HIGH TEMPORAL RESOLUTION RADAR OBSERVATIONS OF VARIOUS SCATTERERS IN THE ATMOSPHERE AT 10 GHZ: EXPERIENCES IN MEDITERRANEAN SEMI-ARID REGIONS AND IN THE WESTERN ALPS M. Gabella1, E. Morin2, A. Leuenberger1, R. Notarpietro3,4, M. Branca4, J. Figueras1, M. Schneebeli1, U. Germann1 1Radar Satellite and Nowcasting, MeteoSwiss, via ai Monti 146, CH-6605 Locarno Monti, Switzerland. 2Department of Geography, The Hebrew University of Jerusalem, Jerusalem, Israel. 3Electronics Department, Politecnico di Torino, Torino, Italy. Corresponding author: Marco Gabella, Phone +41-91-7562319,
[email protected] Session: Developments in observing technologies. Abstract Radar is a unique tool to get real time overview on the current weather situation; however, high spatial resolution observations can only be achieved at short ranges, the angular resolution being an important limiting factor. How to tackle the emerging needs for high spatio-temporal resolution? Short-range, fast- scanning, X-band, mini radars can be a solution, especially for monitoring in details small basins prone to flash flood, towns and valleys. Cost, radiation and installation issues motivate the use of small antennas that can easily be installed on existing infrastructures or even on a truck. The paper presents lessons gained in various climates and with different X-band systems: low-cost, portable, single elevation, 10 kW systems delivering one precipitation map per minute as well as a sophisticated, fast 3D scanning, 75 kW Doppler, polarimetric radar on wheel aiming at the detection of both distributed (precipitation particles) and isolated scatterers (airplanes). The areas under surveillance include complex orography regions in the “wet” Western Alps and in the Be'er Sheva semi-arid region (Israel).