L. Immoor 2006 Geoteach.com 1 This is the "story" for Rock Sequence 1: 1- Submergence followed by Deposition and the Formation of layers 1 and 2 (the sandstone and limestone). 2- Emergence and Erosion of layer 2 (limestone). 3- Submergence followed by Deposition and the Formation of layer 3, (the shale) producing an unconformity with layer 2 (limestone). The unconformity is evidenced by the wavy, eroded top surface of a rock layer. 4- Igneous Intrusion A with resulting Contact Metamorphism of layers 1, 2 and 3 (the sandstone, limestone and shale). 5- Emergence and Erosion of layer 3 (shale) and Igneous Intrusion A.
    [Show full text]
  • A Systematic Nomenclature for Metamorphic Rocks
    A systematic nomenclature for metamorphic rocks: 1. HOW TO NAME A METAMORPHIC ROCK Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 1/4/04. Rolf Schmid1, Douglas Fettes2, Ben Harte3, Eleutheria Davis4, Jacqueline Desmons5, Hans- Joachim Meyer-Marsilius† and Jaakko Siivola6 1 Institut für Mineralogie und Petrographie, ETH-Centre, CH-8092, Zürich, Switzerland, [email protected] 2 British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom, [email protected] 3 Grant Institute of Geology, Edinburgh, United Kingdom, [email protected] 4 Patission 339A, 11144 Athens, Greece 5 3, rue de Houdemont 54500, Vandoeuvre-lès-Nancy, France, [email protected] 6 Tasakalliontie 12c, 02760 Espoo, Finland ABSTRACT The usage of some common terms in metamorphic petrology has developed differently in different countries and a range of specialised rock names have been applied locally. The Subcommission on the Systematics of Metamorphic Rocks (SCMR) aims to provide systematic schemes for terminology and rock definitions that are widely acceptable and suitable for international use. This first paper explains the basic classification scheme for common metamorphic rocks proposed by the SCMR, and lays out the general principles which were used by the SCMR when defining terms for metamorphic rocks, their features, conditions of formation and processes. Subsequent papers discuss and present more detailed terminology for particular metamorphic rock groups and processes. The SCMR recognises the very wide usage of some rock names (for example, amphibolite, marble, hornfels) and the existence of many name sets related to specific types of metamorphism (for example, high P/T rocks, migmatites, impactites).
    [Show full text]
  • Interpreting Rock Layers (Modified for Adeed)
    INTERPRETING ROCK LAYERS (MODIFIED FOR ADEED) Science Concept: Sedimentary rocks can be aged using the law of superposition. Unconformities can create exceptions to this law. Objectives: The student will: • explain how rocks are dated by relative position (superposition); • describe how unconformities can affect the position of rocks and their relative age; • make inferences about the relative age of rock layers; and • explain in writing how the law of superposition and knowledge of unconformities can help age rock layers. GLEs Addressed: Science [10] SD1.1 The student demonstrates an understanding of geochemical cycles by using a model to explain the processes (i.e., formation, sedimentation, erosion, reformation) of the rock cycle. [10] SA1.1 The student demonstrates an understanding of the processes of science by asking questions, predicting, observing, describing, measuring, classifying, making generalizations, analyzing data, developing models, inferring, and communicating. Writing [10] W4.2.2 The student writes for a variety of purposes and audiences by writing in a variety of nonfiction forms (e.g., letter, report, biography, autobiography, and/or essay) to inform, describe, or persuade. Vocabulary: conformity - A bedding surface separating younger from older strata, along which there is no evidence of subaerial or submarine erosion or of nondeposition, and along which there is no evidence of a significant hiatus. Unconformities (sequence boundaries) and flooding surfaces (parasequence boundaries) pass laterally into correlative conformities, or correlative surfaces igneous rock - rocks formed are hardened and cooled magma law of superposition - sedimentary layers are deposited in a time sequence, with the oldest on the bottom and the youngest on the top metamorphic rock - rocks formed from other rocks as a result of heat and pressure nonconformity - Nonconformity exists between sedimentary rocks and metamorphic or igneous rocks when the sedimentary rock lies above and was deposited on the pre-existing and eroded metamorphic or igneous rock.
    [Show full text]
  • Mixed-Layer Illite-Smectite in Pennsylvanian-Aged Paleosols: Assessing Sources of Illitization in the Illinois Basin
    minerals Article Mixed-Layer Illite-Smectite in Pennsylvanian-Aged Paleosols: Assessing Sources of Illitization in the Illinois Basin Julia A. McIntosh 1,* , Neil J. Tabor 1 and Nicholas A. Rosenau 2 1 Roy M. Huffington Department of Earth Sciences, Southern Methodist University, P.O. Box 750395, Dallas, TX 75275, USA; [email protected] 2 Ocean and Coastal Management Branch, Office of Wetlands Oceans and Watersheds, United States Environmental Protection Agency, Washington, DC 20004, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-214-768-2750 Abstract: Mixed-layer illite-smectite (I-S) from a new set of Pennsylvanian-aged Illinois Basin under- clays, identified as paleosols, are investigated to assess the impact of (1) regional diagenesis across the basin and (2) the extent to which ancient environments promoted illitization during episodes of soil formation. Interpretations from Reichweite Ordering and D◦ 2q metrics applied to X-ray diffraction patterns suggest that most I-S in Illinois Basin paleosols are likely the product of burial diagenetic processes and not ancient soil formation processes. Acid leaching from abundant coal units and hydrothermal brines are likely diagenetic mechanisms that may have impacted I-S in Pennsylvanian paleosols. These findings also suggest that shallowly buried basins (<3 km) such as the Illinois Basin may still promote clay mineral alteration through illitization pathways if maximum burial occurred in the deep past and remained within the diagenetic window for extended periods of time. More importantly, since many pedogenic clay minerals may have been geochemically reset during illitization, sources of diagenetic alteration in the Illinois Basin should be better understood if Citation: McIntosh, J.A.; Tabor, N.J.; Pennsylvanian paleosol minerals are to be utilized for paleoclimate reconstructions.
    [Show full text]
  • Module 22A Geological Laws GEOLOGIC LAWS
    Module 22A Geological Laws GEOLOGIC LAWS Geologic Laws ❑ Superposition ❑ Original Horizontality ❑ Original Continuity ❑ Uniformitarianism ❑ Cross-cutting Relationship ❑ Inclusions ❑ Faunal Succession Missing strata ❑ Unconformity ❑ Correlation Law of Superposition ❑ In an undisturbed rock sequence, the bottom layer of rock is older than the layer above it, or ❑ The younger strata at the top in an undisturbed sequence of sedimentary rocks. Law of Superposition Undisturbed strata Law of Superposition Disturbed strata Law of original horizontality ❑ Sedimentary rocks are laid down in horizontal or nearly horizontal layers, or ❑ Sedimentary strata are laid down nearly horizontally and are essentially paralel to the surface upon which they acummulate Law of Original Continuity ❑ The original continuity of water-laid sedimentary strata is terminated only by pincing out againts the basin of deposition, at the time of their deposition Law of Original Continuity Law of Original Continuity Law of Original Continuity NOTE: This law is considerable oversimplification. The last discoveries indicate that the termination is not necessarily at a basin border. Facies changes may terminated a strata. Uniformitarianism ❑ James Hutton (1726-1797) Scottish geologist developed the laws of geology ❑ Uniformitarianism is a cornerstone of geology ❑ Considered the Father of Modern Geology Uniformitarianism ❑ Uniformitarianism is based on the premise that: ➢ the physical and chemical laws of nature have remained the same through time ➢ present-day processes have operated throughout geologic time ➢ rates and intensities of geologic processes, and their results may have changed with time ❑ To interpret geologic events from evidence preserved in rocks ➢ we must first understand present-day processes and their results Uniformitarianism is a cornerstone of geology Uniformitarianism MODIFIED STATEMENT “The present is the key to the past" • The processes (plate tectonics, mountain building, erosion) we see today are believed to have been occurring since the Earth was formed.
    [Show full text]
  • Metamorphism and the Origin of Granitic Rocks Northgate District Colorado
    Metamorphism and the Origin of Granitic Rocks Northgate District Colorado GEOLOGICAL SURVEY PROFESSIONAL PAPER 274-M Metamorphism and the Origin of Granitic Rocks Northgate District Colorado By T. A. STEVEN SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 274-M A discussion of the progressive metamorphism, granitixation, and local rheomorphism of a layered sequence of rocks, and of the later emplacement and deuteric alteration of an unrelated granitic stock UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1957 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Page Abstract_________________________________ 335 Pre-Cambrian geology—Continued Introduction-_______________________________________ 335 Dacite porphyry—____ ——— __ —— _____________ 364 Acknowledgments__ ___--_____-____-_____-______-_ 336 Intrusive quartz monzonite_-____--_-__-_--_-_-_. 365 Geologic setting._______ — _________________________ 336 Petrography ________—— —— _______________ 365 Pre-Cambrian geology—___________________________ 337 Main body of the stock____________— 366 Hornblende gneiss___-_________-_-_____-________ 338 Marginal dikes_________-____-__-__——— 366 Quartz monzonite gneiss_________________________ 342 Satellitic dikes___-___.__________ 367 Biotite-garnet gneiss___________________________ 345 Wall-rock alteration_________ _ __——_ 368 Pegmatite_________________________________
    [Show full text]