Ecosystem Functions of Tidal Marsh Soils of the Elbe Estuary

Total Page:16

File Type:pdf, Size:1020Kb

Ecosystem Functions of Tidal Marsh Soils of the Elbe Estuary Ecosystem functions of tidal marsh soils of the Elbe estuary Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften an der Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Geowissenschaften der Universität Hamburg vorgelegt von Kerstin Hansen aus Hamburg Hamburg, 2015 Tag der Disputation: 10.07.2015 Folgende Gutachter empfehlen die Annahme der Dissertation: Prof. Dr. Eva-Maria Pfeiffer Prof. Dr. Annette Eschenbach Contents Summary ................................................................................................................................................ VII Zusammenfassung ................................................................................................................................... XI List of Figures ........................................................................................................................................ XV List of Tables ......................................................................................................................................... XVI List of Abbreviations & Symbols .......................................................................................................... XVII List of Definitions ................................................................................................................................. XIX 1 Introduction & Objectives ................................................................................................................ 1 2 Background ...................................................................................................................................... 5 2.1 Ecosystem functions of tidal marsh soils .................................................................................. 5 2.2 Marsh soils as part of the regional carbon cycle ........................................................................ 5 2.2.1 Organic carbon sources and pools ........................................................................................ 5 2.2.2 Organic carbon turnover ...................................................................................................... 8 2.3 Marsh soils as sinks for trace metals ........................................................................................ 10 2.3.1 Factors influencing trace metal retention and mobilization ................................................. 10 2.3.2 Contamination of the river Elbe, its sediments, and soils .................................................... 12 3 Study area ....................................................................................................................................... 15 3.1 The Elbe estuary ..................................................................................................................... 15 3.2 Landscape formation .............................................................................................................. 15 3.3 Anthropogenic changes .......................................................................................................... 17 3.3.1 Coastal protection ............................................................................................................... 17 3.3.2 River-engineering measures ................................................................................................ 18 3.3.3 Climate change ................................................................................................................... 19 3.4 Study sites ............................................................................................................................... 20 3.4.1 Site description ................................................................................................................... 20 3.4.2 Soils of the study sites ......................................................................................................... 24 4 Material & Methods ........................................................................................................................ 31 4.1 Field methods and sample preparation .................................................................................... 31 4.2 Soil analysis ............................................................................................................................ 32 4.2.1 Bulk density ........................................................................................................................ 32 4.2.2 Grain size distribution ........................................................................................................ 33 4.2.3 pH ...................................................................................................................................... 33 4.2.4 Carbon ............................................................................................................................... 33 4.2.5 13C/12C isotope ratios ......................................................................................................... 34 III 4.2.6 Aqua regia extraction .......................................................................................................... 34 4.2.7 Element analysis ................................................................................................................. 35 4.3 Incubation experiment on carbon turnover ............................................................................. 35 4.3.1 Soil sampling and sample preparation ................................................................................. 35 4.3.2 Gas measurements .............................................................................................................. 36 4.4 External data .......................................................................................................................... 37 4.5 Data analysis and calculations ................................................................................................. 37 4.5.1 Calculation of SOC and trace metal pools ........................................................................... 37 4.5.2 Differentiation of autochthonous and allochthonous SOC ................................................. 38 4.5.3 Calculation of CO2 and CH4 production and estimation of potential carbon turnover ........ 40 4.5.4 Classification of contamination levels ................................................................................. 42 4.5.5 Age determination of soil horizons ..................................................................................... 43 4.5.6 Up-scaling .......................................................................................................................... 43 4.5.7 Statistics .............................................................................................................................. 44 5 Results ............................................................................................................................................ 47 5.1 Soil characteristics and properties ........................................................................................... 47 5.1.1 Bulk density, texture, and pH .............................................................................................. 47 5.1.2 TOC and TIC concentrations ............................................................................................. 48 5.1.3 TN concentrations and C/N ratios ..................................................................................... 49 5.1.4 Trace metal concentrations ................................................................................................. 50 5.2 Above-ground biomass ........................................................................................................... 53 5.3 Organic carbon ....................................................................................................................... 54 5.3.1 Differentiation of SOC pools .............................................................................................. 54 5.3.2 Vertical TOC distribution in soils and their allochthonous proportion ................................ 55 5.3.3 Comparison between initial and recent OC pools ............................................................... 58 5.3.4 Carbon isotope ratios of soils, sediment, and biomass ......................................................... 58 5.3.5 Spatial distribution of SOC stocks ...................................................................................... 59 5.4 Aerobic and anaerobic carbon turnover .................................................................................. 60 5.4.1 Soil characteristics of incubated samples ............................................................................. 60 5.4.2 Cumulative gas production ................................................................................................. 61 5.4.3 Carbon mineralization rates ................................................................................................ 64 5.4.3.1 Maximum mineralization rates ........................................................................................ 64 5.4.3.2 Comparison of initial and final rates................................................................................ 65 5.4.4 Total carbon turnover ......................................................................................................... 66 5.5 Trace metals ..........................................................................................................................
Recommended publications
  • A 1.2Ma Record of Glaciation and Fluvial Discharge from the West European Atlantic Margin S
    A 1.2Ma record of glaciation and fluvial discharge from the West European Atlantic margin S. Toucanne, S. Zaragosi, J.F. Bourillet, P.L. Gibbard, F. Eynaud, J. Giraudeau, J.L. Turon, M. Cremer, E. Cortijo, P. Martinez, et al. To cite this version: S. Toucanne, S. Zaragosi, J.F. Bourillet, P.L. Gibbard, F. Eynaud, et al.. A 1.2Ma record of glaciation and fluvial discharge from the West European Atlantic margin. Quaternary Science Reviews, Elsevier, 2009, 28 (25-26), pp.2974-2981. 10.1016/j.quascirev.2009.08.003. hal-03006683 HAL Id: hal-03006683 https://hal.archives-ouvertes.fr/hal-03006683 Submitted on 28 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A 1.2 Ma record of glaciation and fluvial discharge from the West European Atlantic margin S. Toucannea, b, *, S. Zaragosia, J.F. Bourilletb, P.L. Gibbardc, F. Eynauda, J. Giraudeaua, J.L. Turona, M. Cremera, E. Cortijod, P. Martineza and L. Rossignola a Université de Bordeaux, UMR 5805, Avenue des Facultés, F-33405 Talence, France b IFREMER, Laboratoire Environnements Sédimentaires, BP70, 29280 Plouzané, France c Cambridge Quaternary, Department of Geography, University of Cambridge, Cambridge, CB2 3EN, UK d Laboratoire des Sciences du Climat et de l'Environnement LSCE/IPSL (UMR CEA-CNRS-UVSQ 1572), CE Saclay, L'Orme des Merisiers, Bât.
    [Show full text]
  • The Dynamics of Turbidity Zones in Tidal Estuaries ¡
    The dynamics of turbidity zones in tidal estuaries ¡ Hans Burchard and Manuel Ruiz Villarreal [email protected]. 1. Baltic Sea Research Institute Warnemunde,¨ Germany 2. Institute for Oceanography, University of Hamburg, Germany GHAMES-Seminar in Liege,` June 13, 2002 – p.1/19 Program of the talk Phenomenology Conceptual models Numerical simulations (historical) Numerical simulations (recent) Conclusions GHAMES-Seminar in Liege,` June 13, 2002 – p.2/19 Map of the tidal Elbe 54°10' WGE Be 10.96 Trischen Großer Vogelsand Friedrichskoog Gelbsand 54°00' 740 Scharhörn 730 Nord-Ostsee-Kanal Neufelder Brunsbüttel Stör Sand Neuwerk Medemsand 700 720 710 690 Cuxhaven 53°50' Gr. Knechtsand Medemgrund 680 Medem Glückstadt Wischh. Süderelbe 670 Krückau Oste Pagensand Pinnau 660 53°40' Stade 650 640 Watt 630 Hamburg Schwinge Strom-km 700 Lühe Mühlen- berger Loch 0 10km 53°30' Este 8°10' 20' 30' 40' 50' 9°00' 10' 20' 30' 40' 50' 10°00' GHAMES-Seminar in Liege,` June 13, 2002 – p.3/19 Phenomenology SPM observations in the tidal Elbe Pers. comm. Jens Kappenberg GHAMES-Seminar in Liege,` June 13, 2002 – p.4/19 Phenomenology SPM observations in the tidal Elbe Pers. comm. Jens Kappenberg GHAMES-Seminar in Liege,` June 13, 2002 – p.5/19 Phenomenology SPM observations in Columbia River Salinity SPM Pers. comm. David Jay, Phillip Orton GHAMES-Seminar in Liege,` June 13, 2002 – p.6/19 Classical conceptual models Flocculation of riverine colloids due to the ion content of the saline sea water (Lucht [1953]). "The peculiar process of mixing between riverine and marine water in the tidal zone works as a SPM trap." (Postma und Kalle [1955]).
    [Show full text]
  • Die Küste, Heft 74, 2008
    Die Küste, 74 ICCE (2008), 212-232 Tidal Barriers at the North and Baltic Sea Coast By HANS-ANDREAS LEHMANN and HEINZ JASPER Contents 1. Introduction . 212 2. Barrages, their Development and Operation . 213 3. Barriers/Barrages in Germany . 213 4. Layout and Concept of the Barrages. 217 4.1 Gates and Other Closure Devices . 217 4.2 Drives . 217 4.3 Scour Protection . 217 4.4 Additional Installations. 218 4.5 Secondary Installations . 218 5. Design and Construction . 218 5.1 Legal Principles . 219 5.2 Owner Function and Control . 219 6. Operation and Maintenance . 219 7. Future Prospects. 219 8. Description of Selected Barrages . 220 8.1 Ems Barrier in Lower Saxony . 220 8.2 Lesum Barrier in Bremen. 222 8.3 Eider Barrier in Schleswig-Holstein . 224 8.4 Barrage Billwerder Bucht in Hamburg . 228 8.5 Barrage Greifswald-Wieck in Mecklenburg-Vorpommern . 230 9. Acknowledgements . 233 10. References . 233 1. Introduction The German North and Baltic Sea Coast being an integral part of the Federal provinces (Länder) Lower Saxony, Bremen, Hamburg, Schleswig-Holstein and Mecklenburg-Vor- pommern was shaped by the last ice age. Under the influence of the external forces of the sea it evolved to be a continuously changing boundary line between land and water. Approximately 2,500 years ago, man began to colonize the coastal zone. Subsidence of the coastal area as well as the melting process of the polar ice led to gradually rising sea levels and, consequently, more frequent flooding of coastal areas. In order to protect themselves against rising water levels the coastal people started building earth mounds (Warften, Wur- ten) some 2000 years ago.
    [Show full text]
  • Concepts and Applications for Nitrogen Retention and Pesticide Risk Reduction
    International Journal of Biodiversity Science, Ecosystem Services & Management iFirst,2012,1–15 Mapping water quality-related ecosystem services: concepts and applications for nitrogen retention and pesticide risk reduction Sven Lautenbacha,*, Joachim Maesb , Mira Kattwinkelc ,RalfSeppelta ,MichaelStraucha,d,MathiasScholze , Christiane Schulz-Zunkele , Martin Volka ,JensWeinerta and Carsten F. Dormanna aDepartment of Computational Landscape Ecology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany; bEuropean Commission – Joint Research Centre, Institute for Environment and Sustainability (IES), Rural Water and Ecosystem Resources Unit, Ispra, Italy; cDepartment of System Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany; dInstitute of Soil Science and Site Ecology, Dresden University of Technology, Tharandt, Germany; eDepartment of Conservation Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany One of the challenges of using the ecosystem service (ES) framework in the context of planning and decision support is the question of how to map these services in an appropriate way. For water quality-related ESs, this implies a movement from the display of classical water quality indicators towards the mapping of the service itself. We explore the potential of mapping such water quality-related ESs based on three case studies focusing on different aspects of these services: (1) a European case study on pesticides, (2) a multi-scale German case study on nitrogen retention and (3) a more local case study on nitrogen retention in the Elbe floodplain (Lödderitzer Forst). All these studies show a high spatial variation of the results that can be depicted in maps of ES supply. This allows an identification of areas in which nitrogen retention is highest or which areas face the highest ecological risk due to pesticides.
    [Show full text]
  • The ELBE River - a Lifeline for Northern Germany
    The ELBE River - a lifeline for Northern Germany The sense of maintenance dredging on the ELBE - and the future requirements for its navigational Fairway Dipl.-Ing. Dipl.-Ing. Nikša Marušić Christopher Iwens Federal Administration for NORDSEE Nassbagger- Waterways and Navigation und Tiefbau GmbH - WSA Cuxhaven - - DEME - Nikša Marušić 1 CEDA12th workshop Dredging on Daysdredging November, and surveying 7th 01.06.20062007 1 WSA Cuxhaven The ELBE River - a lifeline for Northern Germany 1. Tidal River ELBE 2. Maintenance dredging concept on the ELBE 3. Trading position of the harbour of Hamburg 4. The future deepening of the ELBE Nikša Marušić 2 CEDA12th workshop Dredging on Daysdredging November, and surveying 7th 01.06.20062007 2 WSA Cuxhaven Tidal river ELBE Nikša Marušić 3 CEDA12th workshop Dredging on Daysdredging November, and surveying 7th 01.06.20062007 3 WSA Cuxhaven Tidal river ELBE Nikša Marušić 4 CEDA12th workshop Dredging on Daysdredging November, and surveying 7th 01.06.20062007 4 WSA Cuxhaven Tidal river ELBE Nikša Marušić 5 CEDA12th workshop Dredging on Daysdredging November, and surveying 7th 01.06.20062007 5 WSA Cuxhaven Tidal river ELBE North Sea Cuxhaven 100 km Hamburg Nikša Marušić 6 CEDA12th workshop Dredging on Daysdredging November, and surveying 7th 01.06.20062007 6 WSA Cuxhaven Tidal river ELBE Administrative responsibilities Federal Administration Hamburg Federal for Waterways and Navigation Port Authority Administration for Waterways Km 697 Stör and Navigation Brunsbüttel Km 726 Km 708 Cuxhaven Km 675 Glückstadt
    [Show full text]
  • Elbe Estuary Publishing Authorities
    I Integrated M management plan P Elbe estuary Publishing authorities Free and Hanseatic City of Hamburg Ministry of Urban Development and Environment http://www.hamburg.de/bsu The Federal State of Lower Saxony Lower Saxony Federal Institution for Water Management, Coasts and Conservation www.nlwkn.Niedersachsen.de The Federal State of Schleswig-Holstein Ministry of Agriculture, the Environment and Rural Areas http://www.schleswig-holstein.de/UmweltLandwirtschaft/DE/ UmweltLandwirtschaft_node.html Northern Directorate for Waterways and Shipping http://www.wsd-nord.wsv.de/ http://www.portal-tideelbe.de Hamburg Port Authority http://www.hamburg-port-authority.de/ http://www.tideelbe.de February 2012 Proposed quote Elbe estuary working group (2012): integrated management plan for the Elbe estuary http://www.natura2000-unterelbe.de/links-Gesamtplan.php Reference http://www.natura2000-unterelbe.de/links-Gesamtplan.php Reproduction is permitted provided the source is cited. Layout and graphics Kiel Institute for Landscape Ecology www.kifl.de Elbe water dropwort, Oenanthe conioides Integrated management plan Elbe estuary I M Elbe estuary P Brunsbüttel Glückstadt Cuxhaven Freiburg Introduction As a result of this international responsibility, the federal states worked together with the Federal Ad- The Elbe estuary – from Geeshacht, via Hamburg ministration for Waterways and Navigation and the to the mouth at the North Sea – is a lifeline for the Hamburg Port Authority to create a trans-state in- Hamburg metropolitan region, a flourishing cultural
    [Show full text]
  • Tatenberger Deich Ab
    Herzlich willkommen! Hamburger Yacht-Club e.V. im ADAC Hafeninformationen Alles Wissenswerte rund um den HYC für Tagesgäste, Saisongäste, Gastlieger und Mitglieder 1 Inhaltsverzeichnis Herzlich willkommen im Hamburger Yacht-Club! Herzlich willkommen! S. 3 Wir sind ein ehrenamtlich organisierter Anfahrt S. 4–5 Yachthafen für den Motorbootsport an der Dove Elbe. Mit ca. 170 Liegeplätzen Der Yachthafen Tatenberg S. 6 sind wir einer der mitgliederstärksten Umliegende Häfen an der Dove Elbe S. 7 Wassersportclubs Hamburgs. Vereinsleben S. 8–9 Wir bieten Liegeplätze für Yachten Übernachtungskosten S. 10 bis zu 5,50 m Breite und 15 m Länge. Selbstverständlich finden Sie an allen Plätzen Strom- und Hafen-Informationen von A-Z S. 10–14 Wasserversorgung vor. Bei uns liegen Sie mit Ihrem Schiff tidenunabhängig Clubrestaurant S. 15 in sehr geschützter Lage. Versorgung in unmittelbarer Nähe S. 16 Ob mit einem kleinen oder großen Boot, bei uns sind Sie herzlich Hilfreiche Adressen S. 17–18 willkommen, sei es nur für einen Tagesaufenthalt, einen vollen Monat oder Revier Dove Elbe S. 19 auch eine ganze Saison. Sie suchen einen Liegeplatz? Wir finden sicherlich einen geeigneten Platz für Sie – sprechen Sie uns gern an! Dove Elbe retten S. 20 Der Hamburger Yacht-Club ist im ADAC Marineführer gelistet und wurde Freizeit-Tipps S. 20–23 vom DMYV zum Stützpunkt erklärt – wiederholt wurden wir mit dem Mit Bus und Bahn Sightseeing in Hamburg S. 24–25 DMYV-Qualitätssiegel-maritim ausgezeichnet. Impressum S. 25 Über 21 Jahre in Folge hat unser gemeinnütziger Yacht-Club sich den Ansprechpartner S. 26–27 jährlichen internationalen Sicherheits- und Umweltaudits wie z.B.
    [Show full text]
  • Sieltorbelastungen Durch Schiffsverkehr an Unterweser Und Unterelbe
    Seadikes in Germany Holger Schüttrumpf and Christian Grimm Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Germany, [email protected], [email protected] INTRODUCTION north-frisian coast result from storm surge Seadikes (Fig. 1) and estuarine dikes disasters in 1362 and 1634. Furthermore, represent the main coastal defence structure in many lakes behind the present dikes have Germany and protect low lying areas in Lower been developed due to the scouring process of Saxony, Schleswig-Holstein, Bremen, a breaching dike. Therefore, the crest levels in Hamburg and Mecklenburg-Vorpommern. former centuries correlate well with the More than 2,400,000 people and an area of maximum storm surge levels in that times. The more than 12,000 km2 are protected by more memory of the severe storm surges in the past than 1,200 km of sea dikes and estuarine dikes and the consequences is still fresh and not in Germany (Tab. 1). The protected economic forgotten. As a result of this historical values are high. In Hamburg, the protected development, the local population has a value by estuarine dikes is more than 10 special attitude towards the safety of seadikes Billions of Euro, in Schleswig-Holstein more and the importance of coastal flood defences than 48 Billions of Euro (Schüttrumpf, 2008). and coastal protection is well accepted. Nowadays, maintenance and construction of Tab.1: Overview of dike lengths, protected areas seadikes are performed by the German and population in German federal states Federal States Lower Saxony, Schleswig- (Schüttrumpf, 2008) Holstein, Free Hanseatic City of Bremen, Free Federal state Length of Protected Protected and Hanseatic City of Hamburg and Dikes area population Mecklenburg-Vorpommern.
    [Show full text]
  • Supplement of Storm Xaver Over Europe in December 2013: Overview of Energy Impacts and North Sea Events
    Supplement of Adv. Geosci., 54, 137–147, 2020 https://doi.org/10.5194/adgeo-54-137-2020-supplement © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of Storm Xaver over Europe in December 2013: Overview of energy impacts and North Sea events Anthony James Kettle Correspondence to: Anthony James Kettle ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. SECTION I. Supplement figures Figure S1. Wind speed (10 minute average, adjusted to 10 m height) and wind direction on 5 Dec. 2013 at 18:00 GMT for selected station records in the National Climate Data Center (NCDC) database. Figure S2. Maximum significant wave height for the 5–6 Dec. 2013. The data has been compiled from CEFAS-Wavenet (wavenet.cefas.co.uk) for the UK sector, from time series diagrams from the website of the Bundesamt für Seeschifffahrt und Hydrolographie (BSH) for German sites, from time series data from Denmark's Kystdirektoratet website (https://kyst.dk/soeterritoriet/maalinger-og-data/), from RWS (2014) for three Netherlands stations, and from time series diagrams from the MIROS monthly data reports for the Norwegian platforms of Draugen, Ekofisk, Gullfaks, Heidrun, Norne, Ormen Lange, Sleipner, and Troll. Figure S3. Thematic map of energy impacts by Storm Xaver on 5–6 Dec. 2013. The platform identifiers are: BU Buchan Alpha, EK Ekofisk, VA? Valhall, The wind turbine accident letter identifiers are: B blade damage, L lightning strike, T tower collapse, X? 'exploded'. The numbers are the number of customers (households and businesses) without power at some point during the storm.
    [Show full text]
  • 'Fleuve Manche' Discharges Over the Last 350
    Quaternary Science Reviews Archimer June 2009, Volume 28, Issues 13-14, Pages 1238- http://archimer.ifremer.fr 1256 http://dx.doi.org/10.1016/j.quascirev.2009.01.006 © 2009 Elsevier Ltd All rights reserved. ailable on the publisher Web site Timing of massive ‘Fleuve Manche’ discharges over the last 350 kyr: insights into the European ice-sheet oscillations and the European drainage network from MIS 10 to 2 S. Toucannea, *, S. Zaragosia, J.F. Bourilletb, M. Cremera, F. Eynauda, B. Van Vliet-Lanoëc, A. Penauda, C. Fontanierd, J.L. Turona, E. Cortijoe and P.L. Gibbardf a Université de Bordeaux, UMR 5805, Avenue des Facultés, F-33405 Talence, France b IFREMER, Laboratoire Environnements Sédimentaires, BP70, 29280 Plouzané, France c blisher-authenticated version is av Institut Européen Universitaire de la Mer, Domaines Océaniques (UMR CNRS 6538), Place Nicolas Copernic, 29280 Plouzané, France d Université d'Angers, Laboratoire des Bio-indicateurs Actuels et fossiles (UPRES EA 2644), Boulevard Lavoisier, 49045 Angers Cedex 01, France e Laboratoire des Sciences du Climat et de l'Environnement LSCE/IPSL (UMR CEA-CNRS-UVSQ 1572), CE Saclay, L'Orme des Merisiers, Bât 701, 91191 Gif-sur-Yvette cedex, France f Cambridge Quaternary, Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK *: Corresponding author : S. Toucanne, Tel.: +33 540 00 8438; fax: +33 556 84 0848, email address : [email protected] Abstract: Continuous high-resolution mass accumulation rates (MAR) and X-ray fluorescence (XRF) measurements from marine sediment records in the Bay of Biscay (NE Atlantic) have allowed the determination of the timing and the amplitude of the ‘Fleuve Manche’ (Channel River) discharges during glacial stages MIS 10, MIS 8, MIS 6 and MIS 4–2.
    [Show full text]
  • Pegelverzeichnis Des NLWKN Stand Oktober 2017
    Pegelverzeichnis des NLWKN Stand Oktober 2017 Lfd. DGJ Gewässerkundlicher Gewässer Hydrologische Landschaften / Betreiber Anprechpartner Datenart GK GK UTM UTM AEO Nr. Pegel Pegel landschaftsübergreifende Rechts- Hoch- East North km² Gewässer wert wert 1 Abbenfleth Sperrwerk Elbe Tidegebiet der Elbe NLWKN Betriebsstelle Stade [email protected] W 3532755 5948790 32532672 5946850 141327 2 Achum Bückeburger Aue Weserberge NLWKN Betriebsstelle Hannover-Hildesheim [email protected] W Q 3505886 5795092 32505811 5793214 87 3 Addrup Fladderkanal Carumer Geest NLWKN Betriebsstelle Cloppenburg [email protected] W Q 3435602 5842401 32435556 5840505 228 4 Adelebsen Schwülme Solling NLWKN Betriebsstelle Süd [email protected] W Q 3549649 5715581 32549556 5713734 40 5 Afferde Fluthamel Weserberge NLWKN Betriebsstelle Hannover-Hildesheim [email protected] W Q 3526986 5774330 32526902 5772460 180 6 Ahrensdorf Giehler Bach Wesermünder Geest NLWKN Betriebsstelle Verden [email protected] W Q 3495144 5911595 32495075 5909671 80 7 Alfstedt Mehe Zevener Geest NLWKN Betriebsstelle Stade [email protected] W Q 3504779 5935958 32504707 5934024 55 8 x Aligse Burgdorfer Aue Weser-Aller-Geest NLWKN Betriebsstelle Hannover-Hildesheim [email protected] W Q 3567154 5808443 32567055 5806559 180 9 Altenwalde Landwehrkanal Nicht regionalisierter Binnenpegel NLWKN Betriebsstelle Stade [email protected]
    [Show full text]
  • The First Estimation of Fleuve Manche Palaeoriver Discharge During The
    Earth and Planetary Science Letters Archimer February 2010, Volume 290, Issues 3-4, Pages 459- http://archimer.ifremer.fr 473 http://dx.doi.org/10.1016/j.epsl.2009.12.050 © 2010 Elsevier B.V. All rights reserved. ailable on the publisher Web site The first estimation of Fleuve Manche palaeoriver discharge during the last deglaciation: Evidence for Fennoscandian ice sheet meltwater flow in the English Channel ca 20–18 ka ago Samuel Toucannea, b, *, Sébastien Zaragosia, Jean-François Bourilletb, Vincent Marieua, Michel Cremera, Masa Kageyamac, Brigitte Van Vliet-Lanoëd, Frédérique Eynauda, Jean-Louis Turona and Philip L. Gibbarde a Université de Bordeaux, UMR 5805, Avenue des Facultés, F-33405 Talence, France b blisher-authenticated version is av IFREMER, Laboratoire Environnements Sédimentaires, BP70, 29280 Plouzané, France c Laboratoire des Sciences du Climat et de l'Environnement LSCE/IPSL (UMR CEA-CNRS-UVSQ 1572), CE Saclay, L'Orme des Merisiers, Bât. 701, 91191 Gif-sur-Yvette cedex, France d Institut Européen Universitaire de la Mer, Domaines Océaniques (UMR CNRS 6538), Place Nicolas Copernic, 29280 Plouzané, France e Cambridge Quaternary, Department of Geography, University of Cambridge, Cambridge, CB2 3EN, UK *: Corresponding author : Samuel Toucanne, Tel.: +33 298 22 4249; fax: +33 298 22 4570, email address : [email protected] Abstract: The Fleuve Manche (English Channel) palaeoriver represents the largest river system that drained the European continent during Pleistocene lowstands, particularly during the Elsterian (Marine Isotope Stage 12) and Saalian Drenthe (MIS 6) glaciations when extensive ice advances into the North Sea area forced the central European rivers to flow southwards to the Bay of Biscay (NE Atlantic).
    [Show full text]