Serpentine Endemism in the California Flora: a Database of Serpentine Affinity

Total Page:16

File Type:pdf, Size:1020Kb

Serpentine Endemism in the California Flora: a Database of Serpentine Affinity MADRONÄ O, Vol. 52, No. 4, pp. 222±257, 2005 SERPENTINE ENDEMISM IN THE CALIFORNIA FLORA: A DATABASE OF SERPENTINE AFFINITY H. D. SAFFORD1,2,J.H.VIERS3, AND S. P. HARRISON2 1 USDA-Forest Service, Paci®c Southwest Region, 1323 Club Drive, Vallejo, CA 94592 [email protected] 2 Department of Environmental Science and Policy, University of California, Davis, CA 95616 3 Information Center for the Environment, DESP, University of California, Davis, CA 95616 ABSTRACT We present a summary of a database documenting levels of af®nity to ultrama®c (``serpentine'') sub- strates for taxa in the California ¯ora, USA. We constructed our database through an extensive literature search, expert opinion, ®eld observations, and intensive use of accession records at key herbaria. We developed a semi-quantitative methodology for determining levels of serpentine af®nity (strictly endemic, broadly endemic, strong ``indicator'', etc.) in the California ¯ora. In this contribution, we provide a list of taxa having high af®nity to ultrama®c/serpentine substrates in California, and present information on rarity, geographic distribution, taxonomy, and lifeform. Of species endemic to California, 12.5% are restricted to ultrama®c substrates. Most of these taxa come from a half-dozen plant families, and from only one or two genera within each family. The North Coast and Klamath Ranges support more serpentine endemics than the rest of the State combined. 15% of all plant taxa listed as threatened or endangered in California show some degree of association with ultrama®c substrates. Information in our database should prove valuable to efforts in ecology, ¯oristics, biosystematics, conservation, and land management. Key Words: serpentine, ultrama®c, California, endemism, diversity. INTRODUCTION lain by ultrama®c rocks (6000 km2/406,280 km2). Ultrama®c rocks, often called ``serpentine'' by In addition, because they tend to have small geo- ecologists, botanists and pedologists, underlie more graphic ranges and because many of them occur in than 6000 km2 of the land area of the State of Cal- the rapidly urbanizing San Francisco Bay Area, ser- ifornia (Harrison et al. 2000). The edges of conti- pentine endemics are overrepresented among the nental plates often include bands of these vestiges state's rare, sensitive, and listed plant taxa (Skinner of oceanic mantle rock, accreted during the geolog- and Pavlik 1994). The ecology of California's ser- ic process of subduction, and later uplifted and ex- pentine plants has been extensively studied at the posed during mountain building and subsequent University of California's Sedgwick Ranch Reserve erosion. Ultrama®c rocks and the soils that develop (e.g., Seabloom et al. 2003; Gram et al. 2004) and on them are characterized by critically low levels McLaughlin Reserve (e.g., Harrison et al. 2003; of most principal plant nutrients (N, P, K, Ca), and Safford and Harrison 2004) and Stanford Univer- exceptionally high levels of Mg and Fe and a suite sity's Jasper Ridge Reserve (e.g., McNaughton of toxic trace elements including Cr, Ni, and Co. 1968; Huenneke et al. 1990; Hobbs and Mooney Outcrops of ultrama®c rocks support high numbers 1991). of edaphic-endemic taxa throughout the world Botanists have relied for two decades on the (Brooks 1987). The California serpentine ¯ora is monograph by Arthur Kruckeberg (1984) for most the richest in the temperate zone, and consists of of their information on Californian serpentine-en- hundreds of species and subspecies that are largely demic plant taxa. Since then, publication of the Jep- or entirely con®ned to ultrama®c substrates. son Manual (Hickman 1993), and a proliferation of Serpentine endemism is a key feature of the di- new botanical research and name changes have left versity of the California ¯ora (Raven and Axelrod this list in need of updating. Our initial aim was to 1978; Kruckeberg 2002). Of about 1410 full spe- modify Kruckeberg's (1984) list, primarily using cies endemic to the State (Hickman 1993), Kruck- information from Hickman (1993), to use in our eberg (1984) estimated that about 180 were endem- research on diversity patterns (Harrison et al. 2000, ic to serpentine. If these numbers are at least ap- 2004). However, it soon became clear that we proximately correct, then about 13% of the plant would have to expand and intensify our search for species endemic to California are serpentine en- the best available information. Complicating this demics. This is a remarkably high number when effort, plants show a continuum in degrees of ser- one considers that only 1.5% of the State is under- pentine restriction, and are sometimes more restrict- 2005] SAFFORD ET AL.: SERPENTINE ENDEMISM IN THE CALIFORNIA FLORA 223 ed in some parts of their geographic ranges than marks (``?'') were attached to those taxa for which others, thus contributing to inconsistencies among more information was necessary to con®dently as- reports from different sources. This led us to adopt sign their status. Some of the ``tentative'' endemics a semi-quantitative procedure for scoring plant taxa were included in the indicator appendix as well, on their reported degree of serpentine af®nity. thus these taxa occur twice in Kruckeberg's lists. In this contribution, we present a summary of our We combined Kruckeberg's two scales, and added current database of serpentine af®nity in the Cali- two levels to yield six levels of ultrama®c af®nity, fornia ¯ora. The database was constructed via an where 6 represents a ``strict endemic'' ($95% of extensive literature search, expert opinion, ®eld ob- occurrences on ultrama®cs), and successively lower servations, web research, and intensive use of ac- values signify lower af®nity to the substrate (5 5 cession records at key herbaria. It provides data on 85±94% of occurrences; 4 5 75±84%; 3 5 65± levels of serpentine endemism, rarity, geographic 74%; 2 5 55±64%; 1 5 45±54%). By this de®ni- distribution, taxonomy, and lifeform. tion, ``1'' thus represents a species found about half of the time on serpentine. We consider scores be- METHODOLOGY tween 1 and 2 to indicate ``weak indicators'', and a score of about 1 to mean an ``indifferent'' taxon. We began by conducting a database search of the The Kruckeberg ®delity scale crosswalks to ours in electronic Jepson Manual (Hickman 1993) main- the following fashion: ``111'' 5 6; ``11'' 5 5; tained by the Jepson Herbarium at the University ``!!'' 5 3; one ``!'' 5 2. Those taxa which occurred of California-Berkeley (UC-JEPS 2004a). The da- in both Kruckeberg's endemic and indicator tables tabase was queried for all taxa with ``serpentine'', had their two scores averaged: these all fell be- ``ultrama®c'', or related (e.g., ``asbestos soils'') ref- tween ``3'' and ``4'' on our scale. For example, Cu- erences in the habitat description. Taxa containing pressus macnabiana was rated ``111'' in Kruck- ``non-serpentine'' in the description were removed eberg's Appendix C (i.e., ``6'' on our scale), and afterward. We cross-checked the 391 serpentine-re- ``!!'' [i.e., ``2'' in our scale] in Appendix D; these lated taxa found in the Jepson Manual with Kruck- were averaged to ``4'' on our scale. eberg (1984), who listed those taxa he believed to We attached our categorical levels of ultrama®c be endemic to ultrama®c substrates in California, af®nity to all of the species in our hybrid Jepson- and those that were either local or regional ``ser- Kruckeberg database. In the case of the Kruckeberg pentine indicators'' (i.e., nonendemic taxa whose taxa, we simply cross-walked the Kruckeberg ®- distributions are nonetheless skewed toward occur- delity codes to our scale as described above, mak- rences on ultrama®cs). Taxonomic updates in the ing some adjustments based on more recent taxo- Jepson Manual (Hickman 1993) were applied to the nomic revisions and combinations. In the case of Kruckeberg list (which included 377 taxa after the Jepson Manual taxa, we were forced to interpret these revisions), and then those taxa not on the Jep- the language used in habitat descriptions to deter- son-derived list were added to our database. This mine levels of af®nity. We used the following in- resulted in a list of 529 taxa; of these, 287 were not terpretations of description language to assign af- shared between the two sources. We then added to ®nities: a ``6'' was assigned where the habitat de- the list a number of taxa that we considered to be scription categorically stated ``serpentine'' or ``ul- likely endemics or indicators but which were not trama®c'' (a ``5'' if there was some indication that indicated as such by either Kruckeberg (1984) or this restriction was not absolute); a ``4'' was as- the Jepson Manual (1993). Finally, published lit- signed where the modi®ers ``generally'' or ``usually erature (e.g., Meinke and Zika 1992; Nelson and serpentine'' were used; ``especially'' or ``often'' Nelson 2004; Baldwin 1999 and 2001; Barkley equaled ``3''; ``sometimes'' or ``occasionally'' 1999; Porter and Johnson 2000; Zika et al. 1998) equaled ``1''. In a few cases, af®nity levels were and the online Jepson Interchange Jepson Flora assigned based on ancillary information in the hab- Project (UC-JEPS 2004b) were consulted for tax- itat and/or range description rather than on explicit onomic revisions and taxa newly described since statement of serpentine af®nity. the publication of the Jepson Manual. We then conducted a broad survey of the litera- To score the af®nity of taxa to ultrama®c sub- ture, regional botanical experts, and herbaria rec- strates, we adopted a modi®cation of Kruckeberg's ords to obtain as many sources as possible for each measures of ultrama®c ``®delity''.
Recommended publications
  • Hill View Rare Plants, Summer Catalogue 2011, Australia
    Summer 2011/12 Hill View Rare Plants Calochortus luteus Calochortus superbus Susan Jarick Calochortus albidus var. rubellus 400 Huon Road South Hobart Tas 7004 Ph 03 6224 0770 Summer 2011/12 400 Huon Road South Hobart Tasmania, 7004 400 Huon Road South Hobart Tasmania, 7004 Summer 2011/12 Hill View Rare Plants Ph 03 6224 0770 Ph 03 6224 0770 Hill View Rare Plants Marcus Harvey’s Hill View Rare Plants 400 Huon Road South Hobart Tasmania, 7004 Welcome to our 2011/2012 summer catalogue. We have never had so many problems in fitting the range of plants we have “on our books” into the available space! We always try and keep our lists “democratic” and balanced although at times our prejudices show and one or two groups rise to the top. This year we are offering an unprecedented range of calochortus in a multiplicity of sizes, colours and flower shapes from the charming fairy lanterns of C. albidus through to the spectacular, later-flowering mariposas with upward-facing bowl-shaped flowers in a rich tapestry of shades from canary-yellow through to lilac, lavender and purple. Counterpoised to these flashy dandies we are offering an assortment of choice muscari whose quiet charm, softer colours and Tulipa vvedenskyi Tecophilaea cyanocrocus Violacea persistent flowering make them no less effective in the winter and spring garden. Standouts among this group are the deliciously scented duo, M. muscarimi and M. macrocarpum and the striking and little known tassel-hyacith, M. weissii. While it has its devotees, many gardeners are unaware of the qualities of the large and diverse tribe of “onions”, known as alliums.
    [Show full text]
  • Staminal Evolution in the Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence for Multiple Origins of the Staminal Lever
    Staminal Evolution In The Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence For Multiple Origins Of The Staminal Lever Jay B. Walker & Kenneth J. Sytsma (Dept. of Botany, University of Wisconsin, Madison) Annals of Botany (in press) Abstract • Background and Aims - The genus Salvia has traditionally included any member of the tribe Mentheae (Lamiaceae) with only two stamens and with each stamen expressing an elongate connective. The recent demonstration of the non-monophyly of the genus presents interesting implications for staminal evolution in the tribe Mentheae. In the context of a molecular phylogeny, we characterize the staminal morphology of the various lineages of Salvia and related genera and present an evolutionary interpretation of staminal variation within the tribe Mentheae. • Methods. Two molecular analyses are presented in order to investigate phylogenetic relationships in the tribe Mentheae and the genus Salvia. The first presents a tribal survey of the Mentheae and the second concentrates on Salvia and related genera. Schematic sketches are presented for the staminal morphology of each major lineage of Salvia and related genera. • Key Results. These analyses suggest an independent origin of the staminal elongate connective on at least three different occasions within the tribe Mentheae, each time with a distinct morphology. Each independent origin of the lever mechanism shows a similar progression of staminal change from slight elongation of the connective tissue separating two fertile thecae to abortion of the posterior thecae and fusion of adjacent posterior thecae. We characterize a monophyletic lineage within the Mentheae consisting of the genera Lepechinia, Melissa, Salvia, Dorystaechas, Meriandra, Zhumeria, Perovskia, and Rosmarinus. • Conclusions.
    [Show full text]
  • Capitulo 3 Tesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC 1 Flowering phenology of invasive alien plant species compared to native 2 species in three mediterranean-type ecosystems 3 4 Oscar Godoy*1,4, David M. Richardson2, Fernando Valladares1,3 & Pilar Castro-Díez4 5 6 1 Laboratorio Internacional de Cambio Global (Linc-Global). Instituto de los Recursos 7 Naturales, Centro de Ciencias Medioambientales. CSIC. Serrano 115 dpdo E-28006 8 Madrid Spain. ! 9 2 Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch 10 University, Private Bag X1, Matieland 7602, South Africa. 11 3 Departamento de Biología y Geología. Área de Biodiversidad & Conservación, 12 Universidad Rey Juan Carlos, ESCET, Tulipán s/n E-28933, Móstoles, Madrid, Spain. 13 4 Departamento Interuniversitario de Ecología. Sección de Alcalá. Edificio de Ciencias. 14 Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain. 15 16 *Correspondence author: [email protected] 17 18 19 20 21 22 23 24 25 26 27 28 29 1 1 Fenología de floración de las especies de plantas exóticas invasoras en 2 tres ecosistemas mediterráneos en comparación con las especies 3 nativas. 4 5 Resumen 6 • Antecedentes y Objetivos: La fenología de floración es un componente esencial 7 del éxito de las especies invasoras, ya que una elevada fecundidad incrementa su 8 potencial invasor. Por tanto, estudiamos la relación existente entre los patrones 9 de floración de las especies invasoras y nativas en tres regiones con clima 10 mediterráneo: California, España y la Región Sudafricana de El Cabo 11 • Métodos: 227 pares de especies invasoras-nativas fueron utilizados 12 • Resultados clave: Las especies invasoras tienen diferentes patrones de floración 13 en comparación con las especies nativas en las tres regiones.
    [Show full text]
  • Palynological Evolutionary Trends Within the Tribe Mentheae with Special Emphasis on Subtribe Menthinae (Nepetoideae: Lamiaceae)
    Plant Syst Evol (2008) 275:93–108 DOI 10.1007/s00606-008-0042-y ORIGINAL ARTICLE Palynological evolutionary trends within the tribe Mentheae with special emphasis on subtribe Menthinae (Nepetoideae: Lamiaceae) Hye-Kyoung Moon Æ Stefan Vinckier Æ Erik Smets Æ Suzy Huysmans Received: 13 December 2007 / Accepted: 28 March 2008 / Published online: 10 September 2008 Ó Springer-Verlag 2008 Abstract The pollen morphology of subtribe Menthinae Keywords Bireticulum Á Mentheae Á Menthinae Á sensu Harley et al. [In: The families and genera of vascular Nepetoideae Á Palynology Á Phylogeny Á plants VII. Flowering plantsÁdicotyledons: Lamiales (except Exine ornamentation Acanthaceae including Avicenniaceae). Springer, Berlin, pp 167–275, 2004] and two genera of uncertain subtribal affinities (Heterolamium and Melissa) are documented in Introduction order to complete our palynological overview of the tribe Mentheae. Menthinae pollen is small to medium in size The pollen morphology of Lamiaceae has proven to be (13–43 lm), oblate to prolate in shape and mostly hexacol- systematically valuable since Erdtman (1945) used the pate (sometimes pentacolpate). Perforate, microreticulate or number of nuclei and the aperture number to divide the bireticulate exine ornamentation types were observed. The family into two subfamilies (i.e. Lamioideae: bi-nucleate exine ornamentation of Menthinae is systematically highly and tricolpate pollen, Nepetoideae: tri-nucleate and hexa- informative particularly at generic level. The exine stratifi- colpate pollen). While the
    [Show full text]
  • Checklist of the Vascular Plants of Redwood National Park
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks.
    [Show full text]
  • Restoration Fremontia Vol
    VOL. 48, NO.1 NOVEMBER 2020 RESTORATION FREMONTIA VOL. 48, NO.1, NOVEMBER 2020 FROM THE EDITORS What kind of world do we want, and how do we get there? These are Protecting California’s native flora since the questions that drive restoration, the central theme of this issue. They 1965 are also the questions that have led the California Native Plant Society Our mission is to conserve California’s native leadership to initiate an important change to this publication, which will plants and their natural habitats, and increase take effect in the spring 2021 issue. understanding, appreciation, and horticultural The name of this publication, Fremontia, has been a point of concern use of native plants. and discussion since last winter, when members of the CNPS leader- ship learned some disturbing facts about John C. Frémont, from whom Copyright ©2020 dozens of North American plants, including the flannelbush plant California Native Plant Society Fremontodendron californicum, derive their names. According to multi- ISSN 0092-1793 (print) ple sources, including the State of California Native American Heritage ISSN 2572-6870 (online) Commission, Frémont was responsible for brutal massacres of Native Americans in the Sacramento Valley and Klamath Lake. As a consequence, The views expressed by the authors in this issue do not necessarily represent policy or proce- the CNPS board of directors voted unanimously to rename Fremontia, a dure of CNPS. process slated for completion by the end of 2020. The decision to rename Fremontia, a name that dates back to the ori- gins of the publication in 1973, is about the people who have been—and 2707 K Street, Suite 1 continue to be—systematically excluded from the conservation commu- Sacramento, CA 95816-5130 nity.
    [Show full text]
  • A Taxonomic Re-Evaluation of the Allium Sanbornii Complex
    University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 1986 A taxonomic re-evaluation of the Allium sanbornii complex Stella Sue Denison University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Biology Commons Recommended Citation Denison, Stella Sue. (1986). A taxonomic re-evaluation of the Allium sanbornii complex. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/2124 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. A TAXONOMIC RE-EVALUATION OF THE ALLIUM SANBORNII COMPLEX A Thesis Presented to the Faculty of the Graduate School University of the Pacific In Partial Fulfillment of the Requirements for the Degree Master of Science by Stella S. Denison August 1986 ACKNOWLEDGMENTS Many contributions have been made for my successful completion of this work. Appreciation is extended to: Drs. Dale McNeal, Alice Hunter, and Anne Funkhouser for their advice and assistance during the research and in the preparation of this manuscript, the entire Biology faculty for their, friendship and suggestions, Ginger Tibbens for the typing of this manuscript, and to my husband, Craig, and my children, Amy, Eric and Deborah for their continued support and encouragement. Grateful acknowledgement is made to the curators of the herbaria from which material was borrowed during this investigation. These herbaria are indicated below by the standard abbreviations of Holmgren and Keuken (1974}.
    [Show full text]
  • Rinconada Checklist-02Jun19
    Checklist1 of Vascular Flora of Rinconada Mine and Rinconada Trail San Luis Obispo County, California (2 June 2019) David J. Keil Robert F. Hoover Herbarium Biological Sciences Department California Polytechnic State University San Luis Obispo, California Scientific Name Common Name Family Rare n ❀ Achyrachaena mollis blow wives ASTERACEAE o n ❀ Acmispon americanus var. americanus Spanish-clover FABACEAE o n Acmispon brachycarpus shortpod deervetch FABACEAE v n ❀ Acmispon glaber var. glaber common deerweed FABACEAE o n Acmispon parviflorus miniature deervetch FABACEAE o n ❀ Acmispon strigosus strigose deer-vetch FABACEAE o 1 Please notify the author of additions or corrections to this list ([email protected]). ❀ — See Wildflowers of San Luis Obispo, California, second edition (2018) for photograph. Most are illustrated in the first edition as well; old names for some species in square brackets. n — California native i — exotic species, introduced to California, naturalized or waif. v — documented by one or more specimens (Consortium of California Herbaria record; specimen in OBI; or collection that has not yet been accessioned) o — observed during field surveys; no voucher specimen known Rare—California Rare Plant Rank Scientific Name Common Name Family Rare n Acmispon wrangelianus California deervetch FABACEAE v n ❀ Acourtia microcephala sacapelote ASTERACEAE o n ❀ Adelinia grandis Pacific hound's tongue BORAGINACEAE v n ❀ Adenostoma fasciculatum var. chamise ROSACEAE o fasciculatum n Adiantum jordanii California maidenhair fern PTERIDACEAE o n Agastache urticifolia nettle-leaved horsemint LAMIACEAE v n ❀ Agoseris grandiflora var. grandiflora large-flowered mountain-dandelion ASTERACEAE v n Agoseris heterophylla var. cryptopleura annual mountain-dandelion ASTERACEAE v n Agoseris heterophylla var. heterophylla annual mountain-dandelion ASTERACEAE o i Aira caryophyllea silver hairgrass POACEAE o n Allium fimbriatum var.
    [Show full text]
  • APPENDIX D Biological Technical Report
    APPENDIX D Biological Technical Report CarMax Auto Superstore EIR BIOLOGICAL TECHNICAL REPORT PROPOSED CARMAX AUTO SUPERSTORE PROJECT CITY OF OCEANSIDE, SAN DIEGO COUNTY, CALIFORNIA Prepared for: EnviroApplications, Inc. 2831 Camino del Rio South, Suite 214 San Diego, California 92108 Contact: Megan Hill 619-291-3636 Prepared by: 4629 Cass Street, #192 San Diego, California 92109 Contact: Melissa Busby 858-334-9507 September 29, 2020 Revised March 23, 2021 Biological Technical Report CarMax Auto Superstore TABLE OF CONTENTS EXECUTIVE SUMMARY ................................................................................................ 3 SECTION 1.0 – INTRODUCTION ................................................................................... 6 1.1 Proposed Project Location .................................................................................... 6 1.2 Proposed Project Description ............................................................................... 6 SECTION 2.0 – METHODS AND SURVEY LIMITATIONS ............................................ 8 2.1 Background Research .......................................................................................... 8 2.2 General Biological Resources Survey .................................................................. 8 2.3 Jurisdictional Delineation ...................................................................................... 9 2.3.1 U.S. Army Corps of Engineers Jurisdiction .................................................... 9 2.3.2 Regional Water Quality
    [Show full text]
  • Ventura County Plant Species of Local Concern
    Checklist of Ventura County Rare Plants (Twenty-second Edition) CNPS, Rare Plant Program David L. Magney Checklist of Ventura County Rare Plants1 By David L. Magney California Native Plant Society, Rare Plant Program, Locally Rare Project Updated 4 January 2017 Ventura County is located in southern California, USA, along the east edge of the Pacific Ocean. The coastal portion occurs along the south and southwestern quarter of the County. Ventura County is bounded by Santa Barbara County on the west, Kern County on the north, Los Angeles County on the east, and the Pacific Ocean generally on the south (Figure 1, General Location Map of Ventura County). Ventura County extends north to 34.9014ºN latitude at the northwest corner of the County. The County extends westward at Rincon Creek to 119.47991ºW longitude, and eastward to 118.63233ºW longitude at the west end of the San Fernando Valley just north of Chatsworth Reservoir. The mainland portion of the County reaches southward to 34.04567ºN latitude between Solromar and Sequit Point west of Malibu. When including Anacapa and San Nicolas Islands, the southernmost extent of the County occurs at 33.21ºN latitude and the westernmost extent at 119.58ºW longitude, on the south side and west sides of San Nicolas Island, respectively. Ventura County occupies 480,996 hectares [ha] (1,188,562 acres [ac]) or 4,810 square kilometers [sq. km] (1,857 sq. miles [mi]), which includes Anacapa and San Nicolas Islands. The mainland portion of the county is 474,852 ha (1,173,380 ac), or 4,748 sq.
    [Show full text]
  • How Many of Cassini Anagrams Should There Be? Molecular
    TAXON 59 (6) • December 2010: 1671–1689 Galbany-Casals & al. • Systematics and phylogeny of the Filago group How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago Mercè Galbany-Casals,1,3 Santiago Andrés-Sánchez,2,3 Núria Garcia-Jacas,1 Alfonso Susanna,1 Enrique Rico2 & M. Montserrat Martínez-Ortega2 1 Institut Botànic de Barcelona (CSIC-ICUB), Pg. del Migdia s.n., 08038 Barcelona, Spain 2 Departamento de Botánica, Facultad de Biología, Universidad de Salamanca, 37007 Salamanca, Spain 3 These authors contributed equally to this publication. Author for correspondence: Mercè Galbany-Casals, [email protected] Abstract The Filago group (Asteraceae, Gnaphalieae) comprises eleven genera, mainly distributed in Eurasia, northern Africa and northern America: Ancistrocarphus, Bombycilaena, Chamaepus, Cymbolaena, Evacidium, Evax, Filago, Logfia, Micropus, Psilocarphus and Stylocline. The main morphological character that defines the group is that the receptacular paleae subtend, and more or less enclose, the female florets. The aims of this work are, with the use of three chloroplast DNA regions (rpl32-trnL intergenic spacer, trnL intron, and trnL-trnF intergenic spacer) and two nuclear DNA regions (ITS, ETS), to test whether the Filago group is monophyletic; to place its members within Gnaphalieae using a broad sampling of the tribe; and to investigate in detail the phylogenetic relationships among the Old World members of the Filago group and provide some new insight into the generic circumscription and infrageneric classification based on natural entities. Our results do not show statistical support for a monophyletic Filago group.
    [Show full text]
  • Vascular Plants of Horse Mountain (Humboldt County, California) James P
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 4-2019 Vascular Plants of Horse Mountain (Humboldt County, California) James P. Smith Jr Humboldt State University, [email protected] John O. Sawyer Jr. Humboldt State University Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr and Sawyer, John O. Jr., "Vascular Plants of Horse Mountain (Humboldt County, California)" (2019). Botanical Studies. 38. https://digitalcommons.humboldt.edu/botany_jps/38 This Flora of Northwest California: Checklists of Local Sites of Botanical Interest is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. VASCULAR PLANTS OF HORSE MOUNTAIN (HUMBOLDT COUNTY, CALIFORNIA) Compiled by James P. Smith, Jr. & John O. Sawyer, Jr. Department of Biological Sciences Humboldt State University Arcata, California Fourth Edition · 29 April 2019 Horse Mountain (elevation 4952 ft.) is located at 40.8743N, -123.7328 W. The Polystichum x scopulinum · Bristle or holly fern closest town is Willow Creek, about 15 miles to the northeast. Access is via County Road 1 (Titlow Hill Road) off State Route 299. You have now left the Coast Range PTERIDACEAE BRAKE FERN FAMILY and entered the Klamath-Siskiyou Region. The area offers commanding views of Adiantum pedatum var. aleuticum · Maidenhair fern the Pacific Ocean and the Trinity Alps.
    [Show full text]