The State of Renewable Energies in Europe

Total Page:16

File Type:pdf, Size:1020Kb

The State of Renewable Energies in Europe THE STATE OF RENEWABLE ENERGIES IN EUROPE EDITION 2016 16th EurObserv’ER Report This barometer was prepared by the EurObserv’ER consortium, which groups together Observ’ER (FR), ECN (NL), RENAC (DE), Frankfurt School of Finance and Management (DE), Fraunhofer ISI (DE) and Statistics Netherlands (NL). This project is funded by the European Union under contract no ENER/C2/2016-487/SI2.742173 The information and views set out in this publication are those of the author(s) and do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this study. Neither the Commission nor any person acting on the Commission’s behalf may be held responsible for the use which may be made of the information contained therein. THE STATE OF RENEWABLE ENERGIES IN EUROPE EDITION 2016 16th EurObserv’ER Report 2 3 EDITORIAL by Vincent Jacques le Seigneur 4 Investment in Renewable Energy Technology 176 Venture capital – private equity 178 Energy indicators 7 Performance of RES technology firms and RES assets 182 Wind power 8 On the whole 188 Photovoltaic 14 Solar thermal 20 Renewable energy costs, Small hydropower 26 prices and cost competitiveness 191 Geothermal energy 30 Heat pumps 36 Biogas 42 Avoided fossil fuel Biofuels 50 use and resulting avoided costs 197 Renewable urban waste 56 Solid biomass 62 Concentrated solar power 70 Indicators on innovation Ocean energy 76 and competitiveness 205 Integration of RES in the building stock and urban infrastructure 80 Conclusion 84 Public R&D Investments 206 Wind power 208 Socio-economic indicators 95 Solar Energy 209 Hydropower 210 Geothermal energy 211 Wind power 98 Biofuels 212 Photovoltaic 102 Ocean energy 213 Solar thermal 106 All RES 214 Small hydropower 110 Geothermal energy 114 Patent Fillings 216 Heat pumps 116 Wind power 218 Biogas 120 Solar Energy 220 Biofuels 124 Hydropower 222 Renewable urban waste 128 Geothermal energy 224 Solid biomass 130 Biofuels 226 Employment and turnover for 2015 134 Ocean energy 228 Conclusions 230 Investment Indicators 141 International Trade 233 All RES 234 Investment in Renewable Wind power 236 Energy Capacity 143 Photovoltaic 238 Wind power 144 Hydropower 240 Photovoltaic 150 Conclusions 242 Biogas 154 Renewable urban waste 158 Indicators on the flexibility Solid biomass 160 of the electricity system 245 Other RES sectors 164 International comparison Results and Interpretation 247 of investment costs 168 Public finance programmes for RES investments 172 Sources 252 EUROBSERV’ER – THE STATE OF RENEWABLE ENERGIES IN EUROPE – 2016 EDITION EUROBSERV’ER – THE STATE OF RENEWABLE ENERGIES IN EUROPE – 2016 EDITION 4 5 EDITORIAL EDITORIAL SETTING THE RECORD STRAIGHT Vincent Jacques le Seigneur, President of Observ’ER Once the European renewable energy data has been – wind energy and photovoltaic – both for the British The 2016 edition of this report has additional sections digested, it is clear that a number of preconceived who have introduced ceilings to hem in PV power’s broaden understanding of how renewable energies notions are effectively riddled with holes and that the annual growth rate and for the rest of Europe because are developing in the European energy, economic data sets the record straight on wishful thinking about of industrial manufacturing overcapacity and the and environmental context. The state of renewable the economics of the various sectors. So looking at the replacement of the Feed-in Tariff system by tendering. energies report has been expanded to include the European renewable energy sales figures for 2015, Renewables are not only electric, far from it. The following new subjects in addition to the traditional which topped 150 billion euros, wind energy accounted figures for 2015 presented in this barometer report sections devoted to energy indicators, socioecono- for more than 30% of these figures compared to only a troubling situation for solar thermal that is on a mic aspects and investments made in the European 10% produced by photovoltaic. This ranking is almost relentless downward spiral abetted by the lack of Union’s renewable sectors: mirrored by the sectors’ job figures, for more than a public authority ambition and the low price of fossil • an appraisal of the penetration rates of renewable million people work in renewable energies in Europe. energies. The same applies to biogas, which remains energy equipment for heating and cooling and urban In these times of mass unemployment, that is no mean a niche market, and to deep geothermal energy that infrastructures; feat. However half of these workers live in Germany, produces heat and electricity in large installations • an overview of the main renewable sector costs and France and the United Kingdom, namely only three of but cannot compete with crude oil at such low prices. their levels of competitiveness in comparison with the twenty-eight Member States that currently form The contrast could not be more flagrant with the air the fossil fuel sectors; the European Union. source and ground source heat pump markets, which • an assessment of the impact of the development of increased by 20% for sales worth 21.4 billion euros and renewables on reducing fossil energy consumption Another home truth worth recalling even if it is not generated just as many jobs as photovoltaic. within the European Union and the expenses thereby exactly hot off the press is that the renewable energy averted; upswing is more the outcome of bold public policies Lastly we should mention biomass, whose importance • a full section on innovation and competitiveness than fickle weather. If proof of this were needed, we is too often overlooked. With sales of 36 billion euros indicators arising from R&D efforts in renewable can take a look at the UK which is hardly a sunshine in 2015, the sector employs almost as many individuals technologies. This covers public-sector R&D invest- destination. Nevertheless it consolidated its leader- as the renewable sector with the highest profile, wind ments, the result in terms of filed patents and a com- ship of the annual PV capacity installation stakes energy. Far too often it is forgotten that biomass is parison of the significance of the renewable sectors in 2015. The opposite applies to small hydropower, not only a source of heat. In 2015 biomass electricity by country for international trade; where the weather has to take the blame for its dismal output exceeded 90 TWh, meaning that it can stand its • indicators on how flexible European electricity sys- results. European output, whose potential is capped ground with photovoltaic, which generated more than tems are to integrating renewable capacities. by the total take-up of possible hydropower sites, 100 TWh for the first time. What is more, biomass pro- Henceforth EurObserv’ER will cover all these new dropped by 10% in 2015 because of the lack of rainfall. vides a useful complement as its output is not prone aspects in the forthcoming editions of its State of The future may be not so rosy for the two main sectors to any kind of variability. Renewable Energies in Europe report. EUROBSERV’ER – THE STATE OF RENEWABLE ENERGIES IN EUROPE – 2016 EDITION EUROBSERV’ER – THE STATE OF RENEWABLE ENERGIES IN EUROPE – 2016 EDITION Energy indicators 6 7 ENERGY INDICATORS EurObserv’ER has been gathering data on were published – small hydropower, biogas, the European Union’s renewable energy geothermal energy, concentrated solar sources for seventeen years for its theme- power, household refuse incineration and based barometer reports on the state of the renewable marine energy sources. sectors and their momentum. The first part Hence this publication offers a comprehen- of this work is a summary of the barometers sive energy dimension review of the twelve published in 2016 for the wind energy, solar renewable sectors that are now developed photovoltaic, solar thermal, heat pump, in the European Union on an industrial biofuel and solid biomass sectors. The data scale. drawn from these barometers has been It also gives for the first time a view of the updated and supplemented by data on the share of RES heating and cooling in the buil- sectors for which no individual barometers ding stock. Methodological note The tables reproduce the most recent figures avai- heat used by the undertaking for its own processes lable for each sector. In publishing this edition, the is not included. EurObserv’ER data and Eurostat data published early Final energy consumption is the total energy consu- in February 2016 have been fully reconciled. This med by end users, such as households, industry and reconciliation covers most of the energy indicators agriculture. It is the energy which reaches the final presented (electrical capacity, output, consumption, consumer’s door and excludes that which is used by etc.). However, the indicators used are solely those of the energy sector itself including for deliveries, and EurObserv’ER whenever there are no parallel indica- transformation. It also excludes fuel transformed in tors published by Eurostat, such as market data for the electrical power stations of industrial auto-pro- the various categories of heat pump or solar thermal ducers and coke transformed into blast-furnace gas collectors. where this is not part of overall industrial consump- As for the “heat” data, a distinction is made between tion but of the transformation sector. Final energy “derived heat” from the processing sector and final consumption in “households, services, etc.” covers energy consumption in line with Eurostat definitions. quantities consumed by private households, com- Derived heat covers the total production of heat in merce, public administration, services, agriculture heating plants and cogeneration plants (combined and fisheries. heat and power plants). It includes heat used by the A distinction is also made with regard to electricity auxiliaries of the installation which use hot fluid and derived heat production data between output (space heating, liquid fuel heating, etc.) and losses in from plants solely producing either electricity or the installation/network heat exchanges.
Recommended publications
  • Perspectives on Solar Energy, Mining and Agro-Food in Chile
    Chapter 3 Transforming industries: Perspectives on solar energy, mining and agro-food in Chile The shifting global geopolitical and technological landscape coupled with changes in consumers’ preferences is opening up a window of opportunity for Chile. The country could transform its economy, enlarge its knowledge base and increase productivity by leveraging on its natural assets in new, more innovative ways. However, the world is moving fast and opportunities will not be permanently available. To tap into them, a strategic approach and a shared vision between government, business and society is needed. Chile has started to do so through strategic initiatives that identify future opportunities and clarify gaps to be addressed. This chapter presents the Chilean experience in solar energy, mining and agro-food; in each case it presents a snapshot of key trends and future scenarios, developed through multi-stakeholder consultations, it describes the current policy approach and it identifies reforms to move forward. PRODUCTION TRANSFORMATION POLICY REVIEW OF CHILE: REAPING THE BENEFITS OF NEW FRONTIERS © OECD AND UNITED NATIONS 2018 103 3. Transforming industries: Perspectives on solar energy, mining and agrO-food in Chile Unleashing the potential of solar energy in Chile This section presents a snapshot of the rise of solar energy in the country and summarises the results of public-private consultations on the opportunities presented by solar for Chile. It describes the current policy approach and it identifies reforms to move forward. Solar energy is gaining ground in Chile Solar energy is becoming globally competitive thanks to falling prices. Investment in the development of renewable energies globally is surpassing investment in fossil fuel technologies (OECD, 2018; IEA, 2016).
    [Show full text]
  • CSP Technologies
    CSP Technologies Solar Solar Power Generation Radiation fuel Concentrating the solar radiation in Concentrating Absorbing Storage Generation high magnification and using this thermal energy for power generation Absorbing/ fuel Reaction Features of Each Types of Solar Power PTC Type CRS Type Dish type 1Axis Sun tracking controller 2 Axis Sun tracking controller 2 Axis Sun tracking controller Concentrating rate : 30 ~ 100, ~400 oC Concentrating rate: 500 ~ 1,000, Concentrating rate: 1,000 ~ 10,000 ~1,500 oC Parabolic Trough Concentrator Parabolic Dish Concentrator Central Receiver System CSP Technologies PTC CRS Dish commercialized in large scale various types (from 1 to 20MW ) Stirling type in ~25kW size (more than 50MW ) developing the technology, partially completing the development technology development is already commercialized efficiency ~30% reached proper level, diffusion level efficiency ~16% efficiency ~12% CSP Test Facilities Worldwide Parabolic Trough Concentrator In 1994, the first research on high temperature solar technology started PTC technology for steam generation and solar detoxification Parabolic reflector and solar tracking system were developed <The First PTC System Installed in KIER(left) and Second PTC developed by KIER(right)> Dish Concentrator 1st Prototype: 15 circular mirror facets/ 2.2m focal length/ 11.7㎡ reflection area 2nd Prototype: 8.2m diameter/ 4.8m focal length/ 36㎡ reflection area <The First(left) and Second(right) KIER’s Prototype Dish Concentrator> Dish Concentrator Two demonstration projects for 10kW dish-stirling solar power system Increased reflection area(9m dia. 42㎡) and newly designed mirror facets Running with Solo V161 Stirling engine, 19.2% efficiency (solar to electricity) <KIER’s 10kW Dish-Stirling System in Jinhae City> Dish Concentrator 25 20 15 (%) 10 발전 효율 5 Peak.
    [Show full text]
  • Special Case in Corsica, the Clocks Tick Differently Than on the French Mainland
    $034*$" Special case In Corsica, the clocks tick differently than on the French mainland. Compared to other regions in France, the fourth largest Mediterranean island enjoys a high degree of autonomy. This fact is also felt by the representatives of the solar sector. n the day that PV gained momentum in France, Corsica started to become attractive Ofor the solar sector. The island enjoys excep- tional solar radiation levels and offers feed-in tariffs comparable to the French overseas departments and territories. Suddenly, the industry representatives conditions and infrastructure, including the project’s took off to Corsica with plans for new projects. But the consistency with regional landscapes and the Corsicans are quite proud of their autonomy, says economic benefits for the region. “An important Angela Saade, PV expert for Hespul, an association aspect is also whether the planners want to install for Renewable Energy and Energy Efficiency. Local the system on an agricultural surface. Based on this authorities have a strong influence on the licensing of catalogue, a number of 20 solar projects have been solar parks. “The so-called Assemblée de Corse approved by the Assemblée de Corse in the past.” consists of representatives from the different regions However, more compliance with the required who participate in the political decision-making, criteria does not imply that the project will be including when it comes to permits for a solar park”, successful. In a next step, the project has to be explains Saade. presented to the authorities of the relevant municipality, which has to approve of the construction White Owl Capital, a Regional restrictions plans.
    [Show full text]
  • Trade Remedies, Targeting the Renewable Energy Sector
    Green Economy and Trade. Ad hoc Expert Group 2: Trade Remedies in Green Sectors: the Case of Renewables 3−4 April 2014 Salle XXVI, Palais des Nations Geneva Trade Remedies Targeting the Renewable Energy Sector Report by 1 Cathleen Cimino & Gary Hufbauer 1 Cathleen Cimino is a Research Analyst at the Peterson Institute for International Economics and Gary Hufbauer is the Reginald Jones Senior Fellow. The views expressed are their own. Table of Contents I. Introduction .............................................................................................................................. 3 Clash between trade remedies and environmental goals ....................................................... 3 Outline of the report ............................................................................................................ 4 II. Overview of trade remedies ...................................................................................................... 5 III. Trade in renewable energy products affected by AD/CVD cases ............................................... 8 Methodology for the trade remedy survey ............................................................................ 9 Findings from the surveyt .................................................................................................. 10 IV. Renewable energy costs .......................................................................................................... 17 V. WTO disputes relating to renewable energy ...........................................................................
    [Show full text]
  • The Economics of Solar Power
    The Economics of Solar Power Solar Roundtable Kansas Corporation Commission March 3, 2009 Peter Lorenz President Quanta Renewable Energy Services SOLAR POWER - BREAKTHROUGH OR NICHE OPPORTUNITY? MW capacity additions per year CAGR +82% 2000-08 Percent 5,600-6,000 40 RoW US 40 +43% Japan 10 +35% 2,826 Spain 55 1,744 1,460 1,086 598 Germany 137 241 372 427 2000 01 02 03 04 05 06 07 2008E Demand driven by attractive economics • Strong regulatory support • Increasing power prices • Decreasing solar system prices • Good availability of capital Source: McKinsey demand model; Solarbuzz 1 WE HAVE SEEN SOME INTERESTING CHANGES IN THE U.S. RECENTLY 2 TODAY’S DISCUSSION • Solar technologies and their evolution • Demand growth outlook • Perspectives on solar following the economic crisis 3 TWO KEY SOLAR TECHNOLOGIES EXIST Photovoltaics (PV) Concentrated Solar Power (CSP) Key • Uses light-absorbing material to • Uses mirrors to generate steam characteristics generate current which powers turbine • High modularity (1 kW - 50 MW) • Low modularity (20 - 300 MW) • Uses direct and indirect sunlight – • Only uses direct sunlight – specific suitable for almost all locations site requirements • Incentives widely available • Incentives limited to few countries • Mainly used as distributed power, • Central power only limited by some incentives encourage large adequate locations and solar farms transmission access ~ 10 Global capacity ~ 0.5 GW, 2007 Source: McKinsey analysis; EPIA; MarketBuzz 4 THESE HAVE SEVERAL SUB-TECHNOLOGIES Key technologies Sub technologiesDescription
    [Show full text]
  • 2013 Annual Report to Stockholders Business Overview Sunedison, Inc
    2013 Annual Report to Stockholders Business Overview SunEdison, Inc. ("SunEdison" or the "Company") is a major developer and seller of photovoltaic energy solutions and a global leader in the development, manufacture and sale of silicon wafers to the semiconductor industry. We are one of the world's leading developers of solar energy projects and, we believe, one of the most geographically diverse. Our technology leadership in silicon and downstream solar are enabling the Company to expand our customer base and lower costs throughout the silicon supply chain. SunEdison is organized by end market and we are engaged in two reportable segments: Solar energy and Semiconductor Materials. Our Solar Energy business provides solar energy services that integrate the design, installation, financing, monitoring, operations and maintenance portions of the downstream solar market for our customers. Our Solar Energy business also manufactures polysilicon, silicon wafers and solar modules to support our downstream solar business, as well as for sale to external customers as market conditions dictate. Our Semiconductor Materials business includes the development, production and marketing of semiconductor silicon wafers ranging from 100 millimeter (4 inch) to 300 millimeter (12 inch) as the base material for the production of semiconductor devices. Financial segment information for our two reportable segments for 2013 is contained in our 2013 Annual Report, which information is incorporated herein by reference. See Note 20, Notes to Consolidated Financial Statements. SunEdison, formerly known as MEMC Electronic Materials, Inc., was formed in 1984 as a Delaware corporation and completed its initial public stock offering in 1995. Our corporate structure includes, in addition to our wholly owned subsidiaries, an 80%-owned consolidated joint venture in South Korea (MEMC Korea Company or MKC).
    [Show full text]
  • Concentrated Solar Power Plants
    ECE 333 – GREEN ELECTRIC ENERGY 17. Concentrated Solar Power Plants George Gross Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign ECE 333 © 2002 – 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 1 CONCENTRATED SOLAR POWER (CSP) Many conventional power plants use heat to boil water to produce high–pressure steam, which expands through the turbine to spin the generator rotor and results in the production of electricity CSP technology extracts the heat from the solar irradiation and its operation resembles the steam generation plants that burn fossil fuels or use uranium to produce electricity ECE 333 © 2002 – 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 2 Page 1 REVIEW OF INSOLATION COMPONENTS reflected radiation diffused radiation direct beam radiation http://www.inforse.org/europe/dieret/Solar/solar.html Source: ECE 333 © 2002 – 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 3 CSP PV technology is able to collect all the 3 insolation components for electricity production Unlike PV, CSP can concentrate only the direct beam radiation – also referred to as direct normal irradiation (DNI) – to generate electricity ECE 333 © 2002 – 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 4 Page 2 CSP Specifically, CSP plant uses mirrors with tracking systems to focus DNI to collect the solar energy The solar energy is used to heat up the heat transfer fluid (HTF) and to convert HTF into thermal energy Subsequently, the absorbed thermal energy is utilized to generate steam which drives a steam turbine to produce electricity Some CSP plants incorporate thermal storage devices ECE 333 © 2002 – 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.
    [Show full text]
  • Solar Thermal and Concentrated Solar Power Barometers 1 – EUROBSERV’ER –JUIN 2017 – EUROBSERV’ER BAROMETERS POWER SOLAR CONCENTRATED and THERMAL SOLAR
    1 2 - 4.6% The decrease of the solar thermal market in the European Union in 2016 Evacuated tube solar collectors, solar thermal installation in Ireland SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS A study carried out by EurObserv’ER. solar solar concentrated and thermal power barometers solar solar concentrated and thermal power barometers he European solar thermal market is still losing pace. According to the Tpreliminary estimates from EurObserv’ER, the solar thermal segment dedicated to heat production (domestic hot water, heating and heating networks) contracted by a further 4.6% in 2016 down to 2.6 million m2. The sector is pinning its hopes on the development of the collective solar segment that includes industrial solar heat and solar district heating to offset the under-performing individual home segment. ince 2014 European concentrated solar power capacity for producing Selectricity has been more or less stable. New project constructions have been a long time coming, but this could change at the end of 2017 and in 2018 essentially in Italy. 51 millions m2 2 313.7 MWth The cumulated surfaces of solar thermal Total CSP capacity in operation Glenergy Solar in operation in the European Union in 2016 in the European Union in 2016 SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS – EUROBSERV’ER – JUIN 2017 SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS – EUROBSERV’ER – JUIN 2017 3 4 The world largest solar thermal Tabl. n° 1 district heating solution - Silkeborg, Denmark (in operation end 2016) Main solar thermal markets outside European Union Total cumulative capacity Annual Installed capacity (in MWth) in operation (in MWth) 2015 2016 2015 2016 China 30 500 27 664 309 500 337 164 United States 760 682 17 300 17 982 Turkey 1 500 1 467 13 600 15 067 India 770 894 6 300 7 194 Japan 100 50 2 400 2 450 Rest of the world 6 740 6 797 90 944 97 728 Total world 39 640 36 660 434 700 471 360 Source: EurObserv’ER 2017 new build, because of the construction is now causing great concern, where as a water production.
    [Show full text]
  • Medium Temperature Solar Collectors DATABASE
    Medium temperature solar collectors DATABASE Task 11.1- Small scale and low cost installations for power and industrial process heat applications Subtask 11.1.1 Medium temperature (150 – 250 ºC) solar collectors for industrial or distributed applications STAGE-STE Project Scientific and Technological Alliance for Guaranteeing the European Excellence in Concentrating Solar Thermal Energy Grant agreement number: 609837 Start date of project: 01/02/2014 Duration of project: 48 months WP11 – Task 11.1.1 D11.0 State of the art of medium temperature solar collectors and new developments Due date: July / 2015 Submitted July / 2015 File name: STAGE-STE Deliverable 11.0.pdf Partner responsible TECNALIA Person responsible I.Iparraguirre(Tecnalia) A. Huidobro (Tecnalia), I. Iparraguirre(Tecnalia) T. Osorio (Univ. Evora), F. Sallaberry Author(s): (CENER), A. Fernández-García (CIEMAT-PSA) L. Valenzuela (CIEMAT-PSA), P. Horta (Fraunhofer ISE) Dissemination Level PU List of content Executive Summary ................................................................................................................................. 3 1 Subtask 11.1.1. ................................................................................................................................ 4 1.1. Introduction ...................................................................................................................................4 1.2. Methodology .................................................................................................................................4
    [Show full text]
  • Concentrating Solar Power Global Outlook 09 Why Renewable Energy Is Hot COVER PIC © GREENPEACE / MARKEL REDONDO
    Concentrating Solar Power Global Outlook 09 Why Renewable Energy is Hot COVER PIC © GREENPEACE / MARKEL REDONDO Contents Foreword 5 For more information contact: Executive Summary 7 [email protected] Written by: Section 1 CSP: the basics 13 Written by Dr. Christoph Richter, The concept 11 Sven Teske and Rebecca Short Requirements for CSP 14 Edited by: How it works – the technologies 15 Rebecca Short and The Writer Section 2 CSP electricity technologies and costs 17 Designed by: Types of generator 17 Toby Cotton Parabolic trough 20 Central receiver 24 Acknowledgements: Many thanks to Jens Christiansen Parabolic dish 28 and Tania Dunster Fresnel linear reflector 30 at onehemisphere.se Cost trends for CSP 32 Heat storage technologies 33 Printed on 100% recycled post-consumer waste. Section 3 Other applications of CSP technologies 35 Process Heat 35 JN 238 Desalination 35 Solar Fuels 36 Published by Cost Considerations 37 Greenpeace International Section 4 Market Situation by Region 39 Ottho Heldringstraat 5 Middle East and India 42 1066 AZ Amsterdam Africa 44 The Netherlands Europe 46 Tel: +31 20 7182000 Fax: +31 20 5148151 Americas 49 greenpeace.org Asia - Pacific 50 SolarPACES Section 5 Global Concentrated Solar Power Outlook Scenarios 53 SolarPACES Secretariate The Scenarios 53 Apartado 39 Energy efficiency projections 54 E-04200 Tabernas Core Results 54 Spain Full Results 55 solarpaces.org Main Assumptions and Parameters 66 [email protected] Section 6 CSP for Export: The Mediterranean Region 69 ESTELA Mediterranean Solar Plan 2008
    [Show full text]
  • Characterisation of Solar Electricity Import Corridors from MENA to Europe
    Characterisation of Solar Electricity Import Corridors from MENA to Europe Potential, Infrastructure and Cost Characterisation of Solar Electricity Import Corridors from MENA to Europe Potential, Infrastructure and Cost July 2009 Report prepared in the frame of the EU project ‘Risk of Energy Availability: Common Corridors for Europe Supply Security (REACCESS)’ carried out under the 7th Framework Programme (FP7) of the European Commission (Theme - Energy-2007-9. 1-01: Knowledge tools for energy-related policy making, Grant agreement no.: 212011). Franz Trieb, Marlene O’Sullivan, Thomas Pregger, Christoph Schillings, Wolfram Krewitt German Aerospace Center (DLR), Stuttgart, Germany Institute of Technical Thermodynamics Department Systems Analysis & Technology Assessment Pfaffenwaldring 38-40 D-70569 Stuttgart, Germany Characterisation of Solar Electricity Import Corridors TABLE OF CONTENTS 1 INTRODUCTION...................................................................................................1 2 STATUS OF KNOWLEDGE - RESULTS FROM RECENT STUDIES .................2 3 EXPORT POTENTIALS – RESOURCES AND PRODUCTION.........................19 3.1 SOLAR ENERGY RESOURCES IN POTENTIAL EXPORT COUNTRIES.........19 3.1.1 Solar Energy Resource Assessment .........................................................19 3.1.2 Land Resource Assessment ......................................................................39 3.1.3 Potentials for Solar Electricity Generation in MENA ..................................48 3.1.4 Potentials for Solar Electricity
    [Show full text]
  • Selling Solar Services As a Contribution to a Circular Economy Katarina Svatikova, Irati Artola, Stephan Slingerland Trinomics Susanne Fischer Wuppertal Institute
    POLICY BRIef NO. 1, DECEMbeR 2015 SELLING SOLAR SERVICES AS A CONTRIBUTION TO A CIRCULAR ECONOMY Katarina Svatikova, Irati Artola, Stephan Slingerland Trinomics Susanne Fischer Wuppertal Institute Key messages I The solar services sector sells the service of providing the use of solar electricity to its customer instead of selling solar PV systems (the product). This new business model can be seen as a radical innovation for the solar sector – as it is in other sectors. It is particularly interesting from the perspective of systemic eco-innovation fostering a carbon-free and circular economy. II There are several barriers that prevent the uptake of solar services in Europe. This includes financial barriers – finding a private investor who is willing to provide funding for such an innovative business model is difficult, and public funding might not always be accessible. There are also information and public acceptance barriers – neither the financial stakeholders nor the end customers are aware of the solar service option, understand its mechanisms or see the advantages that this option could offer to them. III The political and policy relevance of selling solar services is clear. Stimulating new business models based on selling ‘services’ instead of ‘products’ is a crucial factor in optimising resource flows in our society. Integration of the solar services debate into wider renewable energy and/or circular economy policies could serve this aim. Several solutions already exist that could mitigate the information and financial barriers identified. Rather than research into new technological solutions, this would require research regarding the possibilities and pitfalls of economic and social innovation towards a circular economy in Europe.
    [Show full text]