Institute of Nuclear Physics Krakow, Poland

Total Page:16

File Type:pdf, Size:1020Kb

Institute of Nuclear Physics Krakow, Poland PL9801710 The Henryk Niewodniczanski Institute of Nuclear Physics Krakow, Poland REPORT No. 1760/PH MESON CLOUD IN THE NUCLEON AND ITS CONSEQUENCES IN VARIOUS PHENOMENA Rozprawa habilitacyjna Address: Main site: 29-29 High Energy Department: ul. Radzikowskiego 152, ul. Kawiory 26 A, 31-342 Krak6w, Poland 30-055 Krakbw, Poland e-mail: [email protected] I e-mail: [email protected] REPORT No. 1760/PH MESON CLOUD IN THE NUCLEON AND ITS CONSEQUENCES IN VARIOUS PHENOMENA Rozprawa habilitacyjna Antoni Szczurek Krakow, June 1997 PRINTED AT THE HENRYK NIEWODNICZANSKI INSTITUTE OF NUCLEAR PHYSICS KRAK6W, UL. RADZIKOWSKIEGO 152 Xerocopy: INP Krakow To Magda, Krysia, Alik and Mateusz ACKNOWLEDGMENTS The results presented in this report have been obtained in collaboration with physicists from different research and educational institutes. I am particularly indebted to Prof. Josef Speth from the Forschungszentrum Jiilich (KFA) for interesting me in physics of mesons and baryons and his continuous collaboration on the issues presented below. I am also particularly indebted to my younger collaborator Harald Holtmann (Forschungszentrum, Julich) who shared with me the en- thusiasm during all stages of our common work. I have gained a lot by discussing various technical problems with Kolya Nikolaev (Landau Institute, Moscow). I am also indebted to Zbigniew Dziem- bowski (Temple University, Philadelphia) for collaboration on the subject of electromagnetic form factors. In addition I am indebted to many experimental and theoretical physicists and colleagues for discussions and exchange of helpful information: Barbara Badelek, Steve Bass, Jerry Blazey, Arie Bodek, Gerard Bosted, Stan Brodsky, Wojciech Broniowski, Antje Brull, Alfons Buchmann, An- drzej Budzanowski, Nicolo Cartiglia, Tomir Coghen, Alex Dieperink, John Durso, John Ellison, Magda Ericson, Torleif Ericson, Amand Faessler, Gerry Garvey, Krzysztof Golec-Biernat, Dieter von Harrach, Johann Heidenbaur, Karl Holinde, Pauchy Hwang, P. de Witt Huberts, Sergo Boriso- vich Gerasimov, J. Guy, Gunnar Ingelman, Boris Ioffe, Jiirg Jourdan, Misha Khankasayev, Fritz Klein, Siggi Krewald, Stefan Kretzer, Shunzu Kumano, Jan Kwiecinski, Gerry Levman, Lev Lipa- tov, Tim Londergan, Bo-Qiang Ma, Lech Mankiewicz, Alan Martin, Wally Melnitchouk, Joel Moss, Piet Mulders, Franz Osterfeld, Mariusz Przybycien, E. Reya, James Stirling, Marc Strikman, Peter Sutton, A.G. Tenner, Anthony Thomas, Jochen Wambach, Slava Zakharov, Piotr Zenczykowski and Volodya Zoller. I am very much indebted to Profs. Andrzej Budzanowski and Stanislaw Drozdz for their encouragement and continuous interest in this work. I also thank all my colleagues from the H. Niewodniczanski Institute of Nuclear Physics and Forschungszentrum Julich, for stimulating and friendly atmosphere. I am obliged to H. Niewodniczariski Institute of Nuclear Physics and Forschungszentrum Julich, where most of the work has been done, for financial support and providing me with excellent working conditions. The research presented below has been partially supported by the Polish State Committee for Scientific Research (KBN) under Grant No. 2 2409 9102. One stay of A.S. in Julich was supported by KFK Karlsruhe grant X088124. ABSTRACT We discuss several consequences of the meson cloud in the nucleon and search for its phe- nomenological evidences in various phenomena in both soft and hard processes. The cut-off parameters of the form factors for meson-baryon vertices are determined from high- energy particle production data. We find an universal cut-off parameter for processes involving octet baryons. Relativistic calculations of the effects of the pion cloud on the electromagnetic properties of the nucleon are presented. Light-cone formalism is used to construct the physical nucleon wave function that contains two components: a bare nucleon and a pion associated by recoil baryon with the nucleon or delta quantum numbers. Both sectors are coupled by a relativistic light-cone interaction Hamiltonian. A perturbative treatment is used to solve for the physical nucleon state. The elastic electromagnetic nucleon form factors Gp^n(Q2) and GPj^{Q2) are computed in terms of matrix elements of current operator and the nucleon wave function. The Q2-dependence of contributions to the nucleon form factor from the various sectors of the model space is calculated and compared. The nature of the observed deviations from form factor scaling and dipole parameterization is discussed. We present a complete set of formulae for longitudinal momentum distribution functions (split- ting functions) of mesons in the nucleon. It can be applied in the framework of convolution formal- ism to the deep-inelastic structure functions (quark distributions) of the nucleon viewed as a system composed of virtual 'mesons' and 'baryons'. Pseudoscalar and vector mesons as well as octet and decuplet baryons are included. In contrast to many approaches in the literature the present ap- proach ensures charge and momentum conservation by the construction. We present not only spin averaged splitting functions but also helicity dependent ones, which can be used to study the spin content of the nucleon. This combined with the information about meson-baryon vertices allows us to calculate the flavour and spin content of the nucleon. The value of the Gottfried Sum Rule obtained from our model (So = 0.224J nicely agrees with that obtained by the NMC. In addition, we calculate the x-dependence of the d — u asymmetry and get an impressive agreement with a recent fit of Martin-Stirling-Roberts. The calculated axial coupling constants for semileptonic decays of the octet baryons agree with the experimental data already with SU(G) wave function for the bare nucleon. As a consequence the Bjorken Sum Rule is nicely reproduced. Although we get improve- ments for the Ellis-Jaffe Sum Rules for the proton and neutron in comparison to the naive quark model, the meson cloud model is not sufficient to reproduce the experimental data. We assume that the quark distributions in bare baryons are related by appropriate flavour sym- metries to quark distributions in the bare proton. The latter are fitted to the muon and charged- current (anti)neutrino deep-inelastic scattering including parameter free meson cloud corrections. We take into account kinematical target mass corrections which become important at large x and lowQ2. We examine to which degree the effect of the inclusion of target mass corrections in the descrip- tion at low-Q2 DIS and meson cloud effects may, after QCD evolution, modify DIS cross section at large x and Q2. This is of interest in the context of recently reported excess of events observed by HI and ZEUS collaborations at HERA. We predict enhanced production of events at large x in comparison to standard sets of quark distributions with rather mild Q2-dependence. Our analysis leaves some room for more exotic effects beyond parton approach and/or Standard Model. Our large-x effects can be verified in the future when the HERA luminosity will be increased. The semi-inclusive cross section for producing slow protons in charged current deep inelastic (anti-)neutrino scattering on protons and neutrons is calculated as a function of the Bjorken x and the proton momentum. The standard hadronization models based upon the colour neutralization mechanism appear to underestimate the rate of slow proton production on hydrogen. The presence of the virtual mesons (pions) in the nucleon leads to an additional mechanism for proton production, referred to as spectator process. It is found that at low proton momenta both mechanisms compete, whereas the spectator mechanism dominates at very small momenta, while the colour neutralization mechanism dominates at momenta larger than 1-2 GeV/c. The results of the calculations are compared with the CERN bubble chamber (BEBC) data. The spectator model predicts a sharp increase of the semi-inclusive cross section at small x due to the sea quarks in virtual mesons. We propose a further possibility to test the concept of the pion cloud at HERA through the analysis of the structure of deep inelastic scattering events induced by pion-exchange. Momentum and energy distributions of outgoing nucleons as well as rapidity and multiplicity distributions are investigated using Monte Carlo simulations. Most observables cannot distinguish this process from ordinary DIS, but in the energy distribution of final neutrons we find a significantly different prediction from the pion cloud model than from the standard hadronization models. Forward neutron calorimeters will be essential to test the concept of pions in the nucleon. The contributions of subleading fi, u), ai and p reggeons to the diffractive structure function 2 F2 (xp,j3,Q ) are estimated. In addition we include the pion exchange discussed in the previous section. The reggeon and pion contributions lead to a violation of the factorization of the diffractive structure function. The diffractive structure function is separated into the contributions with leading p) D proton A( F2 and neutron A^Ff. We predict pronounced increase of the ratio A^F^/A^F^ as a function of xp in the interval 10~2 < xp < 10"1. The effect is due to the exchange of the 2 isovector a<2 and p reggeons at smaller xp and the pion exchange at xp > 10~ . We discuss the present status of the u — d asymmetry in the nucleon and analyze the quantities which are best suited to verify the asymmetry. We find that the Drell- Yan asymmetry is the quantity insensitive
Recommended publications
  • Issue 21 March 2019 : Ray Dolby Centre
    MARCH 2019 ISSUE 21 EDITORIAL The construction of the New Cavendish Laboratory is underway in no uncertain terms, as recorded on these pages. These are very exciting and challenging times. As we keep emphasising, the future Ground-breaking for will be different from the past, but the opportunities for new areas of research and new collaborations are the New Cavendish to be greatly welcomed. At the same time, the show goes on with excellent Laboratory new science, generous benefactions and inspiring outreach. The formal start of the construction phase of the New Cavendish Laboratory took place on 10 January 2019 with a ground- It is with great sadness that we report breaking ceremony, hosted by the main contractor Bouygues. the loss of James Stirling, formerly The photograph shows the ground-breaking team led by Vice- Jacksonian Professor of Natural Chancellor Stephen Toope. Philosophy and Head of Department, whose early death robs us of an individual of outstanding academic and personal qualities. INSIDE Ground-breaking for the New Cavendish Laboratory 2 Opening of the Henry Royce Institute facilities in West Cambridge 4 P.C. Ho and the evolution of the Wilson cloud chamber 6 Dislocation plasticity and the Cavendish FIG 1 Laboratory 10 Making Quantum Mechanics work – The formal ground-breaking was followed by speeches in the nearby Interferometry with atoms 12 Maxwell Centre. Andy Parker, Head of Department of Physics, said 2018 Winton Symposium Machines: from cosmic to the nanoscale 14 ‘This is a great step in the development of physics research and learning at the University of Cambridge. We look forward to moving James Stirling 1953–2018 16 in to our new facilities and opening our doors to the wider research Aston’s Positive Ray Spectrograph community and the public to increase understanding and foster Chemistry Breakthrough Award 17 discovery’.
    [Show full text]
  • D Rest Frame
    Durham E-Theses Semileptonic decays of heavy mesons and the standard model Wade, Michael Fairbairn How to cite: Wade, Michael Fairbairn (1990) Semileptonic decays of heavy mesons and the standard model, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6045/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Semileptonic Decays of Heavy Mesons and the Standard Model A thesis presented for the degree of Doctor of Philosophy by Michael Fairbairn Wade University of Durham Department of Physics October 1990 The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. 1 7 OCT 1991 Abstract The formalism for a helicity amplitude analysis of the exclusive semileptonic decays of B mesons (B —» Dtv and B —• D*W for I = e, /i and T) is introduced.
    [Show full text]
  • Double Helicity Asymmetry for Charged Pion + Jet Production in P+P Collisions at Fa=200-Gev at STAR James Prewitt Hays-Wehle
    Double Helicity Asymmetry for Charged Pion + Jet Production in p+p collisions at fa=200-GeV MASSACHU T TIU at STAR APR 6 by James Prewitt Hays-Wehle B.S., Physics, Carnegie Mellon University (2006) Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2013 @ Massachusetts Institute of Technology 2013. All rights reserved. 7 Author.............................of .Physic f epartment of .P.hysi .c s December 12, 2012 . C ertified by ........................... .. Richard G. Milner Professor of Physics; Director, aboratory for Nuclear Science Ttesis Su pervisor Accepted by ................. John W. Belcher Associate Department Head for Education i q Double Helicity Asymmetry for Charged Pion + Jet Production in p+p collisions at vs=200 GeV at STAR by James Prewitt Hays-Wehle Submitted to the Department of Physics on January 25, 2013, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Inclusive measurements from polarized proton-proton collisions at RHIC have con- strained Ag, the polarized gluon distribution function of the proton. Correlation observables, such as this pion+jet measurement, allow for reconstruction of initial parton kinematics and are thus sensitive to the x dependence of Ag. By measuring charged pions opposite a jet, this particular measurement can be sensitive to the fla- vor of the struck parton. This measurement, which is dominated by the quark-gluon subprocess, can be divided into terms proportional to AuAg and AdAg. The rela- tively larger quark polarization amplifies the measured asymmetry thereby enhancing the statistical power.
    [Show full text]
  • Syllabus for PHYSICS 474 (Spring 2018) Introduction to Particle Physics
    Syllabus for PHYSICS 474 (Spring 2018) Introduction to Particle Physics Instructor: Dr. Bhupal Dev (Email: [email protected]; Phone: 55843; Office: Compton 373) Assistant to Instructor (AI): Yiyang Zhang ([email protected]) Lecture Hours: M-W-F 12.00-13.00, Crow 205. Office Hours: Wednesdays 13.30-15.30 or by appointment. Course Website: http://physics.wustl.edu/bdev/ Homework: Will be posted on the course website every Friday, and will be due on the following Friday at the beginning of class. Late homeworks will not be accepted (exceptions granted only by prior arrangement with the instructor). Exams: Mid-term 3/5/18 12.00-13.00; Final 5/9/18 10.30-12.30. Both will be in-class, closed-book exams. You may bring a single page of A4 size hand- written \equation sheet" (can use both sides) and a non-programmable calculator. You must attend both exams to pass this course. Grading: 20% mid-term, 30% final, 47% homework, 3% class participation and online course evaluation. Textbook: Introduction to Elementary Particles (2nd edition) by David Griffiths, Wiley- VCH (2010). For further reading (strongly recommended), see e.g. 1. Quarks and Leptons by Francis Halzen and Alan Martin, John Wiley (1984). 2. The Standard Model in a Nutshell by Dave Goldberg, Princeton University Press (2017). There are excellent online (free) resources as well, e.g. 3. Review of Particle Physics by Particle Data Group, http://pdg.lbl.gov/ 4. The Particle Adventure, http://www.particleadventure.org/ Course Outline: Introduction to the Standard Model of particle physics, including sym- metries, conservation laws, Dirac equation, Feynman diagrams, quantum electrodynamics, parton model, quantum chromodynamics, weak interactions, electroweak gauge theory, spontaneous symmetry breaking, Higgs mechanism, neutrino oscillations, physics beyond the Standard Model.
    [Show full text]
  • The Scientific Century: Securing Our Future Prosperity
    The Royal Society For further information prosperity future our securing Century: Scientific The The Royal Society is a Fellowship of more than 1400 outstanding The Royal Society individuals from all areas of science, mathematics, engineering and Science Policy Centre medicine, who form a global scientific network of the highest calibre. The 6–9 Carlton House Terrace Fellowship is supported by over 130 permanent staff with responsibility for London SW1Y 5AG the day-to-day management of the Society and its activities. The Society T +44 (0)20 7451 2500 encourages public debate on key issues involving science, engineering F +44 (0)20 7451 2692 and medicine, and the use of high quality scientific advice in policymaking. E [email protected] We are committed to delivering the best independent expert W royalsociety.org advice, drawing upon the experience of the Society’s Fellows and Foreign Members, the wider scientific community and relevant stakeholders. In our 350th anniversary year and beyond we are working to achieve five strategic priorities: • Invest in future scientific leaders and in innovation • Influence policymaking with the best scientific advice • Invigorate science and mathematics education The Royal Society Royal The • Increase access to the best science internationally • Inspire an interest in the joy, wonder and excitement of scientific discovery March 2010 March The Scientific Century ISBN 978-0-85403-818-3 02/10 report Centre Policy Science securing our future prosperity ISBN: 978-0-85403-818-3 Issued: March
    [Show full text]
  • Jan/Feb 2014
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 4 N UMBER 1 J ANUARY /F EBRUARY 2 0 1 4 CERN Courier – digital edition Welcome to the digital edition of the January/February 2014 issue of CERN Courier. This year sees the 60th anniversary of when a dozen European countries joined together to establish CERN. In this issue, the current director-general writes on how the organization has amply fulfilled the vision of its founders in providing for collaboration among European states in pure scientific research. Today, CERN welcomes scientists and engineers from around the world, many of whom are working towards the high-luminosity upgrade to the LHC – the laboratory’s flagship accelerator – and its experiments. Accelerator R&D is well underway, not only for the LHC but for other front-line future accelerators at CERN and elsewhere. To sign up to the new-issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. Accelerator R&D advances ANNIVERSARY FACILITIES HOW IT ALL CERN celebrates Physics societies 60 years of facilitate input BEGAN EDITOR: CHRISTINE SUTTON, CERN science for peace to planning The Particle Physics DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p58 p19 Masterclasses p34 CERNCOURIER www. V OLUME 5 4 N UMBER 1 J AARYN U /F EBRUARY 2 0 1 4 CERN Courier January/February 2014 3 COMPLETE SOLUTIONS Contents Which do you want to engage? Covering current developments in high-energy physics and related fi elds worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affi liated with CERN, and to their personnel.
    [Show full text]
  • Physics.Hist-Ph
    The scientific heritage of Richard Henry Dalitz, FRS (1925-2006) Ian J.R. Aitchison,1,2, ∗ Frank E. Close,1, † Avraham Gal,3, ‡ and D. John Millener4, § 1Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom 2Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA 3Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel 4Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA (Dated: July 4, 2016) Professor Richard H. Dalitz passed away on January 13, 2006. He was almost 81 years old and his outstanding contributions are intimately connected to some of the major breakthroughs of the 20th century in particle and nuclear physics. These outstanding contributions go beyond the Dalitz Plot, Dalitz Pair and CDD poles that bear his name. He pioneered the theoretical study of strange baryon resonances, of baryon spectroscopy in the quark model, and of hypernuclei, to all of which he made lasting contributions. His formulation of the “θ − τ puzzle” led to the discovery that parity is not a symmetry of the weak interactions. A brief scientific evaluation of Dalitz’s major contributions to particle and nuclear physics is hereby presented, followed by a comprehensive list of his scientific publications, as assembled from several sources. The list is divided into two categories: the first, main part comprises Dalitz’s research papers and reviews, including topics in the history of particle physics, biographies and reminiscences; the second part lists book reviews, public lectures and obituaries authored by Dalitz, and books edited by him. This provides the first necessary step towards a more systematic research of the Dalitz heritage in modern physics.
    [Show full text]
  • Tim Berners-Lee Receives the UNESCO Niels Bohr Gold Medal
    FACES AND PLACES a w a r d s Tim Berners-Lee receives the UNESCO Niels Bohr Gold Medal In a ceremony on 14 September at the Royal Danish Academy of Science and Letters, in Copenhagen, three leading researchers received the UNESCO Niels Bohr Gold Medal for their outstanding contributions to research in physics, which have or could have a significant influence on the world. The medal, which UNESCO created in 1985 to commemorate the centenary of Niels Bohr’s birth, was previously awarded in 1998 and 2005. The 2010 laureates are Sir Tim Berners-Lee of the Massachusetts Institute of Technology, Sir John Pendry of Imperial College London and Kip Thorne of the California Institute of Technology. Getachew Engida, deputy director-general of UNESCO, presented the medals on behalf of UNESCO. Berners-Lee is honoured “for the development of hypertext, the World Wide Web and the far-reaching consequences for global communication and exchange of information”; Pendry “for pioneering contributions to the development of metamaterials (i.e. materials with remarkable and new optical properties)” and Thorne “for Left to right: Jens Jørgen Gaardhøje, chair of the medal-selection committee and president of the groundbreaking contributions to the study of science committee of the Danish national commission for UNESCO, Sir Tim Berners-Lee, Sir John black holes and gravitational waves”. Pendry, Getachew Engida, deputy director-general of UNESCO, and Kip Thorne. (Courtesy H Ferrold.) ACS rewards research with radioactive ion beams David Morrissey, distinguished professor the experimental investigation of of chemistry at Michigan State University heavy-ion-induced nuclear reactions and and a faculty member of the National nuclear mechanisms, such as the production Superconducting Cyclotron Laboratory, is to of radioactive ion beams, measurements receive the 2011 Glenn T Seaborg Award for of the beta-decay of nuclei at the limits of Nuclear Chemistry.
    [Show full text]