10-25-82 Duchesne N.G.C. Federal#21-5-G Api No. 43-013

Total Page:16

File Type:pdf, Size:1020Kb

10-25-82 Duchesne N.G.C. Federal#21-5-G Api No. 43-013 DATEFILED 10-25-82 LAND: FEE & PATENTED STATE LEASE NO PUBÚlCLEASENO. U-30096 INDlAN DRILLINGAPPROVED: 10-26-82 SPUDDED IN: COMPLETED: .., PUT TO PRODUCING INITIAL PRODUCTION GRAVITY A.P.L ROO UCINGZONES: TOTALDEPTH: WELL ELEVATION: ELED:ABAN UNIT: COUNTY: DUCHESNE WELLNO. N.G.C. FEDERAL#21-5-G API NO. 43-013-30698 LOCATION 673 FT FROM (N) INE 2005 FT FROMXX(W) LINE NE NW 1/4 - 1/4 SEC. QUATERNARY Point Chinie Molas Alluvium Wahweap Shinarump Manning Canyon Lake beds Masuk Moenkopi Mississippian Pleistocene Colorado Sinbad Humbug Lake beds Sego PERMIAN Brazer TERTIARY Buck Tongue Kaibab Pilot Shale Pliocene Castlegate Coconino Madison Salt Lake Mancos Cutler Leadville Oligocene Upper Hoskinnini Redwall Norwood Middle DeChelly DEVONIAN Eocene Lower White Rim Upper Duchesne River Emery Organ Rock Middle Uinta Blue Gate Cedar Mesa Lower Bridger Ferron Haigaite Tongue Ouray Green River ' Frontier Phosphoria Elbert Dakota Ca € Park City McCracken Burro Canyon Rico (Goodridge) Aneth Cedar Mountain Supai Simonson Dolomite Buckhorn Wolfcamp Sevy Dolomite JURASSIC CARBON\ FEROUS North Point Wasatch Morrison Pennsylvanian SILURIAN Stone Cabin Salt Wash Oguirrh Laketown Dolomite Colton San Rafeal Gr. Weber ORDOVICIAN Flagstaff Summerville Morgan Eureka Quartzite North Horn Bluff Sandstone Hermosa Pogonip Limestone Almy Curtis CAMBRIAN Paleocene Entrada Pardox Lynch Current Creek Moab Tongue Ismay Bowman North Horn Carmel Desert Creek Tapeats CRETACEOUS Glen Canyon Gr. Akab Ophir Montana Navajo Barker Creek ÜTtiä Staisiepihnent of the Interior Cod¥¾WMWEBon 2000 Administration Building 1745 West 1700 South Salt Lake City, Utah 84104 February 2, 1981 General Outline for the Protection and Isolation of Ground Water and Oil Shale in the Uinta Basin. The oil shale occurs with varying thicknesses in most parts of the Uinta Basin and at varying depths. Ground water also occurs at varied depths above and below the Oil Shale. These ground waters have varying degrees of salinity. Nonetheless, drilling for hydrocarbon in the Uinta Basin should provide for the protection of the oil shale and the ground water if either is present. The protection of the oil shale and the ground water can effectively be carried on through the design of an adequate casing and cementing program for each well drilled in the area. In the Uinta Basin, water occurs mainly in the Uinta and the Green River formations. As drilling for hydrocarbon gets deeper into the crust of the earth, more ground water might be encountered and will be protected as it is encountered. This notice's purpose is to attempt to lay the groundwork for a casing program and cementing program that will protect the oil shale and the ground water if present. These programs are to be considered as guidelines. The specificity of casing depth, amount of cement and the depth of staging collars will be considered on an individual basis after a careful study of the logs of each individual well. Cementing from the bottom up is an economical solution if carefully conducted. The casing and cementing program presented here as an example, will assume that fresh water was encountered in the upper parts of the Green River, that the oil shale occurs in the middle of the Green River (1000 foot section) and that some ground water is encountered in the lower parts of-the Green River. In this case, three areas will have to be cemented to assure the integrity of the ground water and oil shale; These areas are above the upper fresh water, across the oil shale and below the lower waten aquifer. Deep aquifers that do not contain useful water are cemented to prevent water zone influence on production. The following casing and cementing program will be appropriate for this example: A. Surface casing is set at approximately 300 feet and cemented to the B. The next casing string will be set at approximately 300 feet below the lowest aquifer. Cementing will be done in three stages, using two stage collars and cement baskets or equivalent as described below and on attached sketches: 1. Cement first stage through the casing shoe to fill annulus back to base of lower aquifer. 2. Place 1st stage collar (with cement basket immediately below) at a selected point at the base of the oil shale. Cement will have to reach top of oil shale. 3. Place 2nd stage collar (with cement basket immediately below) 50 feet above the top of the Bird's Nest aquifer - and cement to at least 300 feet above the stage collar. C. The above is an example. Reasonable equivalents that accomplish these same protective measures, (such as cementing the water zones instead of isolating them), depending on the individual cases will be considered for approval. D. When the above mentioned well is to be abandoned, inner-casing plugs will have to be placed at the same depth as the above mentioned annulus cement jobs. The use of cement bond logs will verify the authenticity of the cement job performed. E. The Operator of such well should notify U.S.G.S. 48 hours prior to commencement of casing and cementing activity, so a technician could be dispatched to witness the operations to verify compliance with casing and cementing program. Attached Sketches: 1. Schematic of the required casing and cementing program. 2. Cross section of the Uinta Basin. 3. Schematic of the general ground water protection program. E. W. Guynn District Oil and Gas Supervisor . IIþ (Il ' NATURAL GAS COHPORATION OF CALIFORNIA 85 South 200 East Vernal,Utah 84078 October 22, 1982 Mr. E. W. Guynn Minerals Management Service 1745 West 1700 South, Suite 2000 Salt Lake City, UT 84104 Pf/vision of Oil, Gas & Mining 4241 State Office Building Salt Lake City, UT 84114 Re: NGC #21-5-G Federal NEl NWi Section 5, T.9S., R.16E. Duchesne County, Utah Pleasant Valley area Gentlemen: Natural Gas Corporation of California proposes to drill the subject well. Enclosed are the following documents: 1) Application for Permit to Drill 2) Surveyor's Plat 3) Ten Point Plan 4) 13 Point Surface Use Plan Your early consideration and approval of this application would be appre- ciated. Should you have any questions, please contact this office. Sincerely, Rick Canterbury Associate Engineer /kh Encls.. cc: Operations C. T. Clark E. R. TRI TE* approved. 9-3 1 SUBMIT IN Form 'C Budget Bureau No. 42-R1425. (May 1 ' (Other instructions on UNITED STATES reverseside) gy y,wy, DEPARTMENT OF THE INTERIOR 5. LEASE DESIGNATIO GEOLOGICAL SURVEY U-30096 re:Eno 6. IF INDIAN, ALLOTTEE OR TRIBE NAME APPLICATION FOR PERMITTO DRILL,DEEPEN,OR PLUG BACK vn la. TYPE OF WORK 7. UNIT AGREEMENT NAME DRILL X DEEPENO PLUG BACK O ] SALT LAKE CITY,UTAN b. TYPEOFWELL LNNGLE MONLTIPLE OIELLL ESLL . FARM OR LEASE NAME OTHER 2. NAME OF OPERATOR Federal Natural Gas Corporation of California Û. WELI, NO. 3. ADDRESS OF OPERATOR NGC#21-5-G io. FIELD AND POOL, OR WILDCAT 85 South 200 East, Vernal , UT 84078 State requirements.*) T. LOCbATI N OF WELL (Report location clearly and in accordance with any 6 SSant VMl ey 11. SEC., T., R., M., OR BLK. 673' FNL and 2005' FWL (NEi NWl) of Section 5, T.9S., R.16E. AND SURVEY OR AREA At proposed prod. zone Section 5, T.9S., R.16E. OFFICE* 12. COUNTY OR PARiBH 13. STATE Ì4. DISTANCE IN MILES AND DIRECTION FROM NEAREST TOWN OR POST Approximately 9 miles southwest of Myton, Utah Duchesne Utah PROPOSED* lŠ. DISTANCE FROM 16. NO. OF ACRES IN LEASE 17. NO. OF ACRES ASSIGNED LOCATION TO NEAREST TO THIS WELL PROPERTY OB LEASE LINE, FT· 673' 1360 40 (Also to nearest drlg. unit line, if any) LOCATION* DEPTH 2Û. BOTARY .OR CABLE TOOLS S. DIÑTANCE FROM PROPOSED 19. PROPOSED TO NEAREST WELL, DRILLING, COMPLETED, OR APPLIED FOR, ON THIS LEASE, Fr. 6600 Rotary. 22. APraox; DATE woaK WILL sTART* 21. ELEVATIONs (Show whether DF, RT, GR, etc.) 5797' Ground January 15, 1983 PROPOSED CASING AND CEMENTING PROGRAM SETTING QUANTITY OF CEMENT SIZE OF HOLE SIZE OF CASING WEIGHT PER FOOT DEPTH 12-1/4" 9-5/8" 36_#, K-55 300 To surface 7-7/8" 5-1/2" 17#, N-80 _ _ T.D. As required to protect the oil shale and producing formations. give present productive zone and proposed new productive IN ABOVE SPACE DESCRIBE PROPOSED PROonAM: If proposal is to deepen or plug back, data on vertical depths. Give blowout zone. If proposal is to drill or deepen directionally, give pertinent data on subsurface locations and measured and true preventer program, if any. ASsociate Engineer October 22, 1982 SIGNED TITLE (This space for Federal or State office use) PERMITNO APPROVALDATE E. W. Guynn IStrict Oil& Gas Supervisor APPROVED BY TL DATE CONDITIONS OF OVAL, IF AN : cc: MMS; Div. 0G&M; Operations; CTClark; ERHenry FLARINGOR VENTINGOF OF APPROVAL ATTACHED GAS IS SDATEEDC1h800NTL4-A NOTICEOF APPROVAL CONDITIONS TO OPERATOR'S COPY PROJECT NATURAL GAS CORP. OF CALIFORNIA ell locotiõn NG¢#27- SEG lototed as shown in the NE I/4 NWl/4 (Lot 3) Section 5, T9S, RI6 E , S.L.B.B M, Duchesne County, Utoh. S89 57'E S 43#/B'07 "W - 924 /4' 20 0 5' (Comp.) NGC# 2/- 5 - Q Elem. Ungraded Ground 579Ž' Lot 4 Lot 3 Lot 2 Lot / CERTIFICATE THIS IS TO CERTIFY TNAT THE ABOVE PLAT WAS PREPARED FROM FIELD NOTES OF ACTUAL SURVEYS MADE BY ME OR UNDER MY SUPERVISION AND THAT THE SAME ARE TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND REGISTEREO LAND RVE REGISTRATlúN NE STATE OF UTAH UINTAH ENGINEERING & l..AND SURVEYING R 0. BOK Q - 88 SOUTH - 200 EAST VERNAL, UTAH - 84078 N89 54 W SCALE 1000° OATE \" = 9/27/82 PARTY REFERENCES RK JF RP GLO Plot X = Section Corners Locatell WEATNER fitE Fe i r NATURAL 0 0 Natural Gas Corporation of California Well No.
Recommended publications
  • Salpeter Mass Functions of Young Populous Clusters in the LMC? T
    with the help of P. Joulie and manufac- and F. Casoli Ed., IAU Symposium 146, Davies, R.D., Elliott, K.H., Meaburn, J. 1976, tured with the help of our observatory p. 182. M.N.R.A.S. 81, 89. mechanics workshops, more especially Balick, B., Boeshaar, G.O., Gull, T.R. 1980, Downes, D., Wilson, T.L., Bieging, J., Wink, J. J. Urios who also helped us at La Silla. Astrophys. J., 242, 584. 1980, Astron. Astrophys. Suppl., 40, 379. Boulesteix, J., Georgelin, Y.P., Marcelin, M., We also want to thank A. Viale for her Grabelsky, D.A., Cohen, R.S., Bronfman, L., Monnet, G., 1984, Instrumentation in As- Thaddeus, P. 1988, Astrophys. J., 331, constant help when reducing the data in tronomy, V.A. Boksenberg, D.L. Crawford 181. Marseille. Ed., Proc. SPlE 445, p. 37. Georgelin, Y.M., Georgelin, Y.P. 1976, As- Bronfman, L., Alvarez, H., Cohen, R.S., tron. Astrophys., 49, 57. References Thaddeus, P. 1989, Astrophys. J. Suppl. Henize, K.G. 1956, Astrophys. J. Suppl., 2, Amram, P., Boulesteix, J., Marcelin, M., Ser. 71, 481. 31 5. 1991, Dynamics of Galaxies and their Caswell, J.L., Haynes, R.F. 1987, Astron. As- Melnick, J. 1989, The Messenger, 57, 4. Molecular cloud distributions, F. Combes trophys., 171, 261. Salpeter Mass Functions of Young Populous Clusters in the LMC? T. RICHTLER, K.S. DE BOER, Sternwarte der Universitat Bonn, Germany R. SAGAR, Indian Institute of Astrophysics, Bangalore, India 1. The Magellanic Clouds as the Initial Mass Function (IMF) of newly vance for galaxy evolution, since it con- Laboratories for Deriving IMFs formed stars.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • View the Energy Map of Trinidad and Tobago, 2017 Edition
    Trinidad and Tobago LNG export destinations 2015 (million m3 of LNG) Trinidad and Tobago deepwater area for development 60°W 59°W 58°W Trinidad and Tobago territorial waters ENERGY MAP OF TRINIDAD AND TOBAGO 1000 2000 m m 2017 edition GRENADA BARBADOS Trinidad and Tobago 2000m LNG to Europe A tlantic Ocean 2.91 million m3 LNG A TLANTIC Caribbean 2000m 20 Produced by Petroleum Economist, in association with 00 O CEAN EUROPE Sea m Trinidad and Tobago 2000m LNG to North America NORTH AMERICA Trinidad and Tobago 5.69 million m3 LNG LNG to Asia 3 GO TTDAA 30 TTDAA 31 TTDAA 32 BA 1.02 million m LNG TO Trinidad and Tobago OPEN OPEN OPEN 12°N LNG to MENA 3 1.90 million m LNG ASIA Trinidad and Tobago CARIBBEAN TRINIDAD AND TOBAGO 2000m LNG to Caribbean Atlantic LNG Company profile Company Profile Company profile Company Profile 3 Established by the Government of Trinidad and Tobago in August 1975, The National Gas Company of Trinidad and Tobago Limited (NGC) is an BHP Billiton is a leading global resources company with a Petroleum Business that includes exploration, development, production and marketing Shell has been in Trinidad and Tobago for over 100 years and has played a major role in the development of its oil and gas industry. Petroleum Company of Trinidad and Tobago Limited (Petrotrin) is an integrated Oil and Gas Company engaged in the full range of petroleum 3.84 million m LNG internationally investment-graded company that is strategically positioned in the midstream of the natural gas value chain.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Arxiv:1408.6413V1 [Astro-Ph.GA] 27 Aug 2014 Ot Africa
    The Abundance Properties of Nearby Late-Type Galaxies. II. The Relation between Abundance Distributions and Surface Brightness Profiles L. S. Pilyugin1 and E. K. Grebel and I. A. Zinchenko1 Astronomisches Rechen-Institut, Zentrum f¨ur Astronomie der Universit¨at Heidelberg, M¨onchhofstr. 12–14, 69120 Heidelberg, Germany [email protected], [email protected], [email protected] A. Y. Kniazev2,3 South African Astronomical Observatory, PO Box 9, 7935 Observatory, Cape Town, South Africa [email protected] Received ; accepted arXiv:1408.6413v1 [astro-ph.GA] 27 Aug 2014 1Visiting Astronomer, Main Astronomical Observatory of National Academy of Sciences of Ukraine, 27 Zabolotnogo str., 03680 Kiev, Ukraine. 2Southern African Large Telescope Foundation, PO Box 9, 7935 Observatory, Cape Town, South Africa. 3Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow 119992, Russia –2– ABSTRACT The relations between oxygen abundance and disk surface brightness (OH–SB relation) in the infrared W 1 band are examined for a nearby late-type galaxies. The oxygen abundances were presented in Paper I. The photometric character- istics of the disks are inferred here using photometric maps from the literature through bulge-disk decomposition. We find evidence that the OH – SB relation is not unique but depends on the galactocentric distance r (taken as a fraction of the optical radius R25) and on the properties of a galaxy: the disk scale length h and the morphological T -type. We suggest a general, four-dimensional OH – SB relation with the values r, h, and T as parameters. The parametric OH – SB relation reproduces the observed data better than a simple, one-parameter relation; the deviations resulting when using our parametric relation are smaller by a factor of ∼1.4 than that the simple relation.
    [Show full text]
  • My Finest NGC Album
    My Finest NGC Album A detailed record of my journey through The Royal Astronomical Society of Canada’s Finest NGC list Name: ______________________________ Centre or Home Location: ______________________________ The New General Catalogue or NGC contains 7,840 entries and forms the core of most people's " life list" of observing targets. The NGC was originally published in 1888 by J.L.E. Dreyer and therefore predated photographic astronomy. The Finest NGC list, compiled by Alan Dyer complements the Messier List, as there is no overlap. The list features many fine deep-sky treasures as well as a few somewhat more challenging objects. Once you have observed all of the objects on this list, application forms can be found on the RASC website at www.rasc.ca. The FNGC certificate has been awarded since 1995. Here is an overview of the Finest NGC Observing List Finest NGC Objects Number Notes Open Clusters 12 Including the famous Double Cluster in Perseus, NGC 7789 in Cassiopeia, and NGC 6633 in Ophiuchus. Globular Clusters 2 NGC 5466 in Bootes and NGC 6712 in Scutum. Diffuse Nebulae 14 Includes the great Veil Nebula as well as the North America and Rosette nebulae. Planetary Nebulae 24 Includes many fine PN's like the Ghost of Jupiter, the Cat's Eye, the Blinking Planetary, the Helix, the Blue Snowball, and the Clown Face nebulae. Galaxies 58 Includes the amazing NGC 4565 in Coma Berenices, NGC 253 in Sculptor, and NGC 5907 in Draco. Total 110 The Finest NGC list can be started during any season. Why Record Your Observations? Recording observations is important for two reasons.
    [Show full text]
  • Gear-Flex Coupling
    RATHI TRANSPOWER PVT. LTD. PUNE - INDIA PRODUCT MANUAL GEAR-FLEX COUPLING TYPE – LFG/LHG R-PM-G-01/02-01/14 Page 1 INDEX CONTENTS PAGE • Standard Features 3 • At a Glance 3 • Gear-flex Family 4 • Std. Material of Construction 4 • Ratings for Standard couplings 5 • Weight & M.I. for standard couplings 6 • Customized Gear-flex Specials 7 • Half Flex Couplings with Floating Shafts 7 • Spacer Couplings 8 • Reversed Hub Combinations 8 • Lubricants 9 • Requirements of API-671 9 • Selection of Size of Coupling 10 • Typical Service Factors 11-13 • Std. Tolerances for Finish Bore & Keyway 14 • Applications 14 • Gear-flex couplings equivalent to Competitor’s couplings 15-18 R-PM-G-01/02-01/14 Page 2 GEAR-FLEX COUPLING STANDARD FEATURES OF GEAR-FLEX COUPLING ♦ Less backlash. ♦ High power to weight ratio. ♦ Compact assembly. ♦ Accommodates angular, parallel & axial misalignments. ♦ Generally used up to 120°C. Can be used for higher temperatures by using proper grade of oil or grease. ♦ Can be dynamically balanced to the required grade as per ISO-1940. AT A GLANCE SIZES Full Flexible Type LFG - 100 to 119 (20 sizes) Half Flexible Type LHG - 100 to 110 (11 sizes) RATING RANGE TYPE LFG - 5.9 kW to 17454 kW @ 100 rpm TYPE LHG- 5.9 kW to 963 kW @ 100 rpm TORQUE RANGE TYPE LFG - 559 Nm to 1666744 Nm TYPE LHG- 559 Nm to 91922 Nm BORE RANGE TYPE LFG - 13 mm. to 710 mm. TYPE LHG- 13 mm. to 260 mm. ANGULAR MISALIGNMENT - 1.5° per gear mesh Maximum COMPLIANCE WITH API-671 SPECIFICATIONS, IF REQD.
    [Show full text]
  • A Comprehensive Field Guide to the Ngc Volume 1: Autumn/Winter (Andromeda-Eridanus)
    A COMPREHENSIVE FIELD GUIDE TO THE NGC VOLUME 1: AUTUMN/WINTER (ANDROMEDA-ERIDANUS) BHAVESH JIVAN-KALA PAREKH A COMPREHENSIVE FIELD GUIDE TO THE NGC VOLUME 2: AUTUMN/WINTER (FORNAX-VOLANS) BHAVESH JIVAN-KALA PAREKH A COMPREHENSIVE FIELD GUIDE TO THE NGC VOLUME 3: SPRING/SUMMER (ANTILA-INDUS) BHAVESH JIVAN-KALA PAREKH A COMPREHENSIVE FIELD GUIDE TO THE NGC VOLUME 4: SPRING/SUMMER (LEO-VULPECULA) BHAVESH JIVAN-KALA PAREKH Front Cover images: Vol 1: NGC 772/ARP 78 Vol 2: NGC 7317-18-19-20 Stephen’s Quintet Vol 3: NGC 4038-39/ARP 244 Antennae Galaxies Vol 4: NGC 5679/ARP 274 Galaxy Triplet Three of the galaxies in this famous grouping, Stephan's Quintet, A beautiful composite image of two colliding galaxies, the A system of three galaxies that appear to be partially overlapping in NGC 772, a spiral galaxy, has much in common with our home are distorted from their gravitational interactions with one another. Antennae galaxies, located about 62 million light-years from Earth. the image, although they may be at somewhat different distances. galaxy, the Milky Way. Each boasts a few satellite galaxies, small One member of the group, NGC 7320 (upper right) is actually The Antennae galaxies take their name from the long antenna-like The spiral shapes of two of these galaxies appear mostly intact. galaxies that closely orbit and are gravitationally bound to their seven times closer to Earth than the rest. "arms," seen in wide-angle views of the system. These features The third galaxy (to the far left) is more compact, but shows were produced by tidal forces generated in the collision, which parent galaxies.
    [Show full text]
  • My Finest NGC Album
    My Finest NGC Album A detailed record of my journey through The Royal Astronomical Society of Canada’s Finest NGC list Name: ______________________________ Centre or Home Location: ______________________________ The New General Catalogue or NGC contains 7,840 entries and forms the core of most people's "life list" of observing targets. The NGC was originally published in 1888 by J.L.E. Dreyer and therefore predated photographic astronomy. The Finest NGC list, compiled by Alan Dyer complements the Messier List, as there is no overlap. The list features many fine deep-sky treasures as well as a few somewhat more challenging objects. Once you have observed all of the objects on this list, application forms can be found on the RASC website at www.rasc.ca. The FNGC certificate has been awarded since 1995. Here is an overview of the Finest NGC Observing List Finest NGC Objects Number Notes Open Clusters 12 Including the famous Double Cluster in Perseus, NGC 7789 in Cassiopeia, and NGC 6633 in Ophiuchus. Globular Clusters 2 NGC 5466 in Bootes and NGC 6712 in Scutum. Diffuse Nebulae 14 Includes the great Veil Nebula as well as the North America and Rosette nebulae. Planetary Nebulae 24 Includes many fine PN's like the Ghost of Jupiter, the Cat's Eye, the Blinking Planetary, the Helix, the Blue Snowball, and the Clown Face nebulae. Galaxies 58 Includes the amazing NGC 4565 in Coma Berenices, NGC 253 in Sculptor, and NGC 5907 in Draco. Total 110 The Finest NGC list can be started during any season. Why Record Your Observations? Recording observations is important for two reasons.
    [Show full text]
  • Ngc #21-15 Ngc #21-15 Ngc #21-15
    TAH OIL AND GAS CONSERVATION COMMISSIGN REMARKS: WELLLOG ELECTRICLOGs X WATERSANDS LOCATIONINSPECTED SUB. REPORT/abd. DATE FILED LAND:FEE & PATENTED STATELEASENO PUBLICLEASENo U-10760 INDIAN DRILLINGAPPROVED: SPUDDED IN: COMPLETED: PUT TO PRODUCING: IN1TIAL PRODUCTION: GRAVITY A.P.I. GOR: PRODUCINGZONES .. TOTAL DEPTH: WELL ELEVATION: DATEABANDONED: FIELD: Monutilent Butte UNIT: cOUNTY: Duchesne WELLNO. Federal NGC #21-15 API# 43-013-30614 ' LOCATION 660 FT. FROM (N) Å LINE, FT FROM i (W) LINE. NE NN 1/4 - 1/4 SEC Chinle Motas Alluvium Wahweap Shinarump Manning Canyon Lake beds Masuk Moenkopi Mississippian Pleistocene Colorado Sinbad Humbug Lake beds Sego PERMIAN Brazer TERTIARY Buck Tongue Kaibab Pilot Shale Pliocene Castlegate Coconino Madison Salt Lake Mancos Cutler Leadville Oligocene Upper Hoskinnini Redwall Norwood Middle DeChelly DEVONIAN Eocene Lower White Rim Upper Duchesne River Emery Organ Rock Middle Uinta Blue Gate Cedar Mesa Lower Bridger Ferron Halgaite Tongue Ouray Green River Frontier Phosphoria Elbert Dakota Park City McCracken Burro Canyon Rico (Goodridge) Aneth Cedar Mountain Supai Simonson Dolomite Buckhorn Wolfcamp Sevy Dolomite JURASSIC CARBONI FEROUS North Point Wasatch Morrison Pennsylvanian SILURIAN Stone Cabin Salt Wash Oguirrh Laketown Dolomite Colton San Rafeal Gr. Weber ORDOVICIAN Flagstaff Summerville Morgan Eureka Quartzite North Horn Bluff Sandstone Hermosa Pogonip Limestone Almy . Curtis CAMBRIAN Paleocene Entrada Pardox Lynch Current Creek Moab Tongue Ismay Bowman North Horn Carmel Desert Creek Tapeats CRETACEOUS Glen Canyon Gr. Akab Ophir Montana Navajo Barker Creek Tintic Mesaverde Kayenta PRE - CAMBRIAN cekh AS 9 9 NATURAL GAS CORPORATION OF CALIFORNIA 85South2OOEast VernaL Utah 84078 (801)789-4573 September 18, 1981 Mr. E. W. Guynn Geological Survey-Conservation Div.
    [Show full text]
  • DSO List V2 Current
    7000 DSO List (sorted by constellation - magnitude) 7000 DSO List (sorted by constellation - magnitude) - from SAC 7.7 database NAME OTHER TYPE CON MAG S.B. SIZE RA DEC U2K Class ns bs SAC NOTES M 31 NGC 224 Galaxy AND 3.4 13.5 189' 00 42.7 +41 16 60 Sb Andromeda Galaxy;Local Group;nearest spiral NGC 7686 OCL 251 Opn CL AND 5.6 - 15' 23 30.1 +49 08 88 IV 1 p 20 6.2 H VIII 69;12* mags 8...13 NGC 752 OCL 363 Opn CL AND 5.7 - 50' 01 57.7 +37 40 92 III 1 m 60 9 H VII 32;Best in RFT or binocs;Ir scattered cl 70* m 8... M 32 NGC 221 Galaxy AND 8.1 12.4 8.5' 00 42.7 +40 52 60 E2 Companion to M31; Member of Local Group M 110 NGC 205 Galaxy AND 8.1 14 19.5' 00 40.4 +41 41 60 SA0 M31 Companion;UGC 426; Member Local Group NGC 272 OCL 312 Opn CL AND 8.5 - 00 51.4 +35 49 90 IV 1 p 8 9 NGC 7662 PK 106-17.1 Pln Neb AND 8.6 5.6 17'' 23 25.9 +42 32 88 4(3) 14 Blue Snowball Nebula;H IV 18;Barnard-cent * variable? NGC 956 OCL 377 Opn CL AND 8.9 - 8' 02 32.5 +44 36 62 IV 1 p 30 9 NGC 891 UGC 1831 Galaxy AND 9.9 13.6 13.1' 02 22.6 +42 21 62 Sb NGC 1023 group;Lord Rosse drawing shows dark lane NGC 404 UGC 718 Galaxy AND 10.3 12.8 4.3' 01 09.4 +35 43 91 E0 Mirach's ghost H II 224;UGC 718;Beta AND sf 6' IC 239 UGC 2080 Galaxy AND 11.1 14.2 4.6' 02 36.5 +38 58 93 SBa In NGC 1023 group;vsBN in smooth bar;low surface br NGC 812 UGC 1598 Galaxy AND 11.2 12.8 3' 02 06.9 +44 34 62 Sbc Peculiar NGC 7640 UGC 12554 Galaxy AND 11.3 14.5 10' 23 22.1 +40 51 88 SBbc H II 600;nearly edge on spiral MCG +08-01-016 Galaxy AND 12 - 1.0' 23 59.2 +46 53 59 Face On MCG +08-01-018
    [Show full text]