Interaction of Disease and Temperature on the Aerobic

Total Page:16

File Type:pdf, Size:1020Kb

Interaction of Disease and Temperature on the Aerobic INTERACTION OF DISEASE AND TEMPERATURE ON THE AEROBIC SCOPE OF FRESHWATER FISH AND IMPLICATIONS FOR CHANGING CLIMATES Emily Lawlor BSc. This thesis is presented for the Honours Degree in Conservation and Wildlife Biology, School of Veterinary and Life Sciences, Murdoch University, 2016. DECLARATION I declare that this thesis is my own account of my research and contains as its main content work which has not been previously submitted for a degree at any tertiary education institution. EMILY LAWLOR ABSTRACT Climate change is a major threat to both freshwater and marine ecosystems on a global scale. There is evidence that for aquatic pathogens and parasites, increasing water temperatures will favour increasing transmission rates and virulence. Increasing water temperature may stress fish and transiently compromise the immune system, exacerbating the effects of infection. The high energy costs of an upregulated immune response will have consequences on other physiological processes such as growth and reproduction. In order to study the effects of temperature on pathogenicity, a bioassay to challenge the Australian native freshwater pygmy perch, Nannoperca vittata with a bacterium Photobacterium damselae damselae was carried out. The bioassay was carried out at two temperatures; 17°C, thought to be the optimum for fish survival and growth, and 28°C, presumed to be approaching the upper critical limit for the species. Nannoperca vittata was found to be susceptible to infection by P. damselae damselae, the first time that infection has been demonstrated in native Australian freshwater fishes. The effect concentration that caused mortalities in 50% of the population (EC50) was lower at 28°C (4.82x105 CFU ml-1) than at 17°C (2.81x106 CFU ml-1). Fish mortalities were significantly greater and times to death were significantly shorter at 28°C than at 17°C and this is the first time that this has been demonstrated experimentally for P. damselae damselae. Following the pathogenicity trial, the aerobic scope of exposed versus non-exposed pygmy perch of both 17°C and 28°C experimental groups was determined in a respirometer. Aerobic scope is defined as the difference between maximum metabolic iii rate and standard metabolic rate. The aerobic scope was greater in exposed than in unexposed fish at 17°C and conversely, greater in unexposed than in exposed fish at 28°C.. This difference occurred because standard metabolic rate increased with exposure at both temperatures, whereas maximum metabolic rate increased at 17°C, but not at 28°C. The increase in standard metabolic rate at both temperatures was expected as a consequence of an upregulated immune response following exposure to the bacterium. The difference in maximum metabolic rate is hypothesised to be a consequence of a compensatory increase in oxygen carrying capacity, which is counteracted by a persistent immune response at 28 but not at 17°C. This hypothesis requires further testing. The results from this study suggest, firstly, that fish are less tolerant of infection at higher water temperatures and secondly, that a combination of higher water temperature and increased exposure to pathogens may decrease aerobic scope and therefore fitness. This study showed that higher temperatures decrease aerobic scope in fish, thus suggesting that rising temperatures with global warming may have the same effect. This is the first study to demonstrate such a response in an Australian native freshwater fish. Further research in this field is urgently required to enable conservation management plans that address the threats posed to native freshwater fish species through climate change. iv TABLE OF CONTENTS ABSTRACT ............................................................................................................................ iii TABLE OF CONTENTS ......................................................................................................... v ACKNOWLEDGEMENTS .................................................................................................. vii LIST OF FIGURES ............................................................................................................. viii LIST OF TABLES ................................................................................................................. xi 1. INTRODUCTION ................................................................................................................ 1 1.1 Conservation of freshwater fishes ....................................................................... 1 1.1.1 Global freshwater fish diversity ........................................................................... 1 1.1.2 Australian freshwater fish diversity ..................................................................... 1 1.1.3 Conservation status of freshwater fishes.............................................................. 4 1.2 Effects of climate change on freshwater biodiversity ........................................ 7 1.2.1 Climate change in south-western Australia ......................................................... 9 1.2.2 Effects of climate change on freshwater fishes .................................................. 11 1.3 Direct effects of increasing temperature on physiological processes.............. 11 1.4 Indirect effects of increasing temperature on infectious disease .................... 18 1.4.1 Effect of temperature on pathogen reproductive rate and virulence ................. 19 1.4.2 Effect of temperature on host immunocompetence ............................................ 21 1.5 Synergistic effects of increased temperature and infectious disease on freshwater fishes ........................................................................................................ 24 1.6 Research aims ...................................................................................................... 26 2. MATERIALS AND METHODS ...................................................................................... 28 2.1 Collection and maintenance of fish .................................................................... 28 2.2 Production of bacterial challenge materials ..................................................... 28 2.3 Pathogenicity trial ............................................................................................... 29 2.3.1 Experimental design ........................................................................................... 29 2.3.2 Data analysis ...................................................................................................... 30 2.4 Respirometry trial ............................................................................................... 32 2.4.1 Experimental design ........................................................................................... 32 2.4.2 Measurement of SMR and MMR ........................................................................ 33 2.4.3 Data analysis ...................................................................................................... 34 3. RESULTS ........................................................................................................................... 37 3.1 Pathogenicity trial ............................................................................................... 37 v 3.2 Respirometry trial ............................................................................................... 43 4. DISCUSSION ..................................................................................................................... 48 4.1 The effect of temperature on the pathogenicity of Photobacterium damselae damselae to Nannoperca vittata ................................................................................ 48 4.2 The effect of temperature and exposure to Photobacterium damselae damselae on the metabolic rate and aerobic scope of Nannoperca vittata ............ 53 4.2.1 The effect of body mass on SMR, MMR and AS ................................................. 53 4.2.2 The effect of temperature on SMR, MMR and AS .............................................. 54 4.2.3 The combined effects of temperature and pathogen exposure on SMR, MMR, and AS ......................................................................................................................... 57 4.3 Implications for the conservation of freshwater fishes in south-western Australia ..................................................................................................................... 61 4.4 Limitations and future research ........................................................................ 62 5. CONCLUSION ................................................................................................................... 66 6. REFERENCES ................................................................................................................... 67 vi ACKNOWLEDGEMENTS I wish to take this opportunity to express my gratitude to my three supervisors Alan Lymbery, Stephen Beatty and Adrian Gleiss, from the Freshwater Fish Group and Fish Health Unit at Murdoch University, for without their support this thesis would not have been possible. These three lads have helped me through all the bumps in the road and I would like to thank you for your time, generosity, shared knowledge and for just being down to earth people whose doors are always open. I would also like to thank Ph.D. student Siew Mee Bong for her constant jokes and help for the many hours
Recommended publications
  • Distribution of the Bot Fly Cuterebra Emasculator (Diptera: Cuterebridae) in South Carolina1
    Distribution of the Bot Fly Cuterebra emasculator (Diptera: Cuterebridae) in South Carolina1 Frank Slansky and Bill Hilton Jr.2 Department of Entomology & Nematology, Bldg. 970 Natural Area Drive, University of Florida, Gainesville, Florida 32611 J. Agric. Urban Entomol. 20(2): 83–91 (April 2003) ABSTRACT Larvae of the bot fly Cuterebra emasculator Fitch infest tree squirrels and chipmunks from the Atlantic Ocean to just west of the Missis- sippi River and from southern Canada to the Gulf Coast of the United States. Whether the species is present in all states and provinces in this region is not well documented. Because there are few published records of C. emasculator in South Carolina, we gathered data on its occurrence in each county by obtaining reports of bot fly-infested squirrels from wildlife rehabilitators, veterinarians, wildlife biologists, county extension agents, hunters, and other wildlife- oriented people. The results indicate that C. emasculator infests squirrels, especially the eastern gray squirrel (Sciurus carolinensis Gmelin), throughout the state. In South Carolina there apparently are no bot fly-free refugia (at the scale of counties) where squirrels might escape from Cuterebra parasites. KEY WORDS bot fly, Cuterebra emasculator, Cuterebridae, Diptera, dis- tribution, parasite/host association, rodent, Sciurus, squirrel There is strong ecological interest in determining whether populations of po- tential host species avoid parasites by colonizing areas lacking these natural enemies (Grenfell & Gulland 1995, Clayton & Moore 1997, Hassell 2000, Poulin et al. 2000). Such “allopatric escape” might occur especially when the interacting organisms show considerable taxonomic divergence, such as mammalian hosts and their arthropod parasites, particularly those that live independent of a host during part of their life cycle (Arlian & Vyszenski-Moher 1987, Marshall 1987).
    [Show full text]
  • Risk Analysis of the Fox Squirrel Sciurus Niger
    ELGIUM B NATIVE ORGANISMS IN ORGANISMS NATIVE - OF NON OF Risk analysis of the fox squirrel Sciurus niger Updated version, May 2015 ISK ANALYSIS REPORT REPORT ANALYSIS ISK R Risk analysis report of non-native organisms in Belgium Risk analysis of the fox squirrel Sciurus niger Evelyne Baiwy(1), Vinciane Schockert(1) & Etienne Branquart(2) (1) Unité de Recherches zoogéographiques, Université de Liège, B-4000 Liège (2) Cellule interdépartementale sur les Espèces invasives, Service Public de Wallonie Adopted in date of: 11th March 2013, updated in May 2015 Reviewed by : Sandro Bertolino (University of Turin) & Céline Prévot (DEMNA) Produced by: Unité de Recherches zoogéographiques, Université de Liège, B-4000 Liège Commissioned by: Service Public de Wallonie Contact person: [email protected] & [email protected] This report should be cited as: “Baiwy, E.,Schockert, V. & Branquart, E. (2015) Risk analysis of the Fox squirrel, Sciurus niger, Risk analysis report of non-native organisms in Belgium. Cellule interdépartementale sur les Espèces invasives (CiEi), DGO3, SPW / Editions, updated version, 34 pages”. Contents Acknowledgements ................................................................................................................................ 1 Rationale and scope of the Belgian risk analysis scheme ..................................................................... 2 Executive summary ................................................................................................................................
    [Show full text]
  • Paquette Chelsey Msc 2020.Pdf
    DÉTERMINANTS INDIVIDUELS ET ENVIRONNEMENTAUX DU PARASITISME CHEZ LE TAMIA RAYÉ (TAMIAS STRIATUS) par Chelsey Paquette Mémoire présenté au Département de biologie en vue de l’obtention du grade de maître ès sciences (M.Sc) FACULTÉ DES SCIENCES UNIVERSITÉ DE SHERBROOKE Sherbrooke, Québec, Canada, avril 2020 Le 15 avril 2020 le jury a accepté le mémoire de Madame Chelsey Paquette dans sa version finale Membres du jury Professeur Dany Garant Directeur de recherche Département de Biologie, Université de Sherbrooke Professeur Patrick Bergeron Codirecteur de recherche Département de Biologie, Bishop’s University Professeure Jade Savage Codirectrice de recherche Département de Biologie, Bishop’s University Professeure Fanie Pelletier Évaluatrice interne Département de Biologie, Université de Sherbrooke Professeur Marco Festa-Bianchet Président-rapporteur Département de Biologie, Université de Sherbrooke SOMMAIRE Les parasites peuvent infecter presque tous les organismes vivants et ils peuvent avoir un impact important sur leurs hôtes et sur leur dynamique de population. Cependant, la sévérité de ces impacts peut varier et dépendre de l'hôte, du parasite et de leur environnement commun. Pour mieux comprendre la complexité des interactions hôte-parasite, il est essentiel d’évaluer les déterminants individuels, populationnels et environnementaux du parasitisme. La prévalence de l'infestation peut varier au fil du temps en fonction de caractéristiques populationnelles telles que la densité et la démographie, ainsi que des caractéristiques environnementales telles que les conditions météorologiques et la disponibilité de la nourriture. Cependant, au sein d'une population hôte, le nombre de parasites par individu peut aussi varier en raison de différences individuelles en physiologie, morphologie et/ou comportement. Par conséquent, il est nécessaire d'intégrer les caractéristiques de la population, des individus et de l'environnement dans les études sur les interactions hôte-parasite.
    [Show full text]
  • The Outside Story You’Ll Often Find Yourself in Botfly Larvae Season
    The catch with squirrel hunting in September is that The Outside Story you’ll often find yourself in botfly larvae season. These fat white grubs live in boils that protrude from a squirrel’s skin. (The technical name for the boil is a warble – isn’t it interesting how that one word can sound lovely when applied to a bird’s song and disgusting when applied to a pustule?) There are some 30 botfly species in the U.S. and each has a preferred host. The tree squirrel botfly is called Cuterebra emasculator – the story behind that name is that the entomologist who coined it suspected the larvae ate testes. They don’t, but the name stuck. Squirrel botflies have a year-long, four-stage lifecycle. The adults, which are relatively large flies that look sort of like small bumble bees, emerge in late spring or early summer and mate. Females lay their tiny eggs on twigs or leaves and larvae develop within the eggs. (Note that this is different than a lot of parasitic flies that lay eggs directly on a host, like the horse stomach botflies that horse owners might be familiar with.) When a squirrel comes by, the larvae detect the animal’s body heat or CO2 from within the egg, then emerge from a door in the egg shell and try to latch on. If they’re successful, they’ll look for an orifice or wound through which to enter the host’s body, at which point they’ll take up residence beneath the hide. They consume lymph fluid (not blood) and grow, Don’t Let the Botflies molting twice.
    [Show full text]
  • Tree Squirrel Bot Fly, Cuterebra Emasculator Fitch (Insecta: Diptera: Oestridae)1 Jordan Taheri, Phillip Kaufman, and Frank Slansky2
    EENY 401 Tree Squirrel Bot Fly, Cuterebra emasculator Fitch (Insecta: Diptera: Oestridae)1 Jordan Taheri, Phillip Kaufman, and Frank Slansky2 Introduction based on the erroneous belief that the larvae consumed the testes of male hosts. The tree squirrel bot fly, Cuterebra emasculator Fitch, is an obligate parasite of tree squirrels and chipmunks throughout most of eastern North America. The adult and other life stages are seldom seen; instead, what is usually observed from July through September or October is the outcome of infestation, namely the relatively large, fluid- draining swellings (“warbles”) in a host’s hide caused by the subcutaneous larvae. Bot fly infestation may be mistaken for another lump- causing affliction of tree squirrels, namely a viral disease called “squirrel pox” or “fibromatosis”. The latter generally is distinguishable from bot fly infestation based on the presence of a higher number of smaller lesions (especially around the eyes), swollen digits of the infested animal, and the lack of a distinct, fluid-draining opening in each lesion. The tree squirrel bot fly is one of some 30 species of Cuterebra native to the Americas, five o f which are found in Florida.Cuterebra larvae parasitize either native rodents (mice, rats, tree squirrels, etc.) or lagomorphs (rabbits and Figure 1. Eastern gray squirrel with a warble of a 3-week-old, tree hares); those species utilizing the former as hosts do not squirrel bot fly, Cuterebra emasculator Fitch, on its side. naturally infest the latter, and vice versa. This species was Credits: Frank Slansky and Lou Rea Kenyon. named Cuterebra emasculator some 150 years ago by one of the most prominent entomolgists of that period, Asa Fitch, 1.
    [Show full text]
  • The Effects of Parasitic and Other Kinds of Castration in Insects1
    THE EFFECTS OF PARASITIC AND OTHER KINDS OF CASTRATION IN INSECTS1 WILLIAM MORTON WHEELER WITH EIGHTFIGURES I. THE EFFECTS OF STYLOPIZATION IN WASPS AND BEES The perusal several years ago of :a very interesting paper by PCrez (’86) on bees of the genus Andrena infested with Stylops led me to undertake a similar study of our North American wasps of the genus Polistes parasitized by Xenos. I began to collect stylopized P. variatus during the autumns of 1898 and 1899, while I was living in Chicago, but the wasps proved to be too scarce to serve my purpose. During the summer of 1900, however, while I was spending my vacation at Colebrook, in the Litchfield Hills, Connecticut, I noticed many specimens of Polistes metricus Say infested with Xenos (Acroschismus) wheeleri Pierce and I at once began to collect them.* In ten days during the latter part of August I gathered one thousand specimens of the Polistes from flowers of the golden 1 Contributions from the Entomological Laboratory of the Bussey Institution, Harvard University No. 20. 2There may be some doubt about the specific names of the host and parasite here mentioned. I have called the wasp P. metricus as this is the name underwhich it is commonly known and because our extremely variable species of Polistes are in a state of great taxonomic confusion. Miss Enteman, who has studied them very extensively (‘04)~ would probably refer my specimens to P. pallipes Le- peletier, while others would be inclined to regard them as belonging to P. fuscatus Fabricius. Brues (‘09) and I had identified the parasite as Xenos peckii Kirby, but Pierce (‘oS), regards it not only as speci- fically, but also as generically distinct.
    [Show full text]
  • (Diptera: Cuterebridae), Emasculate Their Hosts?
    r J. Med. Entomol. Vol. 18, no.4: 333-336 3l July 1981 @ f98l by the Bishop Museum DO BOT FLIES, CUTEREBftA (DIPTERA: CUTEREBRIDAE), EMASCULATE THEIR HOSTS? Robert M. Timmr and Richard E. Lee, Jf Abstract. Asa Fitch, in his description of a new species of that the squirrels in our country are emasculated." Cuterebra that he nzrr'ed, "emaseulator," was the first to suggest Fitch named the chipmunk bot Cuterebrae?llascu- that bot flies castrated their mammalian hosts. In recent years several major review papers and parasitology texts have contin- lator to reflect this belief. For the next 63 years, it ued to perpetuate this belief. A review of both the literature on remained established dogma that bot flies castrated bot flies and their hosts and of the life cycles of both bots and their male hosts; the mechanism was thought to be hosts provides no evidence to substantiate castration. Eastern total consumption of the testes.Ernest Thompson Chipmunks (Tamias striatus) experimentally infected with Cu- terebra ernascularlorexperienced no destruction of testicular tis- Seton, the famed naturalist, was the first to ques- sue. The concept of castration may have been perpetuated by tion whether bot flies actually do emasculate their observations of bots in the scotal sac of a host. Suoerficial ex- rodent hosts. Seton (1920: 95) stated that "There amination of a host with a bot(s) in the scrotum would suggest is no proof that the bot eats fibrous tissue, or any- that the bot had consumed the testis; this is demonstrated on a White-footed Motse (Peromyscusleucopus).
    [Show full text]
  • Wildlife Rehabilitators of North Carolina
    Wildlife Rehabilitators of North Carolina SPRING 2013 ISSUE 50, APRIL 2013 Letter from the President Spring is a time of new beginnings, and that is true for Inside this issue: both the wildlife we care for and for the rehabilitators themselves. The sunshine seems brighter, the days are President’s Letter 1 longer, the weather is warmer, and we all want to be Window Collisions 2 outside enjoying it. You can hear the songbirds calling Bat Die-Off 5 now, observe mating behaviors, and see nest building ac- tivities going on all over. Yes, spring is in the air, and we Pearl of Wisdom 5 rejoice that the cold, harsh, winter is behind us. Bot Fly Info Wanted 6 But be prepared for the infrequent cold spells that will Member Spotlight 8 snap us out of this early spring lull, and the strong March Symposium Donations 10 winds that can cause havoc for the wildlife. Eggs will be chilled, nests blown apart, and little squirrels will be Creature Feature 15 blown out of their nests. Don’t be tempted to put away all Events 16 the heating pads just yet. Announcements 16 By now you have your animal rooms ready and your supplies restocked. Remember to also take time to renew your resource contacts in preparation for the baby seasons that are fast approaching. Decide if you can work with other local rehabilita- tors and semi-specialize: one takes the squirrels, one takes the rabbits, one takes the opossums, one takes the neonates, one takes the BIDs, one takes the fledglings, one takes those ready to move outside, etc.
    [Show full text]
  • Nomenclatural Studies Toward a World List of Diptera Genus-Group Names. Part VI: Daniel William Coquillett
    Zootaxa 4381 (1): 001–095 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4381.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:8B3C4355-AEF7-469B-BEB3-FFD9D02549EA ZOOTAXA 4381 Nomenclatural studies toward a World List of Diptera genus-group names. Part VI: Daniel William Coquillett NEAL L. EVENHUIS J. Linsley Gressitt Center for Entomological Research, Bishop Museum, 1525 Bernice Street, Honolulu, Hawaii 96817-2704, USA. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by D. Bickel: 21 Dec. 2017; published: 19 Feb. 2018 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 NEAL L. EVENHUIS Nomenclatural Studies Toward a World List of Diptera Genus-Group Names. Part VI: Daniel William Coquillett (Zootaxa 4381) 95 pp.; 30 cm. 19 Feb. 2018 ISBN 978-1-77670-308-1 (paperback) ISBN 978-1-77670-309-8 (Online edition) FIRST PUBLISHED IN 2018 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/j/zt © 2018 Magnolia Press ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 4381 (1) © 2018 Magnolia Press EVENHUIS Table of contents Abstract . 3 Introduction . 4 Biography . 4 Early years . 5 Life in California. 7 Locusts . 9 Vedalia Beetles and Cyanide . 9 A Troubled Marriage . 11 Life and Work in Washington, D.C. 12 Trouble with Townsend. 14 Trouble with Dyar . 16 Later Years. 17 Note on Nomenclatural Habits .
    [Show full text]
  • Botfly Infections Impair the Aerobic Performance and Survival of Montane Populations of Deer Mice, Peromyscus Maniculatus Rufinus
    Received: 29 June 2018 | Accepted: 19 December 2018 DOI: 10.1111/1365-2435.13276 RESEARCH ARTICLE Botfly infections impair the aerobic performance and survival of montane populations of deer mice, Peromyscus maniculatus rufinus Luke R. Wilde1 | Cole J. Wolf1 | Stephanie M. Porter2 | Maria Stager1 | Zachary A. Cheviron1 | Nathan R. Senner1 1Division of Biological Sciences, University of Montana, Missoula, Montana Abstract 2College of Veterinary Medicine and 1. Elevations >2,000 m represent consistently harsh environments for small endo‐ Biomedical Sciences, Colorado State therms because of abiotic stressors such as cold temperatures and hypoxia. University, Fort Collins, Colorado 2. These environmental stressors may limit the ability of populations living at these Correspondence elevations to respond to biotic selection pressures—such as parasites or patho‐ Luke R. Wilde Email: [email protected] gens—that in other environmental contexts would impose only minimal energetic‐ and fitness‐related costs. Funding information National Science Foundation, Grant/Award 3. We studied deer mice (Peromyscus maniculatus rufinus) living along two elevational Number: IOS 1634219, OIA 1736249, IOS transects (2,300–4,400 m) in the Colorado Rockies and found that infection prev‐ 1755411; University of Montana alence by botfly larvae (Cuterebridae) declined at higher elevations. We found no Handling Editor: Craig White evidence of infections at elevations >2,400 m, but that 33.6% of all deer mice, and 52.2% of adults, were infected at elevations <2,400 m. 4. Botfly infections were associated with reductions in haematocrit levels of 23%, haemoglobin concentrations of 27% and cold-induced VO2max measures of 19% compared to uninfected individuals. In turn, these reductions in aerobic perfor‐ mance appeared to influence fitness, as infected individuals exhibited 19-34% lower daily survival rates.
    [Show full text]
  • Bot Fly Infestation of Thirteen-Lined Ground Squirrels in Colorado Shortgrass Steppe
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln The Prairie Naturalist Great Plains Natural Science Society 6-2015 Bot Fly Infestation of Thirteen-Lined Ground Squirrels in Colorado Shortgrass Steppe Kim Conway Paul Stapp Follow this and additional works at: https://digitalcommons.unl.edu/tpn Part of the Biodiversity Commons, Botany Commons, Ecology and Evolutionary Biology Commons, Natural Resources and Conservation Commons, Systems Biology Commons, and the Weed Science Commons This Article is brought to you for free and open access by the Great Plains Natural Science Society at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in The Prairie Naturalist by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Prairie Naturalist 47:13–20; 2015 Bot Fly Infestation of Thirteen-Lined Ground Squirrels in Colorado Shortgrass Steppe KIM CONWAY1 AND PAUL STAPP2 Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA (KC, PS) ABSTRACT We studied prevalence of bot fly infestation of thirteen-lined ground squirrels (Ictidomys tridecemlineatus) trapped during 13 years of population monitoring in shrub and grassland habitats in northern Colorado. We also investigated effects of prescribed burning, a common habitat management practice in grasslands, on bot fly prevalence. Infested squirrels were rarely lo- cated on shrub sites and during spring (May–Jun) trapping. Across all summers, mean prevalence in grasslands was 7.9% (range: 2.1–23.8%), with years of highest prevalence corresponding to years when the fewest hosts were captured in spring. Infested squirrels had from one to seven warbles, with 46.7% having only one warble.
    [Show full text]
  • Prevalence of Cuterebra Sp
    Midsouth Entomologist 2: 84–87 ISSN: 1936-6019 www.midsouthentomologist.org.msstate.edu Research Article Prevalence of Cuterebra sp. (Diptera: Cuterebridae) on Eastern Gray Squirrels (Sciurus carolinensis) in Tennessee Applegate, R. D.1, E. L. Warr Wildlife Management Division, Tennessee Wildlife Resources Agency, P. O. Box 40747, Nashville, TN 37204 1Corresponding Author: [email protected] Received: 2-VII-2009 Accepted: 22-VII-2009 Abstract: A total of 26,368 eastern gray squirrels (Sciurus carolinensis) were examined for presence of Cuterebra sp. in Tennessee. During a 15-year period, Cuterebra sp. prevalence was 2.1%, which was lower than reported in other southern states. The highest prevalence of Cuterebra infestation was in eastern Tennessee (7.9%) and the lowest in western Tennessee (0.9%). Keywords: botfly, parasite, prevalence Introduction Rodent bot or warble flies (Diptera: Cuterebridae) are common parasites of small mammals (Goddard 1986, Catts and Mullen 2002). Occasionally, they have been found infesting humans (Goddard 1997, Penner 1958). Cuterebra sp. larvae, primarily C. emasculator, are found on eastern gray squirrels (Sciurus carolinensis) from July through October (Jacobson et al. 1981). Squirrel hunters commonly notice bot fly larvae, also referred to as wolves or heel flies, on squirrels during fall hunting seasons and have been known to destroy squirrels they have harvested because they were thought to be unfit to eat (Atkeson and Givens 1951, Jacobson et al. 1979). During field enforcement activities Tennessee Wildlife Resources agency wildlife law enforcement officers routinely record the presence of bot fly larvae on gray squirrels harvested by hunters. However, individual numbers of larvae present on each squirrel are not recorded.
    [Show full text]