The Edaphic Factor in the Origin of Plant Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tc Balikesir Üniversitesi Fen Bilimleri
T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİYOLOJİ ANABİLİM DALI TÜRKİYE’DE YETİŞEN INULA L. (ASTERACEAE) TÜRLERİNİN MOLEKÜLER SİSTEMATİK ANALİZİ VE EKOLOJİSİ DOKTORA TEZİ EMRE SEVİNDİK BALIKESİR, MAYIS - 2014 T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİYOLOJİ ANABİLİM DALI TÜRKİYE’DE YETİŞEN INULA L. (ASTERACEAE) TÜRLERİNİN MOLEKÜLER SİSTEMATİK ANALİZİ VE EKOLOJİSİ DOKTORA TEZİ EMRE SEVİNDİK BALIKESİR, MAYIS - 2014 KABUL VE ONAY SAYFASI EMRE SEVİNDİK tarafından hazırlanan “TÜRKİYE’DE YETİŞEN INULA L. (ASTERACEAE) TÜRLERİNİN MOLEKÜLER SİSTEMATİK ANALİZİ VE EKOLOJİSİ” adlı tez çalışmasının savunma sınavı 02.05.2014 tarihinde yapılmış olup aşağıda verilen jüri tarafından oy birliği / oy çokluğu ile Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Doktora Tezi olarak kabul edilmiştir. Jüri Üyeleri İmza Danışman Yard.Doç.Dr. Fatih COŞKUN Üye Prof.Dr. Gülendam TÜMEN ............ Üye Prof.Dr. Ali ÇELİK ................ Üye Prof.Dr. Ahmet DURAN ................ Üye Doç.Dr. Ekrem DÜNDAR .................. Jüri üyeleri tarafından kabul edilmiş olan bu tez BAÜ Fen Bilimleri Enstitüsü Yönetim Kurulunca onanmıştır. Fen Bilimleri Enstitüsü Müdürü Prof. Dr. Cihan ÖZGÜR ............................................. Bu tez çalışması Balıkesir Üniversitesi Bilimsel Araştırma Projeler Birimi tarafından BAP 2013/92 nolu proje ile desteklenmiştir. ÖZET TÜRKİYE’DE YETİŞEN INULA L. (ASTERACEAE) TÜRLERİNİN MOLEKÜLER SİSTEMATİK ANALİZİ VE EKOLOJİSİ DOKTORA TEZİ EMRE SEVİNDİK BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ -
Mcclinton Unr 0139M 13052.Pdf
University of Nevada, Reno Habitat preferences, intraspecific variation, and restoration of a rare soil specialist in northern Nevada A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Natural Resources and Environmental Science by Jamey D. McClinton Dr. Elizabeth A. Leger/Thesis Advisor December, 2019 Copyright by Jamey D. McClinton 2019 All Rights Reserved We recommend that the thesis prepared under our supervision by Jamey D. McClinton Entitled Habitat preferences, intraspecific variation, and restoration of a rare soil specialist in northern Nevada be accepted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Elizabeth Leger, Ph.D., Advisor Paul Verburg, Ph.D., Committee member Thomas Parchman, Ph.D., Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School December-2019 i Abstract Edaphic specialization in plants is associated with the development of novel adaptations that frequently lead to speciation, causing unique edaphic environments to be associated with rare and endemic plant species worldwide. These species contribute significantly to global biodiversity, but are especially vulnerable to disturbance and climate change because of their inherently patchy distributions and locally adapted populations. Successful conservation of these species depends upon understanding their habitat requirements and the amounts and distributions of genetic and phenotypic diversity among populations. Little is known about the habitat requirements or -
Literature Cited
Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes. -
Abies Bracteata Revised 2011 1 Abies Bracteata (D. Don) Poit
Lead Forest: Los Padres National Forest Forest Service Endemic: No Abies bracteata (D. Don) Poit. (bristlecone fir) Known Potential Synonym: Abies venusta (Douglas ex Hook.) K. Koch; Pinus bracteata D. Don; Pinus venusta Douglas ex Hook (Tropicos 2011). Table 1. Legal or Protection Status (CNDDB 2011, CNPS 2011, and Other Sources). Federal Listing Status; State Heritage Rank California Rare Other Lists Listing Status Plant Rank None; None G2/S2.3 1B.3 USFS Sensitive Plant description: Abies bracteata (Pinaceae) (Fig. 1) is a perennial monoecious plant with trunks longer than 55 m and less than 1.3 m wide. The branches are more-or-less drooping, and the bark is thin. The twigs are glabrous, and the buds are 1-2.5 cm long, sharp-pointed, and non- resinous. The leaves are less than 6 cm long, are dark green, faintly grooved on their upper surfaces, and have tips that are sharply spiny. Seed cones are less than 9 cm long with stalks that are under15 mm long. The cones have bracts that are spreading, exserted, and that are 1.5–4.5 cm long with a slender spine at the apex. Taxonomy: Abies bracteata is a fir species and a member of the pine family (Pinaceae). Out of the fir species growing in North America (Griffin and Critchfield 1976), Abies bracteata has the smallest range and is the least abundant. Identification: Many features of A. bracteata can be used to distinguish this species from other conifers, including the sharp-tipped needles, thin bark, club-shaped crown, non-resinous buds, and exserted spine tipped bracts (Gymnosperms Database 2010). -
Vascular Plants of Santa Cruz County, California
ANNOTATED CHECKLIST of the VASCULAR PLANTS of SANTA CRUZ COUNTY, CALIFORNIA SECOND EDITION Dylan Neubauer Artwork by Tim Hyland & Maps by Ben Pease CALIFORNIA NATIVE PLANT SOCIETY, SANTA CRUZ COUNTY CHAPTER Copyright © 2013 by Dylan Neubauer All rights reserved. No part of this publication may be reproduced without written permission from the author. Design & Production by Dylan Neubauer Artwork by Tim Hyland Maps by Ben Pease, Pease Press Cartography (peasepress.com) Cover photos (Eschscholzia californica & Big Willow Gulch, Swanton) by Dylan Neubauer California Native Plant Society Santa Cruz County Chapter P.O. Box 1622 Santa Cruz, CA 95061 To order, please go to www.cruzcps.org For other correspondence, write to Dylan Neubauer [email protected] ISBN: 978-0-615-85493-9 Printed on recycled paper by Community Printers, Santa Cruz, CA For Tim Forsell, who appreciates the tiny ones ... Nobody sees a flower, really— it is so small— we haven’t time, and to see takes time, like to have a friend takes time. —GEORGIA O’KEEFFE CONTENTS ~ u Acknowledgments / 1 u Santa Cruz County Map / 2–3 u Introduction / 4 u Checklist Conventions / 8 u Floristic Regions Map / 12 u Checklist Format, Checklist Symbols, & Region Codes / 13 u Checklist Lycophytes / 14 Ferns / 14 Gymnosperms / 15 Nymphaeales / 16 Magnoliids / 16 Ceratophyllales / 16 Eudicots / 16 Monocots / 61 u Appendices 1. Listed Taxa / 76 2. Endemic Taxa / 78 3. Taxa Extirpated in County / 79 4. Taxa Not Currently Recognized / 80 5. Undescribed Taxa / 82 6. Most Invasive Non-native Taxa / 83 7. Rejected Taxa / 84 8. Notes / 86 u References / 152 u Index to Families & Genera / 154 u Floristic Regions Map with USGS Quad Overlay / 166 “True science teaches, above all, to doubt and be ignorant.” —MIGUEL DE UNAMUNO 1 ~ACKNOWLEDGMENTS ~ ANY THANKS TO THE GENEROUS DONORS without whom this publication would not M have been possible—and to the numerous individuals, organizations, insti- tutions, and agencies that so willingly gave of their time and expertise. -
Washington Flora Checklist a Checklist of the Vascular Plants of Washington State Hosted by the University of Washington Herbarium
Washington Flora Checklist A checklist of the Vascular Plants of Washington State Hosted by the University of Washington Herbarium The Washington Flora Checklist aims to be a complete list of the native and naturalized vascular plants of Washington State, with current classifications, nomenclature and synonymy. The checklist currently contains 3,929 terminal taxa (species, subspecies, and varieties). Taxa included in the checklist: * Native taxa whether extant, extirpated, or extinct. * Exotic taxa that are naturalized, escaped from cultivation, or persisting wild. * Waifs (e.g., ballast plants, escaped crop plants) and other scarcely collected exotics. * Interspecific hybrids that are frequent or self-maintaining. * Some unnamed taxa in the process of being described. Family classifications follow APG IV for angiosperms, PPG I (J. Syst. Evol. 54:563?603. 2016.) for pteridophytes, and Christenhusz et al. (Phytotaxa 19:55?70. 2011.) for gymnosperms, with a few exceptions. Nomenclature and synonymy at the rank of genus and below follows the 2nd Edition of the Flora of the Pacific Northwest except where superceded by new information. Accepted names are indicated with blue font; synonyms with black font. Native species and infraspecies are marked with boldface font. Please note: This is a working checklist, continuously updated. Use it at your discretion. Created from the Washington Flora Checklist Database on September 17th, 2018 at 9:47pm PST. Available online at http://biology.burke.washington.edu/waflora/checklist.php Comments and questions should be addressed to the checklist administrators: David Giblin ([email protected]) Peter Zika ([email protected]) Suggested citation: Weinmann, F., P.F. Zika, D.E. Giblin, B. -
EDAPHIC DIFFERENTIATION in LASTHENIA: a MODEL for STUDIES in EVOLUTIONARY ECOLOGY Author(S): Nishanta Rajakaruna Source: Madroño, Vol
EDAPHIC DIFFERENTIATION IN LASTHENIA: A MODEL FOR STUDIES IN EVOLUTIONARY ECOLOGY Author(s): Nishanta Rajakaruna Source: Madroño, Vol. 50, No. 1 (JANUARY-MARCH 2003), pp. 34-40 Published by: California Botanical Society Stable URL: http://www.jstor.org/stable/41425490 . Accessed: 18/10/2013 21:05 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. California Botanical Society is collaborating with JSTOR to digitize, preserve and extend access to Madroño. http://www.jstor.org This content downloaded from 68.189.1.182 on Fri, 18 Oct 2013 21:05:19 PM All use subject to JSTOR Terms and Conditions Madroño,Vol. 50, No. 1, pp. 34-40, 2003 EDAPHIC DIFFERENTIATION IN LASTHENIA : A MODEL FOR STUDIES IN EVOLUTIONARY ECOLOGY Nishanta Rajakaruna Departmentof Biological Sciences, 371 Serra Mall, StanfordUniversity, Stanford,CA 94305-5020 nishanta@ stanford.edu Abstract Thecurrent knowledge of thegoldfield genus Lasthenia is discussed,emphasizing the possible role of edaphicfactors in thedivergence of thispredominantly Californian genus. Lasthenia species occupy a widearray of edaphic habitats ranging from serpentine outcrops to saltflats to guano deposits, thriving underspecific ion and osmotic conditions that are uninhabitable forthe vast majority ofspecies. Studies showthat ion accumulation and sequestration are commonstrategies used to counterosmotic effects, commonto mosthabitats harboring Lasthenia species. -
FERNS and FERN ALLIES Dittmer, H.J., E.F
FERNS AND FERN ALLIES Dittmer, H.J., E.F. Castetter, & O.M. Clark. 1954. The ferns and fern allies of New Mexico. Univ. New Mexico Publ. Biol. No. 6. Family ASPLENIACEAE [1/5/5] Asplenium spleenwort Bennert, W. & G. Fischer. 1993. Biosystematics and evolution of the Asplenium trichomanes complex. Webbia 48:743-760. Wagner, W.H. Jr., R.C. Moran, C.R. Werth. 1993. Aspleniaceae, pp. 228-245. IN: Flora of North America, vol.2. Oxford Univ. Press. palmeri Maxon [M&H; Wagner & Moran 1993] Palmer’s spleenwort platyneuron (Linnaeus) Britton, Sterns, & Poggenburg [M&H; Wagner & Moran 1993] ebony spleenwort resiliens Kunze [M&H; W&S; Wagner & Moran 1993] black-stem spleenwort septentrionale (Linnaeus) Hoffmann [M&H; W&S; Wagner & Moran 1993] forked spleenwort trichomanes Linnaeus [Bennert & Fischer 1993; M&H; W&S; Wagner & Moran 1993] maidenhair spleenwort Family AZOLLACEAE [1/1/1] Azolla mosquito-fern Lumpkin, T.A. 1993. Azollaceae, pp. 338-342. IN: Flora of North America, vol. 2. Oxford Univ. Press. caroliniana Willdenow : Reports in W&S apparently belong to Azolla mexicana Presl, though Azolla caroliniana is known adjacent to NM near the Texas State line [Lumpkin 1993]. mexicana Schlechtendal & Chamisso ex K. Presl [Lumpkin 1993; M&H] Mexican mosquito-fern Family DENNSTAEDTIACEAE [1/1/1] Pteridium bracken-fern Jacobs, C.A. & J.H. Peck. Pteridium, pp. 201-203. IN: Flora of North America, vol. 2. Oxford Univ. Press. aquilinum (Linnaeus) Kuhn var. pubescens Underwood [Jacobs & Peck 1993; M&H; W&S] bracken-fern Family DRYOPTERIDACEAE [6/13/13] Athyrium lady-fern Kato, M. 1993. Athyrium, pp. -
Checklist of the Vascular Plants of San Diego County 5Th Edition
cHeckliSt of tHe vaScUlaR PlaNtS of SaN DieGo coUNty 5th edition Pinus torreyana subsp. torreyana Downingia concolor var. brevior Thermopsis californica var. semota Pogogyne abramsii Hulsea californica Cylindropuntia fosbergii Dudleya brevifolia Chorizanthe orcuttiana Astragalus deanei by Jon P. Rebman and Michael G. Simpson San Diego Natural History Museum and San Diego State University examples of checklist taxa: SPecieS SPecieS iNfRaSPecieS iNfRaSPecieS NaMe aUtHoR RaNk & NaMe aUtHoR Eriodictyon trichocalyx A. Heller var. lanatum (Brand) Jepson {SD 135251} [E. t. subsp. l. (Brand) Munz] Hairy yerba Santa SyNoNyM SyMBol foR NoN-NATIVE, NATURaliZeD PlaNt *Erodium cicutarium (L.) Aiton {SD 122398} red-Stem Filaree/StorkSbill HeRBaRiUM SPeciMeN coMMoN DocUMeNTATION NaMe SyMBol foR PlaNt Not liSteD iN THE JEPSON MANUAL †Rhus aromatica Aiton var. simplicifolia (Greene) Conquist {SD 118139} Single-leaF SkunkbruSH SyMBol foR StRict eNDeMic TO SaN DieGo coUNty §§Dudleya brevifolia (Moran) Moran {SD 130030} SHort-leaF dudleya [D. blochmaniae (Eastw.) Moran subsp. brevifolia Moran] 1B.1 S1.1 G2t1 ce SyMBol foR NeaR eNDeMic TO SaN DieGo coUNty §Nolina interrata Gentry {SD 79876} deHeSa nolina 1B.1 S2 G2 ce eNviRoNMeNTAL liStiNG SyMBol foR MiSiDeNtifieD PlaNt, Not occURRiNG iN coUNty (Note: this symbol used in appendix 1 only.) ?Cirsium brevistylum Cronq. indian tHiStle i checklist of the vascular plants of san Diego county 5th edition by Jon p. rebman and Michael g. simpson san Diego natural history Museum and san Diego state university publication of: san Diego natural history Museum san Diego, california ii Copyright © 2014 by Jon P. Rebman and Michael G. Simpson Fifth edition 2014. isBn 0-918969-08-5 Copyright © 2006 by Jon P. -
Polyploid Plants Have Faster Rates of Multivariate Niche Differentiation Than Their Diploid Relatives
Ecology Letters, (2020) 23: 68–78 doi: 10.1111/ele.13402 LETTER Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives Abstract Anthony E. Baniaga,1* Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent Hannah E. Marx,1,2 Nils Arrigo1,3 species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, and Michael S. Barker1 ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of The peer review history for this arti- polyploid species are more differentiated than their diploid relatives and if the climatic niches of cle is available at https://publons. polyploid species differentiated faster than those of related diploids. We found that polyploids are com/publon/10.1111/ele.13402. often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speci- ation and that niche differentiation is often significantly faster in polyploids. Keywords Climatic niche, niche breadth, polyploid, speciation, sympatric speciation. Ecology Letters (2020) 23: 68–78 isolation from their progenitors, while also sympatric and INTRODUCTION competing with either one or both parental species (Ramsey Among vascular plants, polyploidy or whole genome duplica- & Schemske 1998, 2002). Mathematical models indicate that tion (WGD) is associated with an estimated 15–30% of speci- polyploid establishment is promoted by high selfing rates, ation events (Wood et al. -
Refining Phylogenetic Hypotheses Using Chloroplast Genomics and Incomplete Data Sets in Lasthenia (Madieae, Asteraceae) Joseph Frederic Walker Purdue University
Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations Summer 2014 Refining phylogenetic hypotheses using chloroplast genomics and incomplete data sets in Lasthenia (Madieae, Asteraceae) Joseph Frederic Walker Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Part of the Biology Commons, Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Walker, Joseph Frederic, "Refining phylogenetic hypotheses using chloroplast genomics and incomplete data sets in Lasthenia (Madieae, Asteraceae)" (2014). Open Access Theses. 701. https://docs.lib.purdue.edu/open_access_theses/701 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. REFINING PHYLOGENETIC HYPOTHESES USING CHLOROPLAST GENOMICS AND INCOMPLETE DATA SETS IN LASTHENIA (MADIEAE, ASTERACEAE) A Thesis Submitted to the Faculty of Purdue University by Joseph Frederic Walker In Partial Fulfillment of the Requirements for the Degree of Master of Science August 2014 Purdue University West Lafayette, Indiana ii ACKNOWLEDGMENTS First of all I would like to thank Dr. Nancy Emery. I would not have accomplished what I have and would not be headed to a PhD program at Michigan if it was not for her. Her mentoring allowed me to design and lead my projects, but at the same time she has always been there when I need help. I am thankful that I have had an opportunity to work with an advisor who puts her students first and always makes sure what happens is in their best interest. With that in mind, I would also like to thank Dr. -
Table E-8. Bitter Creek NWR – Plants Bitter Creek NWR Scientific Name Common Name Family Acanthomintha Obovata Subsp
Appendix E - Plants and Wildlife Bitter Creek NWR Plant Lists Table E-8. Bitter Creek NWR – Plants Bitter Creek NWR Scientific Name Common Name Family Acanthomintha obovata subsp. cordata heart-leaved acanthomintha Lamiaceae Achillea millefolium common yarrow Asteraceae Acmispon americanus var. americanus [Lotus purshianus var. purshianus; Lotus typical American bird's-foot-trefoil Fabaceae unifoliolatus var. unifoliolatus] Acmispon brachycarpus [Lotus humistratus] short-podded lotus Fabaceae Acmispon glaber [Lotus scoparius] deer lotus Fabaceae Acmispon procumbens var. procumbens [Lotus typical silky bird's-foot-trefoil Fabaceae procumbens var. procumbens] Acmispon wrangelianus [Lotus wrangelianus, Wrangel's lotus Fabaceae Lotus subpinnatus, misapplied] Agoseris grandiflora var. grandiflora typical grassland agoseris Asteraceae Agoseris retrorsa spear-leaved agoseris Asteraceae Ailanthus altissima tree-of-heaven Simaroubaceae Aliciella leptomeria [Gilia leptomeria] sand aliciella Polemoniaceae Allium crispum crinkled onion Alliaceae [Liliaceae] Allium howellii var. howellii typical Howell's allium Alliaceae [Liliaceae] Allium peninsulare var. peninsulare typical peninsular allium Alliaceae [Liliaceae] Allophyllum gilioides subsp. gilioides typical gilia-like allophyllum Polemoniaceae Allophyllum gilioides subsp. violaceum gilia-like allophyllum Polemoniaceae Amaranthus blitoides mat amaranth Amaranthaceae Ambrosia acanthicarpa annual bur-sage Asteraceae Amsinckia douglasiana Douglas's fiddleneck Boraginaceae Amsinckia eastwoodiae Eastwood's