The Flowering Plants of Rum Species List
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Annals of Scottish Natural History." GEORGE HENDERSON, London
RETURN TO LIBRARY OF MARINE BIOLOGICAL LABORATORY WOODS HOLE, MASS. LOANED BY AMERICAN MUSEUM OF NATURAL HISTORY The Annals OF Scottish Natural History A QUARTERLY MAGAZINE WITH WHICH IS INCORPORATED Baturaltet EDITED BY J. A. HARVIE-BROWN, F.R.S.E., F.Z.S. MEMBER OF THE BRITISH ORNITHOLOGISTS' UNION JAMES W. H. TRAIL, M.A., M.D., F.R.S., F.L.S. PROFESSOR OF BOTANY IN THE UNIVERSITY OF ABERDEEN AND WILLIAM EAGLE CLARKE, F.L.S., MEM. BRIT. ORN. UNION NATURAL HISTORY DEPARTMENT, MUSEUM OF SCIENCE AND ART, EDINBURGH EDINBURGH DAVID DOUGLAS, CASTLE STREET LONDON: R. H. PORTER, 7 PRINCES ST., CAVENDISH SQUARE The Annals of Scottish Natural History No. 21] 1897 [JANUARY THE LATE PROFESSOR THOMAS KING. THOMAS KING was born on the I4th April 1834, at Yardfoot, Lochwinnoch, Renfrewshire, a farm which was owned and occupied by his father. He received his early education in a small school in the village of Glenhead. He was destined to be a teacher, and in 1855, after the sale of his birthplace, and the removal of the family to Glasgow, he entered the Normal Training College of the Free Church of Scotland. The early bent of his mind revealed itself in his attendance on the class of Botany in that Institution. In 1862 he was appointed teacher of English in the Garnet Bank Academy, where, in addition to the ordinary subjects, he taught an advanced class of Botany. The work of the session, however, proved too much for his strength, which had never been robust, and he was obliged to relinquish the position. -
"Ecology of Water Relations in Plants". In: Encyclopedia of Life
Ecology of Water Relations Advanced article in Plants Article Contents . Introduction Yoseph Negusse Araya, The Open University, Milton Keynes, UK . Water Uptake and Movement through Plants . Water Stress and Plants Water is an important resource for plant growth. Availability of water in the soil determines . Plant Sensing and Adaptation to Water Stress the niche, distribution and competitive interaction of plants in the environment. Distribution of Plants in Response to Water Regime Introduction doi: 10.1002/9780470015902.a0003201 Importance of water for plants Moisture Water typically constitutes 80–95% of the mass of growing 8 plant tissues and plays a crucial role for plant growth (Taiz 7 and Zeiger, 1998). Plants require water for a number of 6 physiological processes (e.g. synthesis of carbohydrates) 5 and for associated physical functions (e.g. keeping plants turgid). 4 Water accomplishes its many functions because of its 3 Moisture index 2 unique characteristics: the polarity of the molecule H2O (which makes it an excellent solvent), viscosity (which 1 makes it capable of moving through plant tissues by 0 capillary action) and thermal properties (which makes it Forest Woodland Grassland Desert capable of cooling plant tissues). Total net productivity 1 Plants require water, soil nutrients, carbon dioxide, ox- − 1000 year ygen and solar radiation for growth. Of these, water is most 2 − often the most limiting: influencing productivity (Taiz and m 1 800 Zeiger, 1998) as well as the diversity of species (Rodriguez- − Iturbe and Porporato, 2004) in both natural and agricul- 600 tural ecosystems. This is illustrated graphically in Figure 1. 400 How does water affect ecology of plants? 200 In order to understand the ecology of plant–water rela- 0 Total net productivity g Total tions it is important to understand from where and how Forest Woodland Grassland Desert plants acquire water in their environment (the latter is dis- cussed in the section on water uptake and movement Plant species diversity through plants). -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
List of Vascular Plants Endemic to Britain, Ireland and the Channel Islands 2020
British & Irish Botany 2(3): 169-189, 2020 List of vascular plants endemic to Britain, Ireland and the Channel Islands 2020 Timothy C.G. Rich Cardiff, U.K. Corresponding author: Tim Rich: [email protected] This pdf constitutes the Version of Record published on 31st August 2020 Abstract A list of 804 plants endemic to Britain, Ireland and the Channel Islands is broken down by country. There are 659 taxa endemic to Britain, 20 to Ireland and three to the Channel Islands. There are 25 endemic sexual species and 26 sexual subspecies, the remainder are mostly critical apomictic taxa. Fifteen endemics (2%) are certainly or probably extinct in the wild. Keywords: England; Northern Ireland; Republic of Ireland; Scotland; Wales. Introduction This note provides a list of vascular plants endemic to Britain, Ireland and the Channel Islands, updating the lists in Rich et al. (1999), Dines (2008), Stroh et al. (2014) and Wyse Jackson et al. (2016). The list includes endemics of subspecific rank or above, but excludes infraspecific taxa of lower rank and hybrids (for the latter, see Stace et al., 2015). There are, of course, different taxonomic views on some of the taxa included. Nomenclature, taxonomic rank and endemic status follows Stace (2019), except for Hieracium (Sell & Murrell, 2006; McCosh & Rich, 2018), Ranunculus auricomus group (A. C. Leslie in Sell & Murrell, 2018), Rubus (Edees & Newton, 1988; Newton & Randall, 2004; Kurtto & Weber, 2009; Kurtto et al. 2010, and recent papers), Taraxacum (Dudman & Richards, 1997; Kirschner & Štepànek, 1998 and recent papers) and Ulmus (Sell & Murrell, 2018). Ulmus is included with some reservations, as many taxa are largely vegetative clones which may occasionally reproduce sexually and hence may not merit species status (cf. -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
Analysis of Paralogs in Target Enrichment Data Pinpoints Multiple Ancient Polyploidy Events
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.21.261925; this version posted August 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Analysis of paralogs in target enrichment data pinpoints multiple ancient polyploidy events 2 in Alchemilla s.l. (Rosaceae). 3 4 Diego F. Morales-Briones1.2,*, Berit Gehrke3, Chien-Hsun Huang4, Aaron Liston5, Hong Ma6, 5 Hannah E. Marx7, David C. Tank2, Ya Yang1 6 7 1Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner 8 Avenue, St. Paul, MN 55108, USA 9 2Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, 10 University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID 83844, USA 11 3University Gardens, University Museum, University of Bergen, Mildeveien 240, 5259 12 Hjellestad, Norway 13 4State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics 14 and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological 15 Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, 16 Fudan University, Shanghai 200433, China 17 5Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, 18 Corvallis, OR 97331, USA 19 6Department of Biology, the Huck Institute of the Life Sciences, the Pennsylvania State 20 University, 510D Mueller Laboratory, University Park, PA 16802 USA 21 7Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 22 48109-1048, USA 23 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.21.261925; this version posted August 23, 2020. -
ED45E Rare and Scarce Species Hierarchy.Pdf
104 Species 55 Mollusc 8 Mollusc 334 Species 181 Mollusc 28 Mollusc 44 Species 23 Vascular Plant 14 Flowering Plant 45 Species 23 Vascular Plant 14 Flowering Plant 269 Species 149 Vascular Plant 84 Flowering Plant 13 Species 7 Mollusc 1 Mollusc 42 Species 21 Mollusc 2 Mollusc 43 Species 22 Mollusc 3 Mollusc 59 Species 30 Mollusc 4 Mollusc 59 Species 31 Mollusc 5 Mollusc 68 Species 36 Mollusc 6 Mollusc 81 Species 43 Mollusc 7 Mollusc 105 Species 56 Mollusc 9 Mollusc 117 Species 63 Mollusc 10 Mollusc 118 Species 64 Mollusc 11 Mollusc 119 Species 65 Mollusc 12 Mollusc 124 Species 68 Mollusc 13 Mollusc 125 Species 69 Mollusc 14 Mollusc 145 Species 81 Mollusc 15 Mollusc 150 Species 84 Mollusc 16 Mollusc 151 Species 85 Mollusc 17 Mollusc 152 Species 86 Mollusc 18 Mollusc 158 Species 90 Mollusc 19 Mollusc 184 Species 105 Mollusc 20 Mollusc 185 Species 106 Mollusc 21 Mollusc 186 Species 107 Mollusc 22 Mollusc 191 Species 110 Mollusc 23 Mollusc 245 Species 136 Mollusc 24 Mollusc 267 Species 148 Mollusc 25 Mollusc 270 Species 150 Mollusc 26 Mollusc 333 Species 180 Mollusc 27 Mollusc 347 Species 189 Mollusc 29 Mollusc 349 Species 191 Mollusc 30 Mollusc 365 Species 196 Mollusc 31 Mollusc 376 Species 203 Mollusc 32 Mollusc 377 Species 204 Mollusc 33 Mollusc 378 Species 205 Mollusc 34 Mollusc 379 Species 206 Mollusc 35 Mollusc 404 Species 221 Mollusc 36 Mollusc 414 Species 228 Mollusc 37 Mollusc 415 Species 229 Mollusc 38 Mollusc 416 Species 230 Mollusc 39 Mollusc 417 Species 231 Mollusc 40 Mollusc 418 Species 232 Mollusc 41 Mollusc 419 Species 233 -
General Methods Will Be Outlined in Chapter 2
The Biodiversity of Abandoned Farmland Tom Fayle Gonville and Caius College April 2005 This dissertation is submitted for the degree of Master of Philosophy Mating Six-spot Burnet moths (Zygaena filipendulae) on the Roughs Declaration This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the limit of 15000 words in the main text, excluding figures, tables, legends and appendices. i Acknowledgements This work was carried out on the land of Miriam Rothschild, who sadly passed away before its completion. I would like to thank her for allowing me to stay at Ashton Wold during my fieldwork and making me feel welcome there. I would also like to thank the Eranda Foundation for funding this work. Various people have helped with the identification of my material and I am very grateful to them for their time. Brian Eversham was of great help in identifying my carabids and also took time out from his busy schedule to assist me for a day during my time in the field. Ray Symonds dedicated a great deal of time to identifying all the spiders I caught, a feat which would have undoubtedly taken me many weeks! Richard Preece identified all my gastropods, and I am grateful both to him and his student George Speller for passing on the material to him. Roger Morris verified the identification of voucher specimens of all the syrphids I caught, and Oliver Prŷs-Jones did the same for my bumblebees. -
A Morphometric Analysis Maia Jones SIT Study Abroad
SIT Graduate Institute/SIT Study Abroad SIT Digital Collections Independent Study Project (ISP) Collection SIT Study Abroad Fall 2018 he Effects of Climate Change on Native Icelandic Plants: A Morphometric Analysis Maia Jones SIT Study Abroad Follow this and additional works at: https://digitalcollections.sit.edu/isp_collection Part of the Botany Commons, Environmental Health Commons, Environmental Studies Commons, International and Area Studies Commons, and the Other Plant Sciences Commons Recommended Citation Jones, Maia, "he Effects of Climate Change on Native Icelandic Plants: A Morphometric Analysis" (2018). Independent Study Project (ISP) Collection. 2955. https://digitalcollections.sit.edu/isp_collection/2955 This Unpublished Paper is brought to you for free and open access by the SIT Study Abroad at SIT Digital Collections. It has been accepted for inclusion in Independent Study Project (ISP) Collection by an authorized administrator of SIT Digital Collections. For more information, please contact [email protected]. The Effects of Climate Change on Native Icelandic Plants: A Morphometric Analysis Maia Jones [email protected] School for International Training Iceland and Greenland: Climate Change and the Arctic Fall 2018 Table of Contents Acknowledgements 3 Abstract 4 Introduction 5 Methods 12 Ethics 15 Results 16 Discussion 18 Study Limitations 21 Future Research 22 Conclusions 22 References 24 Appendix 27 Additional Figures 27 Acknowledgements I would like to thank Dan Govoni and Alex Tyas for their guidance, expertise, and patience during this project and over the course of the semester. I appreciated their support and feedback throughout the process of developing and carrying out the research. I am grateful to Dr Eva Kuttner at the Botanical Garden of Akureyri for her advice on my project, and to Dr Pawel Wasowicz at the Icelandic Institute of Natural History in Akureyri for his help in accessing and scanning the herbarium specimens used for my study. -
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade. -
ISTA List of Stabilized Plant Names 7Th Edition
ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations .......................................................................................................................... -
SY000646.Pdf
SITE SYNOPSIS Site Name: Galtee Mountains SAC Site Code: 000646 Situated in east Limerick and south Tipperary, the Galtee Mountains are Ireland's highest range of inland mountains. Galtymore has an elevation of 920 m and the main ridge, mostly above 700 m, extends approximately 10 km from east to west. The mountains are derived from folding of Old Red Sandstone and Silurian rocks. Heath is the main vegetation type within the site, with significant amounts of humid grassland and blanket bog occurring also. There is a series of small corrie lakes on the northern side of the mountain range, and the site encompasses the headstreams of numerous tributaries of the river Suir. The cliffs above the corries support arctic- alpine vegetation and the site as a whole supports several notable Irish rarities. The site is a Special Area of Conservation (SAC) selected for the following habitats and/or species listed on Annex I / II of the E.U. Habitats Directive (* = priority; numbers in brackets are Natura 2000 codes): [4010] Wet Heath [4030] Dry Heath [4060] Alpine and Subalpine Heaths [6230] Species-rich Nardus Grassland* [7130] Blanket Bogs (Active)* [8110] Siliceous Scree [8210] Calcareous Rocky Slopes [8220] Siliceous Rocky Slopes In areas of dry heath Heather (Calluna vulgaris) dominates the vegetation, with Bilberry (Vaccinium myrtillus) also common. This habitat type often grades into wet heath and alpine/subalpine heath. It is probably best developed on the steeper slopes. Additional species recorded from the areas of alpine/subalpine heath include Dwarf Willow (Salix herbacea), Heath Bedstraw (Galium saxatile), Hare’s-tail Cottongrass (Eriophorum vaginatum), Great Wood-rush (Luzula sylvatica) and Starry Saxifrage (Saxifraga stellaris), amongst others.