Polyploid Plants Have Faster Rates of Multivariate Niche Differentiation Than Their Diploid Relatives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tc Balikesir Üniversitesi Fen Bilimleri
T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİYOLOJİ ANABİLİM DALI TÜRKİYE’DE YETİŞEN INULA L. (ASTERACEAE) TÜRLERİNİN MOLEKÜLER SİSTEMATİK ANALİZİ VE EKOLOJİSİ DOKTORA TEZİ EMRE SEVİNDİK BALIKESİR, MAYIS - 2014 T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİYOLOJİ ANABİLİM DALI TÜRKİYE’DE YETİŞEN INULA L. (ASTERACEAE) TÜRLERİNİN MOLEKÜLER SİSTEMATİK ANALİZİ VE EKOLOJİSİ DOKTORA TEZİ EMRE SEVİNDİK BALIKESİR, MAYIS - 2014 KABUL VE ONAY SAYFASI EMRE SEVİNDİK tarafından hazırlanan “TÜRKİYE’DE YETİŞEN INULA L. (ASTERACEAE) TÜRLERİNİN MOLEKÜLER SİSTEMATİK ANALİZİ VE EKOLOJİSİ” adlı tez çalışmasının savunma sınavı 02.05.2014 tarihinde yapılmış olup aşağıda verilen jüri tarafından oy birliği / oy çokluğu ile Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Doktora Tezi olarak kabul edilmiştir. Jüri Üyeleri İmza Danışman Yard.Doç.Dr. Fatih COŞKUN Üye Prof.Dr. Gülendam TÜMEN ............ Üye Prof.Dr. Ali ÇELİK ................ Üye Prof.Dr. Ahmet DURAN ................ Üye Doç.Dr. Ekrem DÜNDAR .................. Jüri üyeleri tarafından kabul edilmiş olan bu tez BAÜ Fen Bilimleri Enstitüsü Yönetim Kurulunca onanmıştır. Fen Bilimleri Enstitüsü Müdürü Prof. Dr. Cihan ÖZGÜR ............................................. Bu tez çalışması Balıkesir Üniversitesi Bilimsel Araştırma Projeler Birimi tarafından BAP 2013/92 nolu proje ile desteklenmiştir. ÖZET TÜRKİYE’DE YETİŞEN INULA L. (ASTERACEAE) TÜRLERİNİN MOLEKÜLER SİSTEMATİK ANALİZİ VE EKOLOJİSİ DOKTORA TEZİ EMRE SEVİNDİK BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ -
Extensive Chromosomal Variation in a Recently Formed Natural Allopolyploid Species, Tragopogon Miscellus (Asteraceae)
Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae) Michael Chestera, Joseph P. Gallaghera, V. Vaughan Symondsb, Ana Veruska Cruz da Silvac,d, Evgeny V. Mavrodievd, Andrew R. Leitche, Pamela S. Soltisd, and Douglas E. Soltisa,1 aDepartment of Biology, University of Florida, Gainesville, FL 32611; bInstitute of Molecular Biosciences, Massey University, Palmerston North, 4442, New Zealand; cEmbrapa Tabuleiros Costeiros, CEP 49025-040, Aracaju-SE, Brazil; dFlorida Museum of Natural History, University of Florida, Gainesville, FL 32611; and eSchool of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom Edited by James A. Birchler, University of Missouri, Columbia, MO, and approved December 6, 2011 (received for review July 22, 2011) Polyploidy, or whole genome duplication, has played a major role after whole genome duplication (18). In some cases, the regularity in the evolution of many eukaryotic lineages. Although the of meiosis was found to increase rapidly in experimental neo- prevalence of polyploidy in plants is well documented, the molec- allopolyploids that were initially chromosomally unstable (21, ular and cytological consequences are understood largely from 22); for example, after just five selfed generations, Nicotiana newly formed polyploids (neopolyploids) that have been grown neoallotetraploids displayed bivalent pairing and >99% stainable experimentally. Classical cytological and molecular cytogenetic pollen (22). -
The Pennsylvania State University
The Pennsylvania State University The Graduate School Intercollege Graduate Degree Program in Plant Biology PHYLOGENOMIC ANALYSIS OF ANCIENT GENOME DUPLICATIONS IN THE HISTORY OF PLANTS A Dissertation in Plant Biology by Yuannian Jiao © 2011 Yuannian Jiao Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2011 The dissertation of Yuannian Jiao was reviewed and approved* by the following: Claude dePamphilis Professor of Biology Dissertation Advisor Chair of Committee Hong Ma Professor of Biology John Carlson Professor of Molecular Genetics Webb Miller Professor of Comparative Genomics and Bioinformatics Naomi Altman Professor of Statistics Teh-hui Kao Chair of Plant Biology Graduate Program *Signatures are on file in the Graduate School iii ABSTRACT Whole-genome duplication (WGD), or polyploidy, followed by gene loss and diploidization, has generally been viewed as a primary source of material for the origin of evolutionary novelties. Most flowering plants have been shown to be ancient polyploids that have undergone one or more rounds of WGDs early in their evolution, and many lineages have since undergone additional, independent and more recent genome duplications. It was suggested that the paleopolyploidy events were crucial to the radiation and success of angiosperms, but evidence for proposed ancient genome duplications remains equivocal. Plant genomes are highly dynamic and usually go through intense structural rearrangements and gene loss following duplication. Old(er) WGDs can not -
Evidence from Analysis of Synthetic Arabidopsis Allohexaploids
INVESTIGATION Allopolyploidization Lays the Foundation for Evolution of Distinct Populations: Evidence From Analysis of Synthetic Arabidopsis Allohexaploids Starr C. Matsushita,* Anand P. Tyagi,*,† Gerad M. Thornton,* J. Chris Pires,‡ and Andreas Madlung*,1 *Department of Biology, University of Puget Sound, Tacoma, Washington, 98416, †School of Biological and Chemical Sciences, University of the South Pacific, Suva, Fiji, and ‡Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211-7310 ABSTRACT Polyploidization is an important mechanism for introducing diversity into a population and promoting evolutionary change. It is believed that most, if not all, angiosperms have undergone whole genome duplication events in their evolutionary history, which has led to changes in genome structure, gene regulation, and chromosome maintenance. Previous studies have shown that polyploidy can coincide with meiotic abnormalities and somatic cytogenetic mosaics in Arabidopsis allotetraploids, but it is unclear whether this phenomenon can contribute to novel diversity or act as a mechanism for speciation. In this study we tested the hypothesis that mosaic aneuploidy contributes to the formation of incipient diversity in neoallopolyploids. We generated a population of synthesized Arabi- dopsis allohexaploids and monitored karyotypic and phenotypic variation in this population over the first seven generations. We found evidence of sibling line-specific chromosome number variations and rapidly diverging phenotypes between lines, including -
Abies Bracteata Revised 2011 1 Abies Bracteata (D. Don) Poit
Lead Forest: Los Padres National Forest Forest Service Endemic: No Abies bracteata (D. Don) Poit. (bristlecone fir) Known Potential Synonym: Abies venusta (Douglas ex Hook.) K. Koch; Pinus bracteata D. Don; Pinus venusta Douglas ex Hook (Tropicos 2011). Table 1. Legal or Protection Status (CNDDB 2011, CNPS 2011, and Other Sources). Federal Listing Status; State Heritage Rank California Rare Other Lists Listing Status Plant Rank None; None G2/S2.3 1B.3 USFS Sensitive Plant description: Abies bracteata (Pinaceae) (Fig. 1) is a perennial monoecious plant with trunks longer than 55 m and less than 1.3 m wide. The branches are more-or-less drooping, and the bark is thin. The twigs are glabrous, and the buds are 1-2.5 cm long, sharp-pointed, and non- resinous. The leaves are less than 6 cm long, are dark green, faintly grooved on their upper surfaces, and have tips that are sharply spiny. Seed cones are less than 9 cm long with stalks that are under15 mm long. The cones have bracts that are spreading, exserted, and that are 1.5–4.5 cm long with a slender spine at the apex. Taxonomy: Abies bracteata is a fir species and a member of the pine family (Pinaceae). Out of the fir species growing in North America (Griffin and Critchfield 1976), Abies bracteata has the smallest range and is the least abundant. Identification: Many features of A. bracteata can be used to distinguish this species from other conifers, including the sharp-tipped needles, thin bark, club-shaped crown, non-resinous buds, and exserted spine tipped bracts (Gymnosperms Database 2010). -
(Under the Direction of JOHN M. BURKE) ABSTRACT the Chapters of This Dissertation Are Designed to Investigate Speciation in T
POPULATION GENETIC STUDIES OF SPECIATION IN THE PLANT GENUS STEPHANOMERIA (ASTERACEA) by NATASHA ANN SHERMAN (Under the Direction of JOHN M. BURKE) ABSTRACT The chapters of this dissertation are designed to investigate speciation in the plant genus Stephanomeria. Genetic markers were developed, and population genetic studies performed. In the first study, the goal was to investigate: the putative homoploid hybrid origin of Stephanomeria diegensis; whether this species arose once or on multiple occasions; and which subspecies of the parental taxa were involved in the original speciation event. The data presented support a hybrid origin of S. diegensis. In addition, the results showed the S. diegensis most likely arose once, and that S. exigua ssp. exigua or S. exigua ssp. deanei were involved in the formation. It was not possible to identify the subspecies of S. virgata involved. The second study investigates the allopolyploid origin of S. elata. The number of origins was investigated, as was the level of differentiation between two recognizable morphotypes, termed the Northern and Southern morphotype. This work identified three origins, with two origins found in the Southern morphotype and one in the Northern morphotype. The third study analyzed population genetic diversity in a disjunct population of S. exigua ssp. coronaria termed the Frenchglen population. This population is of particular interest because it is a peripheral isolate that gave rise to the endangered S. malheurensis. The Frenchglen population was found to be genetically robust, and unique from populations from the balance of the range of S. exigua ssp. coronaria. INDEX WORDS: speciation, hybridization, population genetic, homoploid, allopolyploid, peripatric, peripheral isolate POPULATION GENETIC STUDIES OF SPECIATION IN THE PLANT GENUS STEPHANOMERIA (ASTERACEAE) by Natasha Ann Sherman B.S. -
BMC Plant Biology Biomed Central
BMC Plant Biology BioMed Central Research article Open Access On the road to diploidization? Homoeolog loss in independently formed populations of the allopolyploid Tragopogon miscellus (Asteraceae) Jennifer A Tate*1, Prashant Joshi1, Kerry A Soltis2, Pamela S Soltis3,4 and Douglas E Soltis2,4 Address: 1Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand, 2Department of Biology, University of Florida, Gainesville, Florida, USA, 3Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA and 4Genetics Institute, University of Florida, Gainesville, Florida, USA Email: Jennifer A Tate* - [email protected]; Prashant Joshi - [email protected]; Kerry A Soltis - [email protected]; Pamela S Soltis - [email protected]; Douglas E Soltis - [email protected] * Corresponding author Published: 27 June 2009 Received: 5 May 2009 Accepted: 27 June 2009 BMC Plant Biology 2009, 9:80 doi:10.1186/1471-2229-9-80 This article is available from: http://www.biomedcentral.com/1471-2229/9/80 © 2009 Tate et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Polyploidy (whole-genome duplication) is an important speciation mechanism, particularly in plants. Gene loss, silencing, and the formation of novel gene complexes are some of the consequences that the new polyploid genome may experience. Despite the recurrent nature of polyploidy, little is known about the genomic outcome of independent polyploidization events. -
Serpentine Soil Endemics in the California Flora Occur in Barer Serpentine Habitats with Lower Soil Calcium Levels Than Serpentine Tolerators
RESEARCH ARTICLE Adaptation and divergence in edaphic specialists and generalists: serpentine soil endemics in the California flora occur in barer serpentine habitats with lower soil calcium levels than serpentine tolerators Shelley A. Sianta1,2 and Kathleen M. Kay1 Manuscript received 4 December 2018; revision accepted 19 March PREMISE: Adaptation to harsh edaphic substrates has repeatedly led to the evolution of 2019. edaphic specialists and generalists. Yet, it is unclear what factors promote specialization 1 Department of Ecology and Evolutionary Biology, University of versus generalization. Here, we search for habitat use patterns associated with California, Santa Cruz, California serpentine endemics (specialists) and serpentine tolerators (generalists) to indirectly 2 Author for correspondence (e-mail: [email protected]) test the hypothesis that trade- offs associated with serpentine adaptation promote Citation: Sianta, S. A. and K. M. Kay. 2019. Adaptation and divergence specialization. We predict that (1) endemics have adapted to chemically harsher and more in edaphic specialists and generalists: serpentine soil endemics in the California flora occur in barer serpentine habitats with lower soil bare serpentine habitats than tolerators, and (2) edaphic endemics show more habitat calcium levels than serpentine tolerators. American Journal of Botany divergence from their sister species than tolerators do among on- and off- serpentine 106(5): 690–703. populations. doi:10.1002/ajb2.1285 METHODS: We selected 8 serpentine endemic and 9 serpentine tolerator species representing independent adaptation to serpentine. We characterized soil chemistry and microhabitat bareness from one serpentine taxon of each species and from a paired nonserpentine sister taxon, resulting in 8 endemic and 9 tolerator sister- taxa pairs. -
Symposium 74 Evolution
Downloaded from symposium.cshlp.org on April 23, 2015 - Published by Cold Spring Harbor Laboratory Press On the Origins of Species: Does Evolution Repeat Itself in Polyploid Populations of Independent Origin? D.E. SOLTIS,1,2 R.J.A. BUGGS,1 W.B. BARBAZUK,1,2 P.S. SCHNABLE,3 AND P.S. SOLTIS2,4 1Department of Biology, University of Florida, Gainesville, Florida 32611; 2Genetics Institute, University of Florida, Gainesville, Florida 32610; 3Center for Plant Genomics, Iowa State University, Ames, Iowa 50011; 4Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 Correspondence: [email protected] Multiple origins of the same polyploid species pose the question: Does evolution repeat itself in these independently formed lineages? Tragopogon is a unique evolutionary model for the study of recent and recurrent allopolyploidy. The allotetraploids T. mirus (T. dubius x T. porrifolius) and T. miscellus (T. dubius x T. pratensis) formed repeatedly following the introduction of three diploids to the United States. Concerted evolution has consistently occurred in the same direction (resulting in loss of T. dubius rDNA copies). Both allotetraploids exhibit homeolog loss, with the same genes consistently showing loss, and homeologs of T. dubius preferentially lost in both allotetraploids. We have also documented repeated patterns of tissue-spe- cific silencing in multiple populations of T. miscellus. Hence, some aspects of genome evolution may be “hardwired,” although the general pattern of loss is stochastic within any given population. On the basis of the study of F1 hybrids and syn- thetics, duplicate gene loss and silencing do not occur immediately following hybridization or polyploidization, but gradually and haphazardly. -
The Role of Genetic and Genomic Attributes in the Success of Polyploids
Colloquium The role of genetic and genomic attributes in the success of polyploids Pamela S. Soltis* and Douglas E. Soltis School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 In 1950, G. Ledyard Stebbins devoted two chapters of his book polyploid origin, as noted by Stebbins (1). In contrast, although Variation and Evolution in Plants (Columbia Univ. Press, New York) genome doubling has been reported from other major groups of to polyploidy, one on occurrence and nature and one on distribu- eukaryotes (reviewed in ref. 6), it is not nearly as common in tion and significance. Fifty years later, many of the questions these groups as it is in plants. Stebbins posed have not been answered, and many new questions The question often has arisen as to why polyploids are so have arisen. In this paper, we review some of the genetic attributes common and so successful, and several possible explanations of polyploids that have been suggested to account for the tremen- have been proposed. Stebbins (1) considered vegetative re- dous success of polyploid plants. Based on a limited number of production and the perennial habit to be important factors studies, we conclude: (i) Polyploids, both individuals and popula- promoting the establishment of polyploids, along with an tions, generally maintain higher levels of heterozygosity than do outcrossing mating system to allow for hybridization (between their diploid progenitors. (ii) Polyploids exhibit less inbreeding species, subspecies, races, populations, etc.) in the formation depression than do their diploid parents and can therefore tolerate of the polyploid. Perhaps most important to Stebbins (1) was higher levels of selfing; polyploid ferns indeed have higher levels the availability of new ecological niches. -
Evolution and Expression of Homeologous Loci in Tragopogon Miscellus (Asteraceae), a Recent and Reciprocally Formed Allopolyploid
Copyright Ó 2006 by the Genetics Society of America DOI: 10.1534/genetics.106.057646 Evolution and Expression of Homeologous Loci in Tragopogon miscellus (Asteraceae), a Recent and Reciprocally Formed Allopolyploid Jennifer A. Tate,*,1 Zhongfu Ni,† Anne-Cathrine Scheen,‡ Jin Koh,* Candace A. Gilbert,* David Lefkowitz,* Z. Jeffrey Chen,† Pamela S. Soltis§ and Douglas E. Soltis* *Department of Botany, University of Florida, Gainesville, Florida 32611, †Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, ‡Natural History Museum, University of Oslo, N-0318 Oslo, Norway and §Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 Manuscript received March 1, 2006 Accepted for publication April 20, 2006 ABSTRACT On both recent and ancient time scales, polyploidy (genome doubling) has been a significant evolu- tionary force in plants. Here, we examined multiple individuals from reciprocally formed populations of Tragopogon miscellus, an allotetraploid that formed repeatedly within the last 80 years from the diploids T. dubius and T. pratensis. Using cDNA–AFLPs followed by genomic and cDNA cleaved amplified polymorphic sequence (CAPS) analyses, we found differences in the evolution and expression of homeologous loci in T. miscellus. Fragment variation within T. miscellus, possibly attributable to reciprocal formation, comprised 0.6% of the cDNA–AFLP bands. Genomic and cDNA CAPS analyses of 10 candidate genes revealed that only one ‘‘transcript-derived fragment’’ (TDF44) showed differential expression of parental homeologs in T. miscellus; the T. pratensis homeolog was preferentially expressed by most polyploids in both populations. Most of the cDNA–AFLP polymorphisms apparently resulted from loss of parental fragments in the polyploids. -
Evolution and Expression of Homoeologous Loci in Tragopogon Miscellus (Asteraceae), A
Genetics: Published Articles Ahead of Print, published on April 28, 2006 as 10.1534/genetics.106.057646 Evolution and Expression of Homoeologous Loci in Tragopogon miscellus (Asteraceae), a Recent and Reciprocally Formed Allopolyploid Jennifer A. Tate * 1, Zhongfu Ni †, Anne-Cathrine Scheen ‡, Jin Koh *, Candace A. Gilbert*, David Lefkowitz*, Z. Jeffrey Chen †, Pamela S. Soltis § and Douglas E. Soltis* * Department of Botany, University of Florida, Gainesville, Florida 32611 † Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712 ‡ The Natural History Museum, University of Oslo, N-0318, Oslo, Norway § Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 1 Present address: Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. DQ267218-DQ267256 2 Running head: Genome evolution in Tragopogon miscellus Key words: allopolyploidy, cDNA-AFLP, genome evolution, homoeolog, Tragopogon Corresponding authors: Jennifer A. Tate, Institute of Molecular Biosciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand. Phone: (06) 350 5515, FAX: (06) 350 5688, E-mail: [email protected]; Douglas E. Soltis, Department of Botany, University of Florida, Gainesville, FL 32611. Phone: (352) 392-1721, FAX: (352) 846-2154, E-mail: [email protected] 3 Abstract On both recent and ancient time scales, polyploidy (genome doubling) has been a significant evolutionary force in plants. Here, we examined multiple individuals from reciprocally formed populations of Tragopogon miscellus, an allotetraploid that formed repeatedly within the last 80 years from the diploids T. dubius and T.