Novel Jatrophas for Florida Landscapes

Total Page:16

File Type:pdf, Size:1020Kb

Novel Jatrophas for Florida Landscapes 6-7) most elements are available to plant roots but as pH Soluble forms of minor elements are used as foliar sprays increases phosphorus becomes fixed in calcium compounds to give rapid, though temporary, correction of problems. A and iron and manganese may precipitate or be changed to a better approach is preventing deficiencies with a regular form in which plant roots cannot use them. Although readily program of soil applications and foliar feeding that includes available above pH 7 magnesium deficiency is very wide minor elements. spread because the heavy rains of south Florida leach this The list that follows (Table 1) includes species native to element (2). south Florida soils (3) and exotic plants that tolerate high Iron and manganese deficiency symptoms are similar in pH and the associated micronutrient levels. All will benefit most plants. Young leaves are affected first and show a from a regular fertilization program but were chosen be chlorosis that begins between the veins and may spread to cause they do not need heavy supplements of minor ele include the whole leaf. New growth may be smaller than ments or other special care and are reliable plants for the normal and in very severe cases may be stunted and dis landscape. A number of commonly grown species are ex torted, show dead areas, or may die completely. Palms are cluded because their nutritional needs to stay in perfect very susceptible to manganese deficiency: young leaves show health go beyond standard fertilizers with nitrogen, phos chlorosis together with stunting and distortion giving rise phorus and potassium. Many gardeners will be willing to to the name "frizzle top" (5). take on the additional micronutrient feeding needed in Magnesium deficiency also causes a chlorosis that begins order to enjoy them in their gardens. Local botanical gar at the leaf margins and extends between the veins, but in dens, such as Fairchild Tropical Garden or Flamingo Gar the case of this element old leaves are affected first. Some die- dens, are good places in which to see the wide range of back of leaf margins may occur but more often the leaves plants that will thrive with extra care and attention. The drop before there is much sign of necrosis. names used in the lists are from the "Checklist of Woody Gardening in areas of high pH can be a continuing Ornamental Plants in Florida." (1). battle against plant deficiencies. Soil treatment around af fected plants may be aimed at changing the pH to a more Literature Cited acid level or at supplying more of the deficient nutrient. Powdered sulfur has been effective in lowering pH in some 1. Burch, D., D. W. Hall and D. B. Ward. 1983. Checklist of Woody Ornamental Plants in Florida. Univ. Florida, Inst. Food Agr. Sci. cases, at rates of up to 1 lb. per 100 ft2, but a better long (in press). term approach is to mulch with organic materials that are 2. Dickey, R. D. 1977. Nutritional deficiencies of woody ornamental gradually incorporated into the soil in the natural course of plants used in Florida landscapes. Univ. Florida, Inst. Food Agri. composting. Sci. Bui. 791. 3. Gann, J. 1979. Selected list of south Florida native plants. Bui. Iron sulfate may be used as a soil amendment but is Fairchild Tropical Garden 34(2):20-22. quickly made unavailable and better results are obtained 4. Janick, J. 1972. Horticultural Science, 2nd ed. W. H. Freeman & Co. from chela ted forms of iron such as Versinol® or Seques- San Francisco. 586 pp. trene®. Sequestrene® 300 works well on the sandy soils but 5. Marlatt, R. B. 1980. Noncontagious diseases of tropical foliage plants. Univ. Florida, Inst. Food Agr. Sci. Bui. 812. the more expensive Sequestrene® 138 may be needed on 6. Smith, F. B., R. G. Leighty, R. E. Caldwell, V. W. Carlisle, L. G. marl. Chelates or fritted forms of manganese are also avail Thompson Jr., and T. G. Mathews. 1967. Principal soil areas of able for soil application. Magnesium may be applied to the Florida. Univ. Florida, Inst. Food Agr. Sci. Bui. 717. soil as Epsom salts (magnesium sulfate) or as dolomitic limestone even though this is adding more calcium (2). Proc. Fla. State Hort. Soc. 95:277-280. 1982. NOVEL JATROPHAS FOR FLORIDA LANDSCAPES Bijan Dehgan tionally deprived sandy soils of Florida. Examples of lesser University of Florida, IFAS, known species and artificial hybrids are discussed. Department of Ornamental Horticulture, Gainesville, FL 32611 Jatropha L. is a large genus of diverse growth forms and attractive monoecious or dioecious plants. The 150-175 spe Abstract. Jatropha L. is a morphologically diverse genus cies are woody trees, shrubs and subshrubs of disjunct dis of widespread geographical distribution in the seasonally dry tribution in the seasonally dry tropics of the Old and the tropics. The 150-175 species of the genus are found in Africa, New World. Two distinct groups were recently recognized India, and South and Central America extending through (6); subgenus Jatropha includes the African, Indian, South Mexico to southern Arizona and Texas. Two species used in American, Antillian and two of the relict north American south Florida landscapes; J. integerrima Jacq. ( = J. hastata taxa, while species of subgenus Curcas (Adans.) Pax are Jacq.) and J. multifida L. are indigenous to Cuba and prob predominantly Mexican, a few extending into Texas and ably Barbados, respectively. A third species seen occasionally Arizona. Of these, /. integerrima Jacq. ( = /. hastata Jacq.) (J. podagrica Hook.) is probably native to south Central has been cultivated in Florida for many years. Two other America. Although the majority of the species are potentially species; /. multifida L. (the coral plant) and /. gossypiifolia most useful for south Florida, there are some that can be (the bellyache bush) are not only in cultivation as orna grown in north and central regions of the State. Jatrophas mentals but are reported (14) to have naturalized in parts are low maintenance plants that should do well in nutri- of Florida Keys. These 3 species, in addition to /. podagrica Hook., which is seen in cultivation occasionally, are mem Florida Agricultural Experiment Stations Journal Series No. 4238. bers of subgenus Jatropha. Jatropha curcas L. (the physic Proc. Fla. State Hort. Soc. 95: 1982. 277 nut), is also cultivated in Florida (10). This species, a tree as "iVIata Muchachos" in Chihuahua or "jiotillo" in Sinloa, with nocturnally fragrant yellowish green flowers, has been it has been used for medicinal purposes. placed in subgenus Curcas. Jatropha curcas L., much cultivated in the tropics. Its In a genus of such diversity as Jatropha, there remains a exact origin is unknown, though possibly Mexico (8, 15). A fair percentage of choice species awaiting horticultural dis small tree with stout branches and roundish, angular to covery. Unfortunately, many nurserymen and plant lovers shallowly 3-5 lobed, 10-15 cm wide glabrous leaves. Green have shied away from cultivation of this genus because ish-yellow flowers are borne in contracted, many-flowered Cnidoscolus species with painful stinging hairs were classi corymbose cymes. This plant is frequently used as a hedge fied (11) as Jatropha. Hortus Third (1), the most widely in the tropics because the cuttings root quickly and the used manual for cultivated plants still recognizes Cnidos plant is not eaten by livestock. Commonly known as "physic colus as a part of Jatropha, despite the fact that these taxa nut" due to its medicinal properties particularly as a purga are but distantly related (6, 7, 9). In addition to stinging tive. Although reported to be poisonous, the seeds are quite hairs, Cnidoscolus differs from Jatropha by its white, palatable when roasted. (An interesting account of uses of apetalous flowers and milky latex, which imply a closer this species can be found in Standley, 13). affinity with Manihot than Jatropha. Jatropha hieronymii O. Ktze. from Argentina. This spe Jatrophas are potentially useful but underexploited cies has thick branches and lobed, somewhat gray colored, specimen plants for subtropical and tropical landscapes, dentate leaves and large yellow flowers on compact short whose diversity allows adaptation to many landscape situa cymes. The unusual color of the flowers give a unique char tions. Unintroduced artificial interspecific hybrids have acteristic to this plant. Probably useful as a specimen or con broadened the range of possibilities by providing inter tainer plant. Closely related to /. podagrica and /. augustii. mediate colors, forms and textures. Nearly all jatrophas seem Jatropha mcvaughii Dehgan & Webster,, from Mexico. capable of withstanding the poorest of growing conditions, Originally described as /. curcas var. rufus McVaugh how although a few of the xeric or succulent species may suffer ever, considered distinct (5) because of its much larger and from excess moisture in poorly drained soils. Once estab densely pubescent foliage and dioecious habit. This is a lished in the Florida landscape, the species and hybrids more attractive plant than /. curcas for landscaping and will herein described should require little supplementary irriga not become weedy if only male or female plants are used. tion and fertilization. Nearly all can be easily propagated Jatropha multifida L. Origin uncertain but probably in from cuttings or by seed which may be obtained by selfing digenous to Barbados; with stout branches and nearly of the monoecious species (except /. moranii Dehgan 8c orbicular, deeply 7-11 lobed (divided) leaves and thread Webster which does not self) or crossing of the dioecious like stipules. Flowers are brilliant scarlet, on long stalked taxa. Caudex-forming species, however, will not produce inflorescences. A very attractive and widely cultivated spe their unique, swollen stems when vegetatively propagated, cies throughout the tropics and is commonly known as coral and must be grown from seed if the caudex is a desirable plant or French physic nut.
Recommended publications
  • DISTRIBUCIÓN Y ABUNDANCIA DE Jatropha Dioica EN EL CENTRO-NORTE DE MÉXICO
    DISTRIBUCIÓN Y ABUNDANCIA DE Jatropha dioica EN EL CENTRO-NORTE DE MÉXICO DISTRIBUTION AND ABUNDANCE OF Jatropha dioica IN THE NORTHERN CENTER OF MEXICO Jesús M. Martínez-Calderas1, Jorge Palacio-Núñez1*, Juan F. Martínez-Montoya1, Genaro Olmos-Oropeza1 Fernando Clemente-Sánchez1, Gerardo Sánchez-Rojas2 1Colegio de Postgraduados, Campus San Luis Potosí, Postgrado de Innovación en Manejo de Recursos Naturales. Iturbide 73, Salinas de Hidalgo, San Luis Potosí. 78622, México. (bio- [email protected]), ([email protected]), ([email protected]), (olmosg@colpos. mx), ([email protected]). 2Universidad Autónoma del Estado de Hidalgo. Instituto de Ciencias Básicas e Ingeniería. Centro de Investigaciones Biológicas. Pachuca, Hidalgo, México. C.P. 42184. ([email protected]). RESUMEN ABSTRACT La planta sangre de grado (Jatropha dioica) habita en climas Leatherstem plants (Jatropha dioica) live in arid and áridos o semiáridos, se usa en medicina tradicional y podría semiarid climates, it is used in traditional medicine utilizarse como materia prima industrial, por lo cual tiene and could also be utilized as an industrial raw material, importancia económica para los pobladores rurales. Aspectos which is why this plant is vital to the economy of rural básicos sobre su distribución y abundancia se desconocen, populations. The fundamental aspects of its distribution así como los factores ambientales que las determinan. El and abundance are unknown, as well as the environmental objetivo de este estudio fue determinar su distribución, abun- factors that determine them. The objective of this study dancia y las variables que influyen en su densidad de tallos, was to determine its distribution, abundance, and the altura y biomasa de tallos.
    [Show full text]
  • Hamid Et Al.: Chemical Constituents, Antibacterial, Antifungal and Antioxidant Activities
    Ife Journal of Science vol. 18, no. 2 (2016) 561 CHEMICAL CONSTITUENTS, ANTIBACTERIAL, ANTIFUNGAL AND ANTIOXIDANT ACTIVITIES OF THE AERIAL PARTS OF Cnidoscolus aconitifolius Hamid, Abdulmumeen A.1*, Oguntoye, Stephen O.1, Negi, Arvind S.2, Ajao, Ajibola1, Owolabi, Nurudeen O.1. 1Department of Chemistry, University of Ilorin, Ilorin, Nigeria 2Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, India *Corresponding Author: Tel No: +2347035931646 E-mail: [email protected], [email protected] (Received: 3th March, 2016; Accepted: 8th June, 2016) ABSTRACT Preliminary phytochemical investigation of crude n-Hexane, ethyl acetate and methanol extracts of the aerial parts of Cnidoscolus aconitifolius revealed the presence of anthraquinones, glycosides, steroids, flavonoids, tannins, saponins and terpenoids. All the crude extracts gave a clear zone of inhibition against the growth of the test bacteria (Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhi, Klebsiellae pneumonae) and fungi (Candida albicans, Aspergillus niger, penicillium notatum and Rhizopus stolonifer) at different concentrations, except ethyl acetate extract which showed no antifungal property on Rhizopus stolonifer. Ethyl acetate and methanol extracts exhibited significant antioxidant activities by scavenging DPPH free radicals with IC50 of 12.14 and 93.85 µg/ml respectively. GC-MS analysis of n-hexane and methanol extracts showed nine compounds each, while ethyl acetate extracts afforded ten compounds. Phytol is the most abundant constituent in n-hexane, ethyl acetate and methanol extracts with their corresponding percentage of abundance of 41.07%, 35.42% and 35.07%. Keywords: Cnidoscolus aconitifolius, Antioxidant activity, GC-MS analysis, Phytochemicals, Phytol. INTRODUCTION acne, and eye problems (Diaz-Bolio, 1975).
    [Show full text]
  • Southwestern Rare and Endangered Plants
    Preliminary Report on the Reproductive Biology of the Threatened Chisos Mountain Hedgehog Cactus BONNIE B. AMOS and CHRISTOS VASSILIOU Angelo State University, Texas Abstract: The Chisos Mountain hedgehog cactus (Echinocereus chisoensis, Cactaceae) is a narrow endemic restricted to an approximately 100 square mile area in Big Bend National Park, Texas. It was listed as threatened in 1987 as Echinocereus chisoensis var. chisoensis. An investigation of the reproductive biology and pollination ecology conducted in 1999 and 2000 revealed the taxon to be homogamous, self-incompatible, xenogamous, and heavily dependent upon the cactus oligolectic bee, Diadasia rinconis (Anthophoridae) for pollination. Despite infrequent bee visitation, fruit set from open pollination is high and fruits produce large numbers of seeds. Predation in 2002, probably from rodents as a result of severe drought conditions, was severe on plants, flower buds, and fruits. The Chisos Mountain hedgehog cactus, or Chisos jillo (Opuntia leptocaulis DC.), ocotillo (Fouquieria pitaya (Echinocereus chisoensis W. Marshall), is 1 of splendens K. Kunth), leatherstem (Jatropha dioica V. 20 threatened or endangered cacti listed by the de Cervantes), lechuguilla (Agave lechuguilla J. U.S. Fish and Wildlife Service for Region 2 (http: Torrey), and ceniza (Leucophyl1umf)zltescens (J. Ber- // ecos. fws.gov/ webpage/ webpage-lead.htrnl? landier) I. M. Johnston). An earlier study (Hender- lead_region=2&type=L&listings=l).In 1987 it was shott et al. 1992) did not show specific E. chisoen- added to the federal lists (53 FR 38453) of en- sis-nurse plant associations, but rather showed dangered and threatened wildlife and plants as associations as a consequence of soil conditions threatened because of its restricted distribution, that provide a hospitablL environment for a diver- low numbers, loss of viability in existing popula- sity of species or the exploitation by E.
    [Show full text]
  • Biocultural Behavior and Traditional Practices on The
    Caldasia 42(1):70-84 | Enero-junio 2020 CALDASIA http://www.revistas.unal.edu.co/index.php/cal Fundada en 1940 ISSN 0366-5232 (impreso) ISSN 2357-3759 (en línea) ETHNOBOTANY Biocultural behavior and traditional practices on the use of species of Euphorbiaceae in rural home gardens of the Semiarid Region of Piauí State (NE, Brazil) Comportamiento biocultural y prácticas tradicionales sobre el uso de especies de Euphorbiaceae en huertos familiares en región semiárida del estado de Piauí (NE, Brasil) Jorge Izaquiel Alves de Siqueira 1* | Irlaine Rodrigues Vieira 1 | Edna Maria Ferreira Chaves 2 | Olga Lucía Sanabria-Diago 3 | Jesus Rodrigues Lemos 1 • Received: 21/nov/2018 Citation: Siqueira JIA, Vieira IR, Chaves EMF, Sanabria-Diago OL, Lemos JR. 2020. Biocultural behavior and • Accepted: 07/jun/2019 traditional practices on the use of species of Euphorbiaceae in rural home gardens of the Semiarid Region of • Published online: 26/agu/2019 Piauí State (NE, Brazil). Caldasia 42(1):70–84. doi: https://dx.doi.org/10.15446/caldasia.v42n1.76202. ABSTRACT In this article, we investigate the biocultural behavior regarding the use of species of the Euphorbiaceae in the Franco community, Cocal, Piauí State, located in the Semiarid Region of Brazil. For the study, we performed 19 interviews with the home gardens maintainers based on semi-structured interviews, and calculate the Use Value (UV) for each species mentioned by the interviewees. In addition, the im- portance of socioeconomic factors in this type of biocultural behavior was evaluated. Seven species of the Euphorbiaceae with biocultural emphasis were mentioned, distributed across four genera, which are cultivated for various purposes, including food, medicine, fuel, animal fodder, commercial sale, cultural uses, and others.
    [Show full text]
  • Redalyc.Pharmacognostical and Phytochemical Studies on Ziziphora
    Journal of Pharmacy & Pharmacognosy Research E-ISSN: 0719-4250 [email protected] Asociación de Académicos de Ciencias Farmacéuticas de Antofagasta Chile Zhu, Yun; Xiong, Yuan; Wang, Hehua; Li, Peng Pharmacognostical and phytochemical studies on Ziziphora clinopodioides Lam. – A Kazakh and Uygur ethnomedicinal plant Journal of Pharmacy & Pharmacognosy Research, vol. 5, núm. 6, noviembre-diciembre, 2017, pp. 354-364 Asociación de Académicos de Ciencias Farmacéuticas de Antofagasta Antofagasta, Chile Available in: http://www.redalyc.org/articulo.oa?id=496053946004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © 2017 Journal of Pharmacy & Pharmacognosy Research, 5 (6), 354-364, 2017 ISSN 0719-4250 http://jppres.com/jppres Original Article | Artículo Original Pharmacognostical and phytochemical studies on Ziziphora clinopodioides Lam. – A Kazakh and Uygur ethnomedicinal plant [Estudios farmacognósticos y fitoquímicos sobre Ziziphora clinopodioides Lam. - Una planta etnomedicinal kazaja y uygur] Yun Zhu1, Yuan Xiong1, Hehua Wang2, Peng Li1* 1School of Pharmacy, Shihezi University/Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi Xinjiang 832002, PR China. 2Hebi City People's Hospital Infection Management Section, Hebi Henan 458030, PR China. *E-mail: [email protected] Abstract Resumen Context: Ziziphora clinopodioides Lam. (Lamiaceae) is an annual or Contexto: Ziziphora clinopodioides Lam. (Lamiaceae) es una hierba anual perennial herb or subshrub widely distributed from the Mediterranean to o perenne o arbusto ampliamente distribuida desde el Mediterráneo a central Asia and Afghanistan. In Xinjiang, China, the whole herb has been Asia central y Afganistán.
    [Show full text]
  • Alyssum) and the Correct Name of the Goldentuft Alyssum
    ARNOLDIA VE 1 A continuation of the BULLETIN OF POPULAR INFORMATION of the Arnold Arboretum, Harvard University VOLUME 26 JUNE 17, 1966 NUMBERS 6-7 ORNAMENTAL MADWORTS (ALYSSUM) AND THE CORRECT NAME OF THE GOLDENTUFT ALYSSUM of the standard horticultural reference works list the "Madworts" as MANYa group of annuals, biennials, perennials or subshrubs in the family Cru- ciferae, which with the exception of a few species, including the goldentuft mad- wort, are not widely cultivated. The purposes of this article are twofold. First, to inform interested gardeners, horticulturists and plantsmen that this exception, with a number of cultivars, does not belong to the genus Alyssum, but because of certain critical and technical characters, should be placed in the genus Aurinia of the same family. The second goal is to emphasize that many species of the "true" .~lyssum are notable ornamentals and merit greater popularity and cul- tivation. The genus Alyssum (now containing approximately one hundred and ninety species) was described by Linnaeus in 1753 and based on A. montanum, a wide- spread European species which is cultivated to a limited extent only. However, as medicinal and ornamental garden plants the genus was known in cultivation as early as 1650. The name Alyssum is of Greek derivation : a meaning not, and lyssa alluding to madness, rage or hydrophobia. Accordingly, the names Mad- wort and Alyssum both refer to the plant’s reputation as an officinal herb. An infu- sion concocted from the leaves and flowers was reputed to have been administered as a specific antidote against madness or the bite of a rabid dog.
    [Show full text]
  • Leaf Anatomy of Cassava (Manihot Esculenta Crantz. Cv. IAC-12) After Herbicides Application to Control Weeds in Minas Gerais, Br
    Ecofisiología Vegetal y Producción de Cultivos / Plant Ecophysiology and Crop Production Acta Agron. (2017) 66 (3) p 385 -390 ISSN 0120-2812 | e-ISSN 2323-0118 https://doi.org/10.15446/acag.v66n3.56055 Leaf anatomy of cassava (Manihot esculenta Crantz. cv. IAC-12) after herbicides application to control weeds in Minas Gerais, Brazil Anatomia foliar da mandioca (Manihot esculenta Crantz. cv. IAC-12) após aplicação de herbicidas para controlar as plantas daninhas em Minas Gerais, Brasil Daniel Valadão Silva1, Cassia Michelle Cabral2, Sarah Stéphane Diamantina da Costa2, Matheus de Freitas Souza3*, Evander Alves Ferreira2, Renan Rodrigues Braga3, Gustavo Antônio Mendes Pereira2 and José Barbosa dos Santos2 1Departamento de produção agrícola. Universidade Federal Rural do Semi-Árido- UFERSA, Brasil. 2Departamento de Agronomia- Universidade Federal dos Vales do Jequitinhonha e Mucuri- UFVJM, Brasil. 3Programa de Manejo Integrado de Plantas Daninhas. Universidade Federal de Viçosa, Brasil. Author for correspondence: [email protected] Rec.: 05.03.2016 Accep.: 20.08.2016 Abstract Micro-morphological changes precede the appearance of visible damage after herbicide application and are essential in providing data for the safe recommendation in chemical management of weeds. Therefore, the aim of this research was to verify the anatomical changes of leaf tissue caused by application of herbicides in cassava (Manihot esculenta Crantz.cv. IAC-12). A greenhouse experiment was conducted with post-emergence herbicides treatments as follows: nicossulfuron (60 g a.i ha-1), fluazifop (250 g a.i ha-1), fomesafem (250 g a.i ha-1), metribuzin (480 g a.i ha-1), oxyfluorfen (720 g a.i ha-1) and the mixture fluazifop + fomesafen (200 + 250 g a.i ha-1), and an untreated control, respectively.
    [Show full text]
  • Cassava Plant Guide
    Plant Guide Food products: There are hydrocyanic glucosides CASSAVA (HCN) in all parts of the plant; these glucosides are Manihot esculenta Crantz removed by peeling the roots and boiling in water. Plant symbol = MAES The young tender leaves are used as a potherb, containing high levels of protein and vitamins C and Contributed by: USDA NRCS National Plant Data A. The leaves are prepared in a similar manner as Center spinach, while eliminating toxic compounds during the cooking process. Cassava flour is used to make cookies, quick breads, loaf breads, pancakes, doughnuts, dumplings, muffins, and bagels. Cassava extracted juice is fermented into a strong liquor called kasiri. It also can be concentrated and sweetened until it becomes dark viscous syrup called kasripo (casareep). This syrup has antiseptic properties and is used for flavoring. The peeled roots of the sweet variety are usually eaten cooked or baked. Livestock: Cassava leaves and stem meal are used for feeding dairy cattle. Both fresh and dried cassava roots are consumed by ruminants in different forms (chopped, sliced, or ground). Cassava bushes three to four months old are harvested as forage for cattle and other ruminants. Lincoln Moore. 2005 USDA NRCS Ornamental: One clone with variegated leaves is planted as an ornamental. Alternate Names Synonyms: Jatropha manihot L., Janipha manihot Commercial: Cassava starch is used in the production (L.) Kunth, Manihot utilissima Poh, Manihot aipi of paper, textiles, and as monosodium glutamate Poh, Manihot manihot (L.) Cockerell, Manihot (MSG), an important flavoring agent in Asian melanobasis Muell. Arg. cooking. In Africa, cassava is used as partial substitution for wheat flour.
    [Show full text]
  • ORNAMENTAL GARDEN PLANTS of the GUIANAS: an Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana
    f ORNAMENTAL GARDEN PLANTS OF THE GUIANAS: An Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana Vf•-L - - •• -> 3H. .. h’ - — - ' - - V ' " " - 1« 7-. .. -JZ = IS^ X : TST~ .isf *“**2-rt * * , ' . / * 1 f f r m f l r l. Robert A. DeFilipps D e p a r t m e n t o f B o t a n y Smithsonian Institution, Washington, D.C. \ 1 9 9 2 ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Table of Contents I. Map of the Guianas II. Introduction 1 III. Basic Bibliography 14 IV. Acknowledgements 17 V. Maps of Guyana, Surinam and French Guiana VI. Ornamental Garden Plants of the Guianas Gymnosperms 19 Dicotyledons 24 Monocotyledons 205 VII. Title Page, Maps and Plates Credits 319 VIII. Illustration Credits 321 IX. Common Names Index 345 X. Scientific Names Index 353 XI. Endpiece ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Introduction I. Historical Setting of the Guianan Plant Heritage The Guianas are embedded high in the green shoulder of northern South America, an area once known as the "Wild Coast". They are the only non-Latin American countries in South America, and are situated just north of the Equator in a configuration with the Amazon River of Brazil to the south and the Orinoco River of Venezuela to the west. The three Guianas comprise, from west to east, the countries of Guyana (area: 83,000 square miles; capital: Georgetown), Surinam (area: 63, 037 square miles; capital: Paramaribo) and French Guiana (area: 34, 740 square miles; capital: Cayenne). Perhaps the earliest physical contact between Europeans and the present-day Guianas occurred in 1500 when the Spanish navigator Vincente Yanez Pinzon, after discovering the Amazon River, sailed northwest and entered the Oyapock River, which is now the eastern boundary of French Guiana.
    [Show full text]
  • Harnessing Potential of Selected Underutilized Bio Energy Crop Pongamia Pinnata
    Harnessing potential of selected underutilized bio energy crop Pongamia pinnata Archana Godbole, Sameer Punde , Jayant Sarnaik, & Rahul Mungikar Applied Environmental Research Foundation www.aerfindia.org GIPB Case Study Pongamia pinnata Godbole India … Draft Final Harnessing potential of selected underutilized bio energy crop Pongamia pinnata A report for Global Partnership Initiative for Plant Breeding Capacity Building (GIPB ) And International Bio- energy Platform and cross sectoral Collaboration of the FAO Interdepartmental Working Group on Bio Energy By Archana Godbole, Sameer Punde , Jayant Sarnaik, & Rahul Mungikar Applied Environmental Research Foundation www.aerfindia.org 1 GIPB Case Study Pongamia pinnata Godbole India … Draft Final Section I Introduction 1.Background………………………………………………………….. 4 2.Objectives …………………………………………………………… 7 3.Why Pongamia pinnata? …………………………………………. 8 Section II State of the art genetic resources, pre breeding & breeding work … 1.Introduction …………………………………………………………….. 9 2.Distribution & botanical knowledge ………………………………..10 3.Genetic Relationship ………………………………………………….12 4.Uses ………………………………………………………………………12 5.Resource Assessment of Pongamia pinnata ……………………..14 6.Ethnobotany of Pongamia pinnata ………………………………….18 7.Genetic variability in Pongamia pinnata …………………………...21 8.Variability Assessment for Biofuel production…………………...23 9.Seed & seedling traits ………………………………………………….25 10.Germination & seed storage behavior……………………………...25 11.Pongamia Cultivation …………………………………………..28 11.1Propagation methods……………………………………………...29
    [Show full text]
  • Ecological Site R083DY015TX Saline Clay
    Natural Resources Conservation Service Ecological site R083DY015TX Saline Clay Last updated: 11/20/2018 Accessed: 09/28/2021 General information Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site. Figure 1. Mapped extent Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated. MLRA notes Major Land Resource Area (MLRA): 083D–Lower Rio Grande Plain Major Land Resource Area (MLRA) 83D makes up about2,500 square miles (6,475 square kilometers). The towns of Brownsville, Edinburg, Harlingen, McAllen, and Raymondville are in this area. U.S. Highways 77 and 281 terminate in Brownsville and McAllen, respectively. The Santa Ana National Wildlife Area is along the Rio Grande in this area. Classification relationships USDA-Natural Resources Conservation Service, 2006. -Major Land Resource Area (MLRA) 83D Ecological site concept The Saline Clay sites are affected by salts in the soil profile. Heavy clays, coupled with salts, create a specialized plant community adapted to this unique environment. Associated sites R083DY007TX Lakebed R083DY019TX Gray Sandy Loam R083DY025TX Clay Loam Similar sites R083BY015TX Saline Clay Table 1. Dominant plant species Tree Not specified Shrub Not specified Herbaceous Not specified Physiographic features These soils are on nearly level to gently sloping stream terraces and uplands. Slope ranges from 0 to 5 percent.
    [Show full text]
  • First Record of Cnidoscolus Obtusifolius Pohl (Euphorbiaceae) for Paraíba State, Northeastern Brazil
    Acta Brasiliensis 4(3): 187-190, 2020 Note http://revistas.ufcg.edu.br/ActaBra http://dx.doi.org/10.22571/2526-4338378 First record of Cnidoscolus obtusifolius Pohl (Euphorbiaceae) for Paraíba State, northeastern Brazil a i b i Maiara Bezerra Ramos h , Maria Gracielle Rodrigues Maciel h , José Iranildo Miranda de c i a,c i Melo h , Sérgio de Faria Lopes a Programa de Pós-Graduação em Etnobiologia e Conservação da Natureza, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Paraíba, Brasil. *[email protected] b Universidade Estadual da Paraíba, Campina Grande, 58429-500, Paraíba, Brasil. c Programa de Pós-Graduação em Ecologia e Conservação, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Paraíba, Brasil. Received: April 29, 2020 / Acepted: June 26, 2020/ Published online: September 28, 2020 Abstract Cnidoscolus obtusifolius Pohl (Euphorbiaceae), species so far known from Minas Gerais, Bahia, Alagoas and Pernambuco States in Brazil is reported for the first time for the State of Paraíba, in the northeastern region of the country. Specimens of this taxon were collected in a fragmented area considered a Caatinga vegetation relict, where total annual precipitation is 700 mm on average and elevation of 644 m a.s.l. The records were made in September and October 2019, when the species was in fertile stage as it bore flowers and fruits. Here we provide a description of its morphology along with taxonomic comments, data on the geographical range and detailed images of the species. Keywords: Caatinga; diversity; floristics; Malpighiales. Primeiro registro de Cnidoscolus obtusifolius Pohl (Euphorbiaceae) no estado da Paraíba, nordeste do Brasil Resumo Cnidoscolus obtusifolius Pohl (Euphorbiaceae) espécie até então conhecida para os Estados de Minas Gerais (Sudeste), Bahia, Alagoas e Pernambuco (Nordeste), Brasil, está sendo registrada pela primeira vez no Estado da Paraíba, nordeste do Brasil.
    [Show full text]