The Ornamental Fish Trade Vol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conservation Aquaculture: Shifting the Narrative and Paradigm of MARK Aquaculture's Role in Resource Management
Biological Conservation 215 (2017) 162–168 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Perspective Conservation aquaculture: Shifting the narrative and paradigm of MARK aquaculture's role in resource management ⁎ Halley E. Froehlicha, ,1, Rebecca R. Gentryb,2, Benjamin S. Halperna,b,c,1 a University of California, Santa Barbara, National Center for Ecological Analysis and Synthesis, Santa Barbara, CA, USA b University of California, Santa Barbara, Bren School of Environmental Science and Management, Santa Barbara, CA, USA c Imperial College London, Silwood Park Campus, Ascot, UK ARTICLE INFO ABSTRACT Keywords: In the 21st century, aquaculture is generally characterized as a foe to conservation efforts. Yet, much has Conservation changed in the two seemingly disparate practices over the last two decades, motivating an updated evaluation of Aquaculture the scientific evidence for how aquaculture currently impacts conservation, as well as prospects for further Ecosystem services alignment and research. Here we present a new perspective on conservation aquaculture, which we redefine as Recovery “the use of human cultivation of an aquatic organism for the planned management and protection of a natural Restoration resource.” Looking across scales of conservation aquaculture that include single species to ecosystem level benefits (and limitations), we highlight ways aquaculture has historically, and is currently being integrated into conservation (e.g., habitat restoration of oyster beds) and areas that could be improved for the protection of critical species and habitats (e.g., aquarium trade of coral reef species). With a more strategic focus, there appears to be notable conservation aquaculture potential via the cultivation of species for harvest that could provide wild harvest alleviation through replacement or supplement – particularly for over-exploited species – and/or ecosystem services, such as improved water quality and reduction in greenhouse gas emissions. -
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Genomics and Mapping of Teleostei (Bony fish)
Comparative and Functional Genomics Comp Funct Genom 2003; 4: 182–193. Published online 1 April 2003 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.259 Featured Organism Genomics and mapping of Teleostei (bony fish) Melody S. Clark* HGMP Resource Centre, Genome Campus, Hinxton, Cambridge CB2 4PP, UK *Correspondence to: Abstract Melody S. Clark, HGMP Resource Centre, Genome Until recently, the Human Genome Project held centre stage in the press releases Campus, Hinxton, Cambridge concerning sequencing programmes. However, in October 2001, it was announced CB2 4PP, UK. that the Japanese puffer fish (Takifugu rubripes, Fugu) was the second vertebrate E-mail: [email protected] organism to be sequenced to draft quality. Briefly, the spotlight was on fish genomes. There are currently two other fish species undergoing intensive sequencing, the green spotted puffer fish (Tetraodon nigroviridis) and the zebrafish (Danio rerio). But this trio are, in many ways, atypical representations of the current state of fish genomic research. The aim of this brief review is to demonstrate the complexity of fish as a Received: 10 November 2002 group of vertebrates and to publicize the ‘lesser-known’ species, all of which have Revised: 5 December 2002 something to offer. Copyright 2003 John Wiley & Sons, Ltd. Accepted: 28 January 2003 Keywords: Teleostei; fish; genomics; BACs; sequencing; aquaculture Background the wild-caught fisheries production figures. The equivalents within the EU are trout, Atlantic Fish have the potential to be immensely useful salmon and sea bass/bream for aquaculture; model organisms in medical research, as evidenced with herring, mackerel and sprat for wild-caught by the genomic sequencing programmes mentioned fisheries. -
Common Fish Keeping Myths
Common Fish Keeping Myths There are many common misconceptions and myths floating around about fish keeping and aquarium care, so we’re going to take a moment to address a few of the ones we frequently hear: I can put several fish in a small two gallon bowl. This mostly depends on the fish. With fish tanks, there is something we call the bio load - the number of fish you can have based on the size of the tank and the size of the fish. The general rule of thumb is one inch of fish per gallon. There are some ways to fudge this rule: adding a filter (or a more powerful filter) and more frequent water changes can allow you to keep a few more fish. Some of the cleaner and hardier species of fish can be in larger groups., and it all depends on the amount of work you want to put into your tank. Fish only grow to the size of their tank. There are some species that do suffer from "stunting" and stay small, but this is usually caused by ammonia poisoning, not the tank size. And while fish kept in this toxic environment will survive, it's for a limited time, and they won't thrive. Most species will grow to their adult sizes, regardless of the size of their homes. Bottom feeders and algae eaters will help keep my tank clean. This is the most common one we hear, and it's definitely not true. Most bottom feeders are members of the catfish family. -
Behaviour: an Important Diagnostic Tool for Lake Malawi Cichlids PDF
FISH and FISHERIES, 2002, 3, 213^224 Behaviour: an important diagnostic tool for Lake Malawi cichlids Jay R Stau¡er Jr1, Kenneth R McKaye2 & Ad F Konings3 1School of Forest Resources, Pennsylvania State University,University Park, Pennsylvania, PA16802, USA; 2Appalachian Laboratory,UMCES,301Braddock Road, Frostburg, Maryland, MD 21532, USA; 3Cichlid Press, PO Box13608, El Paso,Texas, T X 79913, USA Abstract Correspondence: Historically,the cichlid ¢shes of Lake Malawi, which probably represent one of the best Jay R. Stau¡er Jr, examples of rapid radiation of vertebrates, have been diagnosed with morphological School of Forest Resources, and genetic data. Many of the populations once thought to be conspeci¢c have been Pennsylvania State hypothesized to be separate species based on behavioural data. The use of behavioural University, data, as expressed in mate choice based on colour patterns or bower shapes, has been University Park, successfully used to diagnose both rock-dwelling and sand-dwelling cichlid species. Pennsylvania, PA Additionally,a combination of bower shapes and courtship patterns have been used as 16802, USA Tel.: þ1 814 863 0645 synapomorphies to diagnose genera within the Lake Malawi cichlid £ock. It is con- Fax: þ18148653725 cluded that taxonomists need to include behavioural data with morphological and E-mail:[email protected] genetic databases to diagnose species and to determine the phylogenetic relationships withinthis diverse assemblage of ¢shes. Received 5 Dec 2001 Accepted10Jun 2002 Keywords allopatry,behaviour, Cichlidae, -
Freshwater Ornamental Fish Commonly Cultured in Florida 1 Jeffrey E
Circular 54 Freshwater Ornamental Fish Commonly Cultured in Florida 1 Jeffrey E. Hill and Roy P.E. Yanong2 Introduction Unlike many traditional agriculture industries in Florida which may raise one or only a few different species, tropical Freshwater tropical ornamental fish culture is the largest fish farmers collectively culture hundreds of different component of aquaculture in the State of Florida and ac- species and varieties of fishes from numerous families and counts for approximately 95% of all ornamentals produced several geographic regions. There is much variation within in the US. There are about 200 Florida producers who and among fish groups with regard to acceptable water collectively raise over 800 varieties of freshwater fishes. In quality parameters, feeding and nutrition, and mode of 2003 alone, farm-gate value of Florida-raised tropical fish reproduction. Some farms specialize in one or a few fish was about US$47.2 million. Given the additional economic groups, while other farms produce a wide spectrum of effects of tropical fish trade such as support industries, aquatic livestock. wholesalers, retail pet stores, and aquarium product manufacturing, the importance to Florida is tremendous. Fish can be grouped in a number of different ways. One major division in the industry which has practical signifi- Florida’s tropical ornamental aquaculture industry is cance is that between egg-laying species and live-bearing concentrated in Hillsborough, Polk, and Miami-Dade species. The culture practices for each division are different, counties with additional farms throughout the southern requiring specialized knowledge and equipment to succeed. half of the state. Historic factors, warm climate, the proxim- ity to airports and other infrastructural considerations This publication briefly reviews the more common groups (ready access to aquaculture equipment, supplies, feed, etc.) of freshwater tropical ornamental fishes cultured in Florida are the major reasons for this distribution. -
Harmful Non-Indigenous Species in the United States
Harmful Non-Indigenous Species in the United States September 1993 OTA-F-565 NTIS order #PB94-107679 GPO stock #052-003-01347-9 Recommended Citation: U.S. Congress, Office of Technology Assessment, Harmful Non-Indigenous Species in the United States, OTA-F-565 (Washington, DC: U.S. Government Printing Office, September 1993). For Sale by the U.S. Government Printing Office ii Superintendent of Documents, Mail Stop, SSOP. Washington, DC 20402-9328 ISBN O-1 6-042075-X Foreword on-indigenous species (NIS)-----those species found beyond their natural ranges—are part and parcel of the U.S. landscape. Many are highly beneficial. Almost all U.S. crops and domesticated animals, many sport fish and aquiculture species, numerous horticultural plants, and most biologicalN control organisms have origins outside the country. A large number of NIS, however, cause significant economic, environmental, and health damage. These harmful species are the focus of this study. The total number of harmful NIS and their cumulative impacts are creating a growing burden for the country. We cannot completely stop the tide of new harmful introductions. Perfect screening, detection, and control are technically impossible and will remain so for the foreseeable future. Nevertheless, the Federal and State policies designed to protect us from the worst species are not safeguarding our national interests in important areas. These conclusions have a number of policy implications. First, the Nation has no real national policy on harmful introductions; the current system is piecemeal, lacking adequate rigor and comprehensiveness. Second, many Federal and State statutes, regulations, and programs are not keeping pace with new and spreading non-indigenous pests. -
Gonadotropin-Releasing Hormone
Induced breeding in tropical fish culture Induced breeding in tropical fish culture Brian Harvey and J. Carolsfeld with a foreword by Edward M. Donaldson INTERNATIONAL DEVELOPMENT RESEARCH CENTRE Ottawa • Cairo • Dakar • Johannesburg • Montevideo • Nairobi New Delhi • Singapore ©International Development Research Centre 1993 PO Box 8500, Ottawa, Ontario, Canada KlG 3H9 Harvey, B. Carolsfeld, J. Induced breeding in tropical fish culture. Ottawa, Ont., IDRC, 1993. x + 144 p. : m. /Fish culture/, /fish breeding/, /endocrine system/, /reproduction/, /artificial procreation/, /salt water fish/, /freshwater fish/, /tropical zone/-/hormones/, /genetic engineering/, /genetic resources/, /resourcès conservation/, /environmental management/, /fishery management/, bibliographies. UDC: 639.3 ISBN: 0-88936-633-0 Technical editor: G.C.R. Croome A microfiche edition is available. The views expressed in this publication are th ose of the authors and do not necessarily represent those of the International Development Research Centre. Mention of a proprietary name does not constitute endorsement of the product and is given only for information. Abstract-The book summarizes current knowl edge of the reproductive endocrinology of fish, and applies this knowledge to a practical end: manipulation of reproduction in captive fish that are grown for food. The book is written in a deliberately "nonacademic" style and covers a wide range of topics including breed ing, manipulation of the environment to induce breed ing, conservation offish genetic resources, and techniques used for marking and tagging broodstock. Résumé - L'ouvrage fait le point des connaissances actuelles en matière d'endocrinologie de la reproduction du poisson dans le souci d'une application bien concrète : la manipulation de cette fonction pour les besoins de la pisciculture. -
Low-Temperature Tolerances of Tropical Fish with Potential Transgenic Applications In
Canadian Journal of Zoology Low -temperature tolerances of tropical fish with potential transgenic applications in relation to winter water temperatures in Canada Journal: Canadian Journal of Zoology Manuscript ID cjz-2017-0043.R1 Manuscript Type: Article Date Submitted by the Author: 13-Jul-2017 Complete List of Authors: Leggatt, Rosalind; Department of Fisheries and Oceans, CAER Dhillion, Rashpal;Draft University of British Columbia, Zoology; University of Wisconsin Madison, Wisconsin Institute for Discovery - Epigenetics Mimeault, Caroline; Department of Fisheries and Oceans, Aquaculture, Biotechnology and Aquatic Animal Health Branch Johnson, Neville; Department of Fisheries and Oceans, Aquaculture, Biotechnology and Aquatic Animal Health Branch Richards, Jeffrey; University of British Columbia, Department of Zoology Devlin, Robert; Fisheries and Oceans Canada, ANIMAL IMPACT < Discipline, COLD HARDINESS < Discipline, GENETIC Keyword: ENGINEERING < Discipline, TEMPERATURE < Discipline, FRESHWATER < Habitat, TEMPERATE < Habitat, FISH < Taxon https://mc06.manuscriptcentral.com/cjz-pubs Page 1 of 35 Canadian Journal of Zoology 1 1 Low-temperature tolerances of tropical fish with potential transgenic applications in 2 relation to winter water temperatures in Canada 3 R.A. Leggatt, R.S. Dhillon, C. Mimeault, N. Johnson, J.G. Richards, R.H. Devlin 4 5 Corresponding author: R.A. Leggatt: Centre for Aquaculture and the Environment, Centre for 6 Biotechnology and Regulatory Research, Fisheries and Oceans Canada, 4160 Marine 7 Drive, West Vancouver, BC, V7V 1N6, Canada, Email: [email protected], 8 Tel: +1-604-666-7909, Fax: +1-604-666-3474 9 R.S. Dhillon 1: Department of Zoology, University of British Columbia, 4200-6270 University 10 Blvd. Vancouver, BC, V6T 1Z4, Canada, [email protected] 11 C. -
The African Butterfly Peacock Aulonocara Jacobfreibergi “Eureka Red” by John Moyles
The African Butterfly Peacock Aulonocara jacobfreibergi “Eureka Red” By John Moyles Aulonocara jacobfreibergi (Johnson, 1974) is also called the African butterfly peacock and the fairy peacock. They are endemic to Malawi and are found throughout the lake of the same name. There are several geographical variants of the Aulonocara species in the hobby, including Eureka, Mamela, Otter Point, Hongi Island, Cape Kaiser, Lemon Jake, among others. These should never be housed together as they will readily cross-breed. Only one geographical race should be kept in the same aquarium. Description Males of this species differ from most other Peacocks in their broad, wide white dorsal and caudal fin margins. Females are easily confused with other peacock females, because they are grayish-brown in color with vertical banding on the body and have rounded anal and dorsal fins. Butterfly peacocks are further distinguished from other Peacocks by their large size. They can grow to lengths of up to 8 or 9 inches, but often can breed at half that size. Another distinguishing characteristic of the Butterfly Peacock is its moderate to deeply forked tail fin, which gives it the appearance of a swallow's tail. The “Eureka” variant is an aquarium strain that was developed by line breeding specimens from Otter Point, Malawi. The males have blue throughout head, body and fins. Lower half of the head is blue and the upper part of the dorsal region is orange/red. Anal fin may show red. Dorsal fin has the trademark white/light blue blaze. Diet Butterfly peacocks are specialized feeders. In the wild they mostly consume zooplankton (insect larvae and crustaceans) in the wild. -
Text Transformation K Text Statistics K Parsing Documents K Information Extraction K Link Analysis
Chapter IR:III III. Text Transformation q Text Statistics q Parsing Documents q Information Extraction q Link Analysis IR:III-25 Text Transformation © HAGEN/POTTHAST/STEIN 2018 Parsing Documents Retrieval Unit The atomic unit of retrieval of a search engine is typically a document. Relation between documents and files: q One file, one document. Examples: web page, PDF, Word file. q One file, many documents. Examples: archive files, email threads and attachments, Sammelbände. q Many files, one document. Examples: web-based slide decks, paginated web pages, e.g., forum threads. Dependent on the search domain, a retrieval unit may be defined different from what is commonly considered a document: q One document, many units. Examples: comments, reviews, discussion posts, arguments, chapters, sentences, words, etc. IR:III-26 Text Transformation © HAGEN/POTTHAST/STEIN 2018 Parsing Documents Index Term Documents and queries are preprocessed into sets of normalized index terms. Lemma- tization Stop word Index Plain text Tokenization extraction removal terms Stemming The primary goal of preprocessing is to unify the vocabularies of documents and queries. Each preprocessing step is a heuristic to increase the likelihood of semantic matches while minimizing spurious matches. A secondary goal of preprocessing is to create supplemental index terms to improve retrieval performance, e.g., for documents that do not posses many of their own. IR:III-27 Text Transformation © HAGEN/POTTHAST/STEIN 2018 Parsing Documents Document Structure and Markup The most common document format for web search engines is HTML. Non-HTML documents are converted to HTML documents for a unified processing pipeline. Index terms are obtained from URLs and HTML markup. -
Ancistrus Dolichopterus) in Aquarium Conditions
LIMNOFISH-Journal of Limnology and Freshwater Fisheries Research 6(3): 231-237 (2020) A Preliminary Study on Reproduction and Development of Bushymouth Catfish (Ancistrus dolichopterus) in Aquarium Conditions Mustafa DENİZ1* , T. Tansel TANRIKUL2 , Onur KARADAL3 , Ezgi DİNÇTÜRK2 F. Rabia KARADUMAN 1 1Department of Aquaculture, Graduate School of Natural and Applied Sciences, İzmir Kâtip Çelebi University, 35620, Çiğli, İzmir, Turkey 2Department of Fish Diseases, Faculty of Fisheries, İzmir Kâtip Çelebi University, 35620, Çiğli, İzmir, Turkey 3Department of Aquaculture, Faculty of Fisheries, İzmir Kâtip Çelebi University, 35620, Çiğli, İzmir, Turkey ABSTRACT ARTICLE INFO Dwarf suckermouth catfish are preferred especially for small aquariums. They are RESEARCH ARTICLE usually referred to as tank cleaners and commonly traded in the ornamental fish sector. Since these fish are nocturnal, it is difficult to observe their reproductive Received : 28.02.2020 behavior and larval development. This study was carried out to determine the Revised : 05.06.2020 reproductive variables of bushymouth catfish (Ancistrus dolichopterus) under aquarium conditions. Three broodstocks bushymouth catfish with an average Accepted : 09.06.2020 initial weight and a total length of 10.5±0.3 g and 9.5±0.2 cm were stocked in Published : 29.12.2020 three 240-L aquariums with the ratio of 1:2 (male: female). The observations were made in triplicate tanks for six months. Females laid an average of 39.78±0.41 DOI:10.17216/LimnoFish.695413 eggs and fertilization and hatching rates were 75.05% and 62.94%, respectively. It was found that the transition time from egg to apparently larval stage was * CORRESPONDING AUTHOR 105.28 h, and bushymouth catfish showed an indistinguishable development from [email protected] the hatching to juvenile stage without a real larval transition stage.