First Trimester Assessment of Ductus Venosus in Screening for Fetal Chromosomal and Cardiac Defects

Total Page:16

File Type:pdf, Size:1020Kb

First Trimester Assessment of Ductus Venosus in Screening for Fetal Chromosomal and Cardiac Defects First trimester assessment of ductus venosus in screening for fetal chromosomal and cardiac defects Valoración del ductus venoso en el primer trimestre en el cribado de anomalías cromosómicas fetales y defectos cardiacos Nerea Maiz Elizaran ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora. WARNING. On having consulted this thesis you’re accepting the following use conditions: Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized neither its spreading and availability from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the TDX service is not authorized (framing). This rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate the name of the author. Departament d’Obstetricia i Ginecologia, Pediatria, Radiologia i Anatomía Programa de doctorat: Obstetricia i Ginecologia, Bienni: 1999-2001 0A0&&4H 64H&A&8 Para aspirar al grado de Doctora en Medicina y Cirugía con Mención de Doctor Europeo Enero 2010 Director: Professor Kypros Herodotou Nicolaides King’s College and University College, University of London, England Tutor: Profesor Eduard Gratacós Solsona Universitat de Barcelona, Spain 1 Departament d’Obstetricia i Ginecologia, Pediatria, Radiologia i Anatomía Programa de doctorat: Obstetricia i Ginecologia, Bienni: 1999-2001 Submitted by 0A0&&4H 64H&A&8 For the degree of European Doctor in Medicine January 2010 Supervisor: Professor Kypros Herodotou Nicolaides King’s College and University College, University of London, England Tutor: Professor Eduard Gratacós Solsona Universitat de Barcelona, Spain 3 Professor Kypros Herodotou Nicolaides King’s College and University College, University of London, England I confirm that Dr Nerea Maiz Elizaran has carried out under my supervision the studies presented in the Thesis: First trimester assessment of ductus venosus in screening for fetal chromosomal and cardiac defects I have read the Thesis and I am happy for this to be presented to the Tribunal for The Degree of European Doctor in Medicine Professor Kypros Herodotou Nicolaides London October 2009 5 Al aita y a la ama 7 ACKNOWLEDGEMENTS 8264B3 Thanks to Professor Nicolaides, it is difficult to explain in a few words how grateful I am. He taught me patiently, guided me during three years and was the best example of hard work, generosity and enthusiasm. Thanks for giving me a chance. Thanks for sharing the passion for Fetal Medicine. To Professor Eduard Gratacós, tutor of this thesis, for his advice and availability. Thanks to all the Research Fellows of the Harris Birthright Research Centre, for all the work and for being “my family” during three fantastic years. Without you this would have been impossible. To Katy, Catalina, Francisca, Walter, Themis, Nicola, Ebru, Ranjit, Marisa, Ismini,...... we shared so many things!! thanks for all the support and being my best friends. To the midwifes, to July, for making our lives easier. To the consultants, for being so patients. Thanks to my parents and brothers for all the love and support. I owe them what I have and what I am. Thanks for being so close despite the distance. To my friends and colleagues at Institut Dexeus and Sant Joan de Déu hospital in Barcelona, where I learned so many things about Obstetrics, about Fetal Medicine, ...but also about life! To Inés, Maite, Pilar, Yeli, Juanjo, for their friendship and great years in Barcelona. To Luis, I wish you were here to share this moment with you. Thanks to my colleagues at Clínica del Pilar in San Sebastian for trusting me. To Juana, Sofia, Cristina, Leyre, Ana, Esther, Maria,...for their unconditional friendship. 9 ACKNOWLEDGEMENTS @&84B3 Gracias al Profesor Nicolaides, es difícil expresar en pocas palabras todo mi agradecimiento. Él me enseñó y guió durante tres años, y fue el mejor ejemplo de trabajador incansable, generosidad y entusiasmo. Gracias por darme una oportunidad. Gracias por compartir la pasión por la Medicina Fetal. Al Profesor Eduard Gratacós, tutor de esta tesis, por sus consejos y disponibilidad. A los research fellows del Harris Birthright Research Centre, por todo su trabajo y por ser mi “familia” durante 3 años fantásticos. Sin ellos esta tesis hubiera sido imposible. A Katy, Catalina, Francisca, Walter, Themis, Nicola, Ebru, Ranjit, Marisa, Ismini,… hemos compartido tantas cosas!!! Gracias por todo el apoyo y ser mis mejores amigos. A las “midwifes”, a July, por hacer nuestra vida más fácil. A los “consultants” por su paciencia. A mis padres y mis hermanos, gracias por todo el amor y el apoyo constante. A ellos les debo lo que tengo y lo que soy. Gracias por estar tan cerca a pesar de la distancia. A mis amigos y compañeros del Institut Dexeus y el Hospital Sant Joan de Déu donde aprendí Obstetricia, Medicina Fetal,…y aprendí de la vida!. A mis amigos Inés, Maite, Pilar, Yeli, Juanjo por su amistad y los fantásticos años en Barcelona. A Luis, ojalá estuvieras aquí para compartir este momento contigo. Mi agradecimiento a mis compañeros de la Clínica del Pilar de San Sebastián por confiar en mí. A Juana, Sofía, Cristina, Leyre, Ana, Esther, María,.. por su amistad incondicional. 10 11 CONTENTS INDEX PAGES ABBREVIATIONS 17 19 1.1 DUCTUS VENOSUS 21 1.1.1 Anatomy 21 1.1.2 Functional anatomy 21 1.1.3 Ductus venosus shunting 23 1.1.4 Doppler assessment of the ductus venosus 24 Quantitative assessment of the ductus venosus waveform: velocities and indexes 25 Qualitative assessment of the ductus venosus waveform Reproducibility 27 1.2 DUCTUS VENOSUS AND CHROMOSOMAL ABNORMALITIES 28 1.2.1 Overview 28 1.2.2 Assessment of risk for chromosomal abnormalities 28 Background or a priori risk 28 Maternal age and gestation 28 Fetal nuchal translucency 31 Maternal serum biochemistry 31 1.2.3 Abnormal flow in the ductus venosus 32 1.3 DUCTUS VENOSUS AND CARDIAC DEFECTS 33 1.3.1 Overview 33 1.3.2 Prevalence of congenital cardiac defects 34 1.3.3 Screening for fetal cardiac defects 35 Family history of congenital cardiac defects 35 Maternal diabetes mellitus 35 Maternal ingestion of known teratogens 36 13 Screening through risk factors in the maternal history 38 Screening by nuchal translucency 38 1.3.4 Ductus venosus and cardiac defects 39 1.4 DUCUS VENOSUS AND FETAL GROWTH RESTRICTION (FGR) 40 1.4.1 Overview 40 1.4.2 Diagnostic approach to FGR 41 1.4.3 FGR due to placental insufficiency 43 Fetal cardiovascular changes 44 Fetal biophysical changes 45 Antenatal surveillance of FGR due to placental insufficiency 45 1.4.4 Role of the ductus venosus in FGR 47 1.5 DUCTUS VENOSUS AND ADVERSE PREGNANCY OUTCOME 48 1.5.1 Pregnancy loss 48 First trimester screening for pregnancy loss 48 Ductus venosus in the first trimester and pregnancy loss 50 1.5.2 Major abnormalities 51 First trimester screening for major abnormalities 51 Screening for major abnormalities by nuchal translucency 52 Screening for major abnormalities by ductus venosus flow 53 1.6 DUCTUS VENOSUS AND TWIN PREGNANCIES 54 1.6.1 Overview 54 1.6.2 Pregnancy complications in twins 55 Selective FGR in monochorionic twins 56 1.6.3 Twin to twin transfusion syndrome (TTTS) 57 Role of the ductus venosus flow in TTTS 58 Prediction of TTTS 59 1.6.4 Screening for chromosomal abnormalities in twin pregnancies 60 Screening by maternal age 60 Screening by nuchal translucency 60 Screening by maternal serum biochemistry 61 Amniocentesis and CVS in twin pregnancies 61 14 1.7 HYPOTHESIS OF THE THESIS 62 1.8 AIMS OF THE THESIS 62 65 STUDY 1 69 Maiz N, Kagan KO, Milovanovic Z, Celik E, Nicolaides KH. Learning curve for Doppler assessment of ductus venosus flow at 11-13 weeks. Ultrasound Obstet Gynecol 2008;31:503-6. STUDY 2 75 Maiz N, Plasencia W, Dagklis T, Faros E, Nicolaides KH. Ductus venosus Doppler in fetuses with cardiac defects and high nuchal translucency thickness. Ultrasound Obstet Gynecol 2008;31:256-60.
Recommended publications
  • Anomalies of the Portal Venous System in Dogs and Cats As Seen on Multidetector-Row Computed Tomography: an Overview and Systematization Proposal
    veterinary sciences Review Anomalies of the Portal Venous System in Dogs and Cats as Seen on Multidetector-Row Computed Tomography: An Overview and Systematization Proposal Giovanna Bertolini San Marco Veterinary Clinic and Laboratory, via dell’Industria 3, 35030 Veggiano, Padova, Italy; [email protected]; Tel.: +39-049-856-1098 Received: 29 November 2018; Accepted: 16 January 2019; Published: 22 January 2019 Abstract: This article offers an overview of congenital and acquired vascular anomalies involving the portal venous system in dogs and cats, as determined by multidetector-row computed tomography angiography. Congenital absence of the portal vein, portal vein hypoplasia, portal vein thrombosis and portal collaterals are described. Portal collaterals are further discussed as high- and low-flow connections and categorized in hepatic arterioportal malformation, arteriovenous fistula, end-to-side and side-to-side congenital portosystemic shunts, acquired portosystemic shunts, cavoportal and porto-portal collaterals. Knowledge of different portal system anomalies helps understand the underlying physiopathological mechanism and is essential for surgical and interventional approaches. Keywords: portal system; portal vein; portosystemic shunt; portal hypertension; computed tomography 1. Introduction The portal venous system is essential for the maintenance of the liver mass and function in mammals. The portal system collects blood from major abdominal organs (i.e., gastrointestinal tract, pancreas, spleen) delivering nutrients, bacteria and toxins from the intestine to the liver. In addition, the portal blood carries approximately from one-half to two-thirds of the oxygen supply to the liver and specific hepatotrophic factors [1,2]. The portal blood is detoxified by the hepatocytes and then delivered into the systemic circulation via the hepatic veins and caudal vena cava [3].
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Prevalence and Outcome of Absence of Ductus Venosus at 11+0 to 13+6 Weeks
    Original Paper Fetal Diagn Ther 2011;30:35–40 Received: November 17, 2010 DOI: 10.1159/000323593 Accepted after revision: December 14, 2010 Published online: February 19, 2011 Prevalence and Outcome of Absence of Ductus Venosus at 11+0 to 13 +6 Weeks a, c a a a Ismini Staboulidou Susana Pereira Jader de Jesus Cruz Argyro Syngelaki a, b Kypros H. Nicolaides a b Harris Birthright Research Centre of Fetal Medicine, King’s College Hospital, and Fetal Medicine Unit, University c College Hospital, London , UK; Department of Gynecology and Obstetrics, University Medical School of Hannover, Hannover , Germany Key Words Introduction ؒ Agenesis of ductus venosus ؒ Nuchal translucency First-trimester screening ؒ Prenatal diagnosis The ductus venosus (DV) plays an important role in the fetal circulation because it diverts oxygenated blood from the placenta towards the right atrium and through Abstract the foramen ovale to the left heart and thereafter the Introduction: To examine the prevalence and outcome of ab- brain [1] . Previous studies have examined pregnancy out- sent ductus venosus (DV) diagnosed at 11–13 weeks’ gesta- come in fetuses with absent DV diagnosed during the tion. Method: Prospective screening study for aneuploidies second and third trimester of pregnancy ( table 1 ) [2–27] . in 65,840 singleton pregnancies, including measurement of In the combined data from 26 reports on a total of 110 nuchal translucency (NT) thickness and examination of the cases, about 40% had associated defects and aneuploidies. DV. Prenatal findings and outcome of fetuses with absent DV In the pregnancies with isolated absent DV, about 35% were examined.
    [Show full text]
  • 6 Development of the Great Vessels and Conduction Tissue
    Development of the Great Vessels and Conduc6on Tissue Development of the heart fields • h:p://php.med.unsw.edu.au/embryology/ index.php?6tle=Advanced_-_Heart_Fields ! 2 Septa6on of the Bulbus Cordis Bulbus Cordis AV Canal Ventricle Looking at a sagital sec6on of the heart early in development the bulbus cordis is con6nuous with the ventricle which is con6nuous with the atria. As the AV canal shiOs to the right the bulbus move to the right as well. Septa6on of the Bulbus Cordis A P A P The next three slides make the point via cross sec6ons that the aorta and pulmonary arteries rotate around each other. This means the septum between them changes posi6on from superior to inferior as well. Septa6on of the Bulbus Cordis P A A P Septa6on of the Bulbus Cordis P A P A Migra6on of neural crest cells Neural crest cells migrate from the 3ed, 4th and 6th pharyngeal arches to form some of the popula6on of cells forming the aor6copulmonary septum. Septa6on of the Bulbus Cordis Truncal (Conal) Swellings Bulbus Cordis The cardiac jelly in the region of the truncus and conus adds the neural crest cells and expands as truncal swellings. Septa6on of the Bulbus Cordis Aorticopulmonary septum These swellings grow toward each other to meet and form the septum between the aorta and pulmonary artery. Aorta Pulmonary Artery Septa6on of the Bulbus Cordis Anterior 1 2 3 1 2 3 The aor6copulmonary septum then rotates as it moves inferiorly. However, the exact mechanism for that rota6on remains unclear. Septa6on of the Bulbus Cordis Aorta Pulmonary Artery Conal Ridges IV Foramen Membranous Muscular IV Endocarial Septum Interventricular Cushion Septum However, the aor6copulmonary septum must form properly for the IV septum to be completed.
    [Show full text]
  • Ductus Venosus
    Chapter 28 Ductus Venosus Torvid Kiserud The ductus venosus (venous duct, ductus Arantii) is pography. The thoracic IVC is short or non-existent one of the three physiological shunts responsible for in the human fetus and there is no valve developed at the circulatory adaptation to intrauterine life. It is at- the ductus venosus outlet, the effect being that the tributed to Giulio Cesare Aranzi (1530±1589), but the ductus venosus projects the blood flow directly to- first written account dates back to his contemporary wards the foramen ovale from a short distance and is Vesalius in 1561 [1]. Its function was long recognized less dependent on laminar flow arrangement to avoid [2, 3] but of hardly any clinical importance until ul- extensive blending with low oxygenated blood from trasound techniques were introduced [4±6]. It is now the abdominal IVC [13]. widely used as an important part of the hemody- During early gestation, the ductus venosus is namic assessment of the fetus [7] and has been sug- formed as a confluence of hepatic sinuses, then devel- gested for diagnostic use after birth as well [8]. Anatomy and Development The ductus venosus is a thin, slightly trumpet-shaped vessel connecting the intra-abdominal umbilical vein with the inferior vena cava (IVC; Fig. 28.1). Its inlet, the isthmus, is on average 0.7 mm at 18 weeks and 1.7 mm at 40 weeks of gestation [9±11]. It leaves the umbilical vein (portal sinus) in a cranial and dorsal direction and reaches the IVC at the level of the he- patic venous confluence shortly below the atria.
    [Show full text]
  • Portal Hypertension: the Desperate Search for the Placenta
    Current Research in Translational Medicine 67 (2019) 56–61 Available online at ScienceDirect www.sciencedirect.com Original article Portal hypertension: The desperate search for the placenta a, b c,d c,d Maria Angeles Aller *, Natalia Arias , Javier Blanco-Rivero , Gloria Balfagón , a Jaime Arias a Department of Surgery. School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain b Upper Third Floor, UCL Medical School, UCL Institute for Liver and Digestive Health, Royal Free Hospital, Rowland Hill Street, London NWÁ 2PF, UK c Department of Physiology, School of Medicine, Autónoma University of Madrid, Spain d Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain A R T I C L E I N F O A B S T R A C T Article history: We propose that the circulatory impairments produced, in both portal hypertension and liver cirrhosis, to Received 26 February 2018 a certain degree resemble those characterizing prenatal life in the fetus. In fact, the left-right circulatory Accepted 30 September 2018 syndrome is common in cirrhotic patients and in the fetus. Thus, in patients with portal hypertension and Available online 30 November 2018 chronic liver failure, the re-expression of a blood circulation comparable to fetal circulation is associated with the development of similar amniotic functions, i.e., ascites production and placenta functions, and Keywords: portal vascular enteropathy. Therefore, these re-expressed embryonic functions are extra-embryonic and Portal hypertension responsible for prenatal trophism and development. Portosystemic shunts Placenta © 2018 Published by Elsevier Masson SAS. Hyperdynamic circulation Left-right shunts 1. Introduction esophagus and upper stomach, the splenorenal veins, the para- rectal veins with haemorrhoids and the paraumbilical veins, which Increased venous pressure in the splanchnic venous system can result in dilated veins in the anterior abdominal wall, thus making reach pathological levels and induce complications, which in turn up a “caput medusa” [1,2].
    [Show full text]
  • [email protected]
    Embryology)**@gmail.com 1-To serve prenatal needs. 2-To permit modifications at birth, which establish the neonatal circulation #Remember : Good respiration in the newborn infant is dependent upon normal circulatory changes at birth. Three structures are very important in the transitional circulation: 1- Ductus venosus. 2- Ductus arteriosus. 3- Foramen ovale Embryology)**@gmail.com Blood reaches & leaves the fetus through the umbilical cord and it Contains two arteries and one vein. 1- Highly oxygenated blood passes from the placenta through the umbilical vein. 2-Half of this blood reaches the IVC through the ductus venosus. 3- The other half passes to liver sinusoids then to the IVC. 4- Blood of the IVC reaches the right atrium, then left atrium through the Foramen Ovale (an opening between the two atrium). 5- Then to the left ventricle to the ascending aorta, and the aortic arch to supply head & neck brain, cardiac muscle and upper limbs with highly oxygenated blood. 6- Small amount of highly oxygenated blood in right atrium mixes with venous blood of the SVC passes to right ventricle. 7- Then to the pulmonary artery (lungs are not functioning yet) then to ductus arteriosus to the descending aorta, to lower half of fetal body. 8- Then back to placenta via the two umbilical arteries. Embryology)**@gmail.com 12 # After Ligation of the umbilical cord there will be Sudden fall of blood pressure in the IVC and the right Atrium Also the valve of the ductus venosus constricts. # After Aeration ( ventilation ) of the lungs at birth: 1- Marked increase in the pulmonary blood flow due to functioning of the lungs and increase pressure in left atrium causing physiological colsure.
    [Show full text]
  • Blood Vessels and Circulation
    19 Blood Vessels and Circulation Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Functional Anatomy of Blood Vessels Learning Outcomes 19.1 Distinguish between the pulmonary and systemic circuits, and identify afferent and efferent blood vessels. 19.2 Distinguish among the types of blood vessels on the basis of their structure and function. 19.3 Describe the structures of capillaries and their functions in the exchange of dissolved materials between blood and interstitial fluid. 19.4 Describe the venous system, and indicate the distribution of blood within the cardiovascular system. © 2018 Pearson Education, Inc. Module 19.1: The heart pumps blood, in sequence, through the arteries, capillaries, and veins of the pulmonary and systemic circuits Blood vessels . Blood vessels conduct blood between the heart and peripheral tissues . Arteries (carry blood away from the heart) • Also called efferent vessels . Veins (carry blood to the heart) • Also called afferent vessels . Capillaries (exchange substances between blood and tissues) • Interconnect smallest arteries and smallest veins © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Two circuits 1. Pulmonary circuit • To and from gas exchange surfaces in the lungs 2. Systemic circuit • To and from rest of body © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Circulation pathway through circuits 1. Right atrium (entry chamber) • Collects blood from systemic circuit • To right ventricle to pulmonary circuit 2. Pulmonary circuit • Pulmonary arteries to pulmonary capillaries to pulmonary veins © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Circulation pathway through circuits (continued) 3. Left atrium • Receives blood from pulmonary circuit • To left ventricle to systemic circuit 4.
    [Show full text]
  • In Situ Morphology of the Ductus Venosus and Related Vessels in the Fetal and Neonatal Rat
    003 1 -3998/92/3204-0386$03.00/0 PEDIATRIC RESEARCH Vol. 32, No. 4, 1992 Copyright O 1992 International Pediatric Research Foundation. Inc. Prinred in U.S. A. In Situ Morphology of the Ductus Venosus and Related Vessels in the Fetal and Neonatal Rat KAZUO MOMMA, TADAHIKO ITO. AND MASAHIKO AND0 Dqurrmeni c!J'Pt~liuiricChrdiolog.~, The flearr lnsiitltte ofJupun, Tokyo Women's Medical College, Tokvo. Jupun ABSTRACT. In situ cross-sectional morphology of the sperm in vaginal smears fixed the zero day of pregnancy. Rats ductus venosus and related vessels was studied after rapid were fed commercial solid food and water. Average litter size whole-body freezing of the fetal and neonatal rat. In the was 13. Treatment of the rats conformed to the guiding principles fetus, the ductus venosus was open widely, connecting the of the American Physiological Society. umbilical sinus and the inferior vena cava. The diameter of Freezing, cutting, and photographing. Fetal and neonatal vas- the ductus venosus was 50% of the diameter of the umbil- cular morphology were studied using the rapid whole-body freez- ical sinus. The ductus venous joined the left dorsal side of ing technique, as previously reported (7-10). For fetal studies, the inferior vena cava. A thin, short, membrane-like edge four pregnant rats were killed on the 2 1 st d by cervical dislocation was present at the inner junction of the ductus venosus and and frozen immediately in liquid nitrogen. Thereafter, frozen the inferior vena cava, presumably effecting laminar flow fetuses were removed. In the study of newborn rats, 14 mother of the ductus venosus blood to the left side of the thoracic rats nursed newborns for 1, 2, 3, or 4 d, after which these inferior vena cava.
    [Show full text]
  • Clinical Significance of Ductus Venosus Waveform As Generated by Pressure-Volume Changes in the Foetal Heart
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Open Repository of the University of Porto Universidade do Porto, Instituto de Ciências Biomédicas Abel Salazar, Mestrado Integrado em Medicina Clinical significance of ductus venosus waveform as generated by pressure-volume changes in the fetal heart Autor: Madalena Peixoto de Sousa Braga E-mail: [email protected] Orientador: Prof. Doutor Luís Guedes-Martins Co-orientador: Dr. Joaquim Gonçalves M 2018 Clinical significance of ductus venosus waveform as generated by pressure-volume changes in the fetal heart Este trabalho está organizado e formatado de acordo com as regras de publicação da revista “Current Cardiology Reviews”. URL: https://benthamscience.com/journals/current-cardiology-reviews/author- guidelines/#top Data de acesso: 1 de Maio de 2018 Autor _______________________________ (Madalena Peixoto de Sousa Braga) Orientador _______________________________ (Prof. Doutor Luís Guedes-Martins) Co-orientador _______________________________ (Dr. Joaquim Gonçalves) Maio, 2018 Agradecimentos: Na realização da presente dissertação, contei com o apoio direto ou indireto de múltiplas pessoas. Correndo o risco de injustamente não mencionar algum dos contributos quero deixar desde já expresso os meus agradecimentos ao orientador desta dissertação, o Prof. Doutor Luís Guedes-Martins, pelo apoio, paciência, disponibilidade, transmissão de conhecimentos e interesse por esta área. Ao co- orientador, Dr. Joaquim Gonçalves, pelo seu incentivo, disponibilidade e apoio na
    [Show full text]
  • The Fetal Circulation
    PRENATAL DIAGNOSIS Prenat Diagn 2004; 24: 1049–1059. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/pd.1062 REVIEW The fetal circulation Torvid Kiserud1* and Ganesh Acharya2 1University of Bergen, Department of Obstetrics and Gynecology, Bergen, Norway 2Department of Obstetrics and Gynecology, University Hospital of Northern Norway, Tromsø, Norway Accumulating data on the human fetal circulation shows the similarity to the experimental animal physiology, but with important differences. The human fetus seems to circulate less blood through the placenta, shunt less through the ductus venosus and foramen ovale, but direct more blood through the lungs than the fetal sheep. However, there are substantial individual variations and the pattern changes with gestational age. The normalised umbilical blood flow decreases with gestational age, and, at 28 to 32 weeks, a new level of development seems to be reached. At this stage, the shunting through the ductus venosus and the foramen ovale reaches a minimum, and the flow through the lungs a maximum. The ductus venosus and foramen ovale are functionally closely related and represent an important distributional unit for the venous return. The left portal branch represents a venous watershed, and, similarly, the isthmus aorta an arterial watershed. Thus, the fetal central circulation is a very flexible and adaptive circulatory system. The responses to increased afterload, hypoxaemia and acidaemia in the human fetus are equivalent to those found in animal studies: increased ductus venosus and foramen ovale shunting, increased impedance in the lungs, reduced impedance in the brain, increasingly reversed flow in the aortic isthmus and a more prominent coronary blood flow.
    [Show full text]
  • Discovery and Development of the Cardiovascular System with a Focus on Angiogenesis: a Historical Overview
    IJAE Vol. 124, n. 3: 247-270, 2019 ITALIAN JOURNAL OF ANATOMY AND EMBRYOLOGY Discovery and development of the cardiovascular system with a focus on angiogenesis: a historical overview Gianfranco Natale1,2 and Guido Bocci3,* 1 Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia 2 Museo di Anatomia Umana “Filippo Civinini”, Università di Pisa, 56121, Pisa, Italy 3 Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, 56126, Pisa Abstract In comparison with other organs, the beating heart and the red color of blood flowing inside vessels not only were arguments for anatomical research but also inspired metaphorical as well as symbolical considerations. Indeed, for a long time the cardiac pump was thought as the seat of passions and a haemocardiocentric theory developed, especially in Aristotle’s phi- losophy. After the Galen’s medicine, new anatomical observations were shown in the Renais- sance period, with modern descriptions of the cardiovascular system by Leonardo da Vinci and Vesalius. Descartes’ mechanistic view confirmed the discovery of the blood circulation by Harvey, and microscopic investigations unrevealed the capillary network. Most of these studies mainly described blood vessels as static anatomical structures and said little about their forma- tion and development. Then, at the end of the 18th century, Hunter introduced the concept of angiogenesis in in vivo experiments, leading to the modern embryological research. The begin- ning of angiogenesis era was characterized by the first microscopical evidences of capillary for- mation and the discovery of the angioblasts by Sabin. The evolution of angiogenesis concept occurred in the ‘70s of 20th century with the pivotal work by Folkman and the onset of research on pro-and anti-angiogenic factors which characterized the next two decades of angiogenesis field.
    [Show full text]