4. Proceedings of the Fourth International Conference on the History of Mathematics Education

Total Page:16

File Type:pdf, Size:1020Kb

4. Proceedings of the Fourth International Conference on the History of Mathematics Education See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319781200 2017 - "Dig where you stand" 4. Proceedings of the Fourth International Conference on the History of Mathematics Education Book · September 2017 CITATIONS READS 0 633 5 authors, including: Kristín Bjarnadóttir Fulvia Furinghetti University of Iceland Università degli Studi di Genova 41 PUBLICATIONS 59 CITATIONS 145 PUBLICATIONS 1,002 CITATIONS SEE PROFILE SEE PROFILE Marta Menghini Johan Prytz Sapienza University of Rome Uppsala University 40 PUBLICATIONS 142 CITATIONS 22 PUBLICATIONS 55 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Curriculum research View project Fundamental reasons View project All content following this page was uploaded by Fulvia Furinghetti on 22 September 2017. The user has requested enhancement of the downloaded file. “DIG WHERE YOU STAND” 4 Proceedings of the Fourth International Conference on the History of Mathematics Education September 23-26, 2015, at University of Turin, Italy Editors: Kristín Bjarnadóttir Fulvia Furinghetti Marta Menghini Johan Prytz Gert Schubring “Dig where you stand” 4 Proceedings of the Fourth International Conference on the History of Mathematics Education September 23-26, 2015, at University of Turin, Italy Editors: Kristín Bjarnadóttir University of Iceland, School of Education, Reykjavík, Iceland Fulvia Furinghetti Dipartimento di Matematica dell’Università di Genova, Italy Marta Menghini Dipartimento di Matematica, Sapienza Università di Roma, Italy Johan Prytz Uppsala University, Department of Education, Sweden Gert Schubring Universidade Federal do Rio de Janeiro, Instituto de Matemática, Brazil Institut für Didaktik der Mathematik, Universität Bielefeld, Germany In the front cover: A classroom of a primary school (rural area of Northern Italy in the 1940s) In the back cover: View of Turin, venue of the conference These proceedings are published with the contribution of INdAM (Istituto Nazionale di Alta Matematica) Copyright © 2017 Edizioni Nuova Cultura - Roma ISBN: 9788868128647 DOI: 10.4458/8647 È vietata la riproduzione non autorizzata, anche se parziale, realizzata con qual- siasi mezzo, compresa la fotocopia, anche ad uso interno o didattico. Contents Introduction .................................................................................................................. 9 Preface ......................................................................................................................... 11 Ferdinando Arzarello The role of Reye’s Geometrie der Lage in the teaching of “modern geometry” ............................................................................................. 15 Evelyne Barbin The teaching of mathematics, architecture and engineering in the Ancien Régime in Turin .................................................................................... 31 Rita Binaghi Recommendations of the Royaumont Seminar on primary school arithmetic – Influences in the Nordic countries ......................................................................... 47 Kristín Bjarnadóttir John Dewey and mathematics education in Sweden ........................................... 61 Kajsa Bråting, Tove Österman Mathematics in the initial pre-service education of primary school teachers in Portugal (1926-1974) ............................................ 73 Rui Candeias Early geometry textbooks printed in Persian ........................................................ 87 Gregg De Young The mathematical journals for teachers and the shaping of mathematics teachers’ professional identity in post-unity Italy ............................................... 101 Fulvia Furinghetti Teaching and dissemination of mathematics in Beppo Levi’s work. From Italy to Argentina ......................................................................................... 117 Livia Giacardi, Margherita Raspitzu Half a century of Pythagoras, a mathematical magazine for students and teachers ....................................................................................... 133 Jan Guichelaar 6 Contents On the Russian national subcommission of the ICMI ...................................... 149 Alexander Karp Changing direction: The “Second Round” of the School Mathematics Study Group ........................................................................ 167 Jeremy Kilpatrick Mathematische Liefhebberye (1754-1769) and Wiskundig Tijdschrift (1904-1921): both journals for Dutch teachers of mathematics .............................................. 175 Jenneke Krüger Mathematics and race in Turin: the Jewish community and the local context of education (1848-1945) ................................................. 189 Erika Luciano Precision and approximation mathematics for teacher education: The lecture course of Guido Castelnuovo and the influence of Felix Klein ....... 203 Marta Menghini The standardisation of the place of problems in French geometry textbooks during the 19thcentury ...................................... 219 Guillaume Moussard The problem section of El Progreso Matemático .................................................... 235 Antonio M. Oller-Marcén The teaching of mathematics in the Italian artillery schools in the eighteenth century ........................................................................................ 247 Elisa Patergnani On the relationships between the geometric and the algebraic ideas in Duhre’s textbooks of mathematics, as reflected via Book II of Euclid’s Elements ....................................................... 263 Johanna Pejlare Mathematics textbooks for teachers training in Spain in the second half of 19th century: The metric system implementation ........ 275 Miguel Picado, Luis Rico, Bernardo Gómez Teaching of mathematics in educational journals of Turin (1849-1894) ........ 293 Chiara Pizzarelli The production of textbooks in mathematics in Sweden, 1930-1980 ............. 309 Johan Prytz Contents 7 New conceptions of mathematics and research into learning and teaching: Curriculum projects for primary and secondary schools in the UK (1960-1979) ........................................................................................... 325 Leo Rogers Mathematics teaching in the process of decolonization ................................... 349 Gert Schubring Johan Wansink and his role in Dutch mathematics education ........................ 369 Harm Jan Smid Marxism and mathematics. Paul Libois and intuitive geometry in Belgium .. 383 Geert Vanpaemel, Dirk De Bock Olivier string models and the teaching of descriptive geometry ..................... 399 João Pedro Xavier, Eliana Manuel Pinho The function of a preface: Contextual information and didactical foundation described in the preface and introduction of a textbook in arithmetic from 1825 (Abstract) .............................................. 415 Andreas Christiansen A case study on the teaching of mathematics in the Italian Renaissance: Niccolò Tartaglia and his General Trattato (Abstract) ......................................... 417 Veronica Gavagna Contributors ............................................................................................................. 419 Index .......................................................................................................................... 429 Introduction From 23 to 26 September 2015 the fourth International Conference on the His- tory of Mathematics Education (ICHME-4) was held at Academy of Sciences and University of Turin, Italy. The local organizers were Livia Giacardi and Erika Lu- ciano. The Scientific Program Committee was composed by Kristín Bjarnadóttir (University of Iceland), Fulvia Furinghetti (University of Genoa, Italy), Livia Gia- cardi (University of Turin, Italy), Erika Luciano (University of Turin, Italy), Johan Prytz (Uppsala University), Gert Schubring (Universität Bielefeld, Germany/Uni- versidade Federal do Rio de Janeiro, Brazil), with the scientific support of Ferdi- nando Arzarello (University of Turin, Italy), president of ICMI. Altogether there were 51 participants from 16 countries, 44 contributions (re- search reports and posters) were presented. After processing by peer reviews, 28 papers are published in these Proceedings. They may be categorized according to the following thematic dimensions: Ideas, people and movements Kristín Bjarnadóttir; Kajsa Bråting and Tove Österman; Livia Giacardi and Mar- gherita Raspitzu; Erika Luciano; Gert Schubring; Harm Jan Smid. Transmission of ideas Fulvia Furinghetti; Jan Guichelaar; Alexander Karp; Jenneke Krüger; Antonio M. Oller-Marcén, Chiara Pizzarelli. Teacher education Rui Candeias; Marta Menghini. Geometry and textbooks Evelyne Barbin; Gregg De Young; Guillaume Moussard; Johanna Pejlare. Textbooks – changes and origins Andreas Christiansen; Veronica Gavagna; Miguel Picado, Luis Rico, and Bernardo Gómez; Johan Prytz. Curriculum and reforms Jeremy Kilpatrick; Leo Rogers. 10 Introduction Teaching in special institutions Rita Binaghi; Elisa Patergnani. Teaching of geometry Geert Vanpaemel and Dirk De Bock; João Pedro Xavier and Eliana Manuel Pinho. To emphasize the continuity of the project behind the conference held in Turin the volume containing the proceedings keeps the original title of the first confer- ence, i.e. “Dig where you stand ” (followed by 4, which is the number of the confer- ence). This sentence, which is the English
Recommended publications
  • Scarica Scarica
    Archivi, Biblioteche, Musei L’archivio e la biblioteca di Francesco G. Tricomi ∗ ERIKA LUCIANO - LUISA ROSSO 1. Francesco Giacomo Tricomi1 Nato a Napoli il 5 maggio 1897 in un’agiata famiglia borghese, Tricomi frequenta l’Istituto tecnico locale, dove concepisce una passione per gli studi scientifici grazie all’influenza del suo insegnante di Matematica Alfredo Perna. Conseguito il diploma all’età di appena sedici anni, s’iscrive al corso di laurea in Chimica dell’Università di Bologna. L’anno successivo passa a Fisica e infine, nel 1915-16, torna a Napoli e si immatricola al terz’anno del corso di studi in Matematica. Arruolato nell’autunno del 1916, segue un corso per allievi ufficiali di complemento presso l’Accademia militare di Torino e il 1 aprile 1917, fresco di nomina, è inviato al fronte, dapprima sul Carso e poi nella zona del monte Grappa e del Piave. Nonostante la guerra, riesce comunque a portare avanti gli studi scientifici e consegue la laurea in Matematica a Napoli il 16 aprile 1918, durante una licenza. Terminata la Grande Guerra, Tricomi torna a Napoli all’inizio del 1920, decorato di due croci al merito, e riallaccia i rapporti con alcuni suoi ex docenti, fra cui R. Marcolongo e G. Torelli che lo indirizzano nelle prime ricerche e lo mettono in contatto con G. Fubini. Nel febbraio del 1921, su suggerimento di U. Amaldi, è assunto da F. Severi quale assistente alla cattedra di Geometria analitica presso l’Università di Padova. L’esperienza alla ‘Scuola’ di Severi è tuttavia di breve durata, poiché nei primi mesi del 1922 Tricomi è chiamato a Roma dove consegue la libera docenza in Analisi algebrica e infinitesimale e dove ha modo di inserirsi in un ambiente accademico di eccezionale levatura, che vanta in quegli anni la presenza di illustri matematici, fra cui V.
    [Show full text]
  • Guido Fubini-Ghiron
    Intellectuals Displaced from Fascist Italy Firenze University Press 2019- Guido Fubini-Ghiron Go to personal file When he was almost 60, he was expelled from the Polytechnic University of Link to other connected Lives on the move: Turin because he was Jewish. Known as one of the sharpest and most intelligent Italian analysts, he decided to continue his brilliant work on Fubini Mario Fubini Ghiron Eugenio 1 differential geometry abroad, hoping for a better future for him and his family . (Eugene) Fubini Ghiron Gino He immediately left for Paris, and soon found himself welcomed to Princeton. His two sons, expelled in Italy at the beginning of their academic career, also found their way to the USA and stayed there. Formative years in Paris He was born in Venice on 19 January 1879 to Lazzaro Fubini, a mathematics teacher at the machinist school, and to Zoraide Torre. At only nine years old, he was enrolled at Foscarini High School in Venice, achieving, in his eight years of ginnasio and liceo [junior high school and high school], perfect grades (all 10s) in mathematics2. In 1896, at seventeen years old, he enrolled in the Facoltà di Matematica [School of Mathematics] at the Scuola normale superiore of Pisa, «where many scholars became passionate about research in geometry»3. A student of Ulisse Dini, Eugenio Bertini and, above all, Luigi Bianchi, he graduated with honors in 1900 with a thesis titled «Il parallelismo di Clifford negli spazi ellittici» [Clifford’s parallelism in elliptical spaces]4. 1 Letter of 30 October 1938 from Tullio Levi-Civita to Oswald Veblen from the Institute for Advanced Study at Princeton University, translated and reported on the Università Bocconi’s website, section Rubriche <http://matematica-old.unibocconi.it> (accessed 2 February 2019).
    [Show full text]
  • Descendants of John Williams, Sr
    John Williams, Sr. By Nyla Creed DePauk John Williams, Sr., was born September 10, 1802, in Tennessee, and died July 24, 1885, in Raleigh County, West Virginia. He married Susanna Stover on July 23, 1821, in Giles County, Virginia. Susanna was the daughter of Jacob Stover and Sarah McGhee. She was born about 1807 in Franklin County, Virginia, and died March 27, 1879, in Raleigh County. Children of John Williams and Susanna Stover are: 1. Eliza Williams was born August 28, 1822, in Clear Fork, Giles County, and died in August 1905 in Raleigh County. She married John Stover on September 19, 1839, in Fayette County. They were married by the Reverend Matthew Ellison. John was the son of Obediah Stover and Massey Stanley. John was born about 1820 in Virginia and died about 1852 in Virginia. Children of Eliza Williams and John Stover are: -1 Emily Stover, born in December 1841 in Fayette County, married Joseph Phillips on September 23, 1855, in Raleigh County. They were married by the Reverend Claiborne Curtis. Joseph was born in June 1834 in Jackson County, Ohio. -2 Mary Jane Stover, born February 11, 1840, in Raleigh County; died January 16, 1918. She married Robinson Williams on September 11, 1856, in Raleigh County. They were married by the Reverend Claiborne Curtis. Robinson was born in November 1838 at Sand Branch, Fayette County, Virginia. He died October 5, 1928, at Long Branch, Fayette County. -3 Ruhama (Mahala?) Stover, born 1846, married Jim Roberts. -4 Elicia (Leticia) Stover, born November 1850 in Raleigh County, married first William Pace on December 12, 1867, in Raleigh County.
    [Show full text]
  • Chapter 5 Product Measures
    Chapter 5 Product Measures Lebesgue measure on R generalizes the notion of the length of an interval. In this chapter, we see how two-dimensional Lebesgue measure on R2 generalizes the notion of the area of a rectangle. More generally, we construct new measures that are the products of two measures. Once these new measures have been constructed, the question arises of how to compute integrals with respect to these new measures. Beautiful theorems proved in the first decade of the twentieth century allow us to compute integrals with respect to product measures as iterated integrals involving the two measures that produced the product. Furthermore, we will see that under reasonable conditions we can switch the order of an iterated integral. Main building of Scuola Normale Superiore di Pisa, the university in Pisa, Italy, where Guido Fubini (1879–1943) received his PhD in 1900. In 1907 Fubini proved that under reasonable conditions, an integral with respect to a product measure can be computed as an iterated integral and that the order of integration can be switched. Leonida Tonelli (1885–1943) also taught for many years in Pisa; he also proved a crucial theorem about interchanging the order of integration in an iterated integral. CC-BY-SA Lucarelli © Sheldon Axler 2020 S. Axler, Measure, Integration & Real Analysis, Graduate Texts 116 in Mathematics 282, https://doi.org/10.1007/978-3-030-33143-6_5 Section 5A Products of Measure Spaces 117 5A Products of Measure Spaces Products of s-Algebras Our first step in constructing product measures is to construct the product of two s-algebras.
    [Show full text]
  • Italia, Divenni L'ultimo' Emilio Artom
    Saggi e Studi ‘Ero stato uno dei primi professori medi d’Italia, divenni l’ultimo’ Emilio Artom (1888-1952) * ** ERIKA LUCIANO - LUCA LOTITO 1. Dispensati dal servizio1 Nel 2018 ricorreva l’ottantesimo anniversario della promulgazione delle leggi razziali che - com’è noto - costituiscono una delle pagine più vergognose della nostra storia recente e al contempo uno dei peggiori crimini compiuti dal regime fascista. Precedute dalla pubblicazione del Manifesto della razza e dal censimento della minoranza ebraica condotto nell’estate del 1938, le leggi razziali ratificano l'antisemitismo di Stato e privano gli ebrei italiani dei diritti politici e civili conquistati in epoca risorgimentale, condannandoli a divenire ‘una casta di paria’2. A seguito dei decreti del 5 settembre e del 17 novembre 1938, circa 170 insegnanti e presidi sono dispensati dal servizio, altrettanti professori universitari perdono la cattedra3 e sono espulsi da ogni accademia e società scientifica4, migliaia di studenti sono cacciati dalle scuole di ogni ordine e grado5 e l’uso di libri di testo di autori di razza ebraica è proibito in tutti gli istituti statali (quest’ultimo provvedimento è noto come la cosiddetta procedura di bonifica libraria)6. Le dimensioni della discriminazione sono di drammatica rilevanza per la scienza e per la matematica italiana, che perdono figure del calibro di Giuseppe Levi, Giacomo Mario Levi, Bruno Rossi, Emilio Segré, Enrico Fermi, Vito Volterra, Tullio Levi-Civita, e molti altri ancora7. L’Università di Torino8, con 9 ordinari ebrei su 75, è la più colpita dopo quelle di * Erika Luciano, Dipartimento di Matematica G. Peano, Università di Torino, mail: [email protected]; ** Luca Lotito, mail: [email protected].
    [Show full text]
  • Cayuga and Store Building 69 Fall Christy Mary A., Home with Christy
    SENECA FALLS VILLAGE. 267 E. Casey Mary Miss, home with her father Thomas, 13 Chapin CASEY MATTHEW R., b 1855, (Casey & Seaman), bds 40 State Richard b r- Casey A., 1862, w Elizabeth, meat cutter, h 51 Bridge b about Casey Richard, 1829 in Ireland, retired, res. 40 State Casey Richard H., b 1875, machinist, bds 84 W. Bayard,owns interest in house T. Casey Theresa Miss, dressmaker, bds 13 Chapin Casey Thomas b 1844 in Ireland, w Mary, machinist, owns h and 1 13 Chapin Casey Thomas D., b 1877, son of Thomas, clerk 62 Fall, home 13 Chapin CASEY & SEAMAN, (Matthew R. Casey & Dr. Frank G. Seaman), drugs, school and blank books, 75 Fall Cassidy Ellen, widow of John, laundress, r h 91 Bridge Castner Seymour H., b 1863 in Penn Yan, N. Y., w Eva S., pattern maker, carpenter and builder, r h 306 Fall Chamberlain Harrison, b 1837, w Ophelia G., director Ex change National Bank, prop.'r The National Yeast Co., owns the Seneca Woolen Mills, under lease to Mr. Hugh Sheridan, also two planing mills and malt and grain houses on East Fall St., also farm 96 on r 43 ; also farm 80 on r 28, occupied by Stephen Rogers ; w owns res. 30 Cayuga and store building 69 Fall Chase Jesse M. Dr., b 1865 in Ledyard, Cayuga Co., w Susie H., veterinary surgeon, graduate of Ontario Veterinary College of Toronto, infirmary and sale stable, horse trainer, agt for Groton carriages, r h Baird blk, State Chatham Hattie S. Miss, school teacher, bds 37 Chapel Chatham Sarah A., widow of Jonathan S., resident, r h 37 Chapel Christopher Claude R., b 1870, letter carrier, home 32 Miller Christopher Columbus, b 1845, w Martha J., master mechanic Goulds Mfg Co., owns res.
    [Show full text]
  • Definitions and Nondefinability in Geometry 475 2
    Definitions and Nondefinability in Geometry1 James T. Smith Abstract. Around 1900 some noted mathematicians published works developing geometry from its very beginning. They wanted to supplant approaches, based on Euclid’s, which han- dled some basic concepts awkwardly and imprecisely. They would introduce precision re- quired for generalization and application to new, delicate problems in higher mathematics. Their work was controversial: they departed from tradition, criticized standards of rigor, and addressed fundamental questions in philosophy. This paper follows the problem, Which geo- metric concepts are most elementary? It describes a false start, some successful solutions, and an argument that one of those is optimal. It’s about axioms, definitions, and definability, and emphasizes contributions of Mario Pieri (1860–1913) and Alfred Tarski (1901–1983). By fol- lowing this thread of ideas and personalities to the present, the author hopes to kindle interest in a fascinating research area and an exciting era in the history of mathematics. 1. INTRODUCTION. Around 1900 several noted mathematicians published major works on a subject familiar to us from school: developing geometry from the very beginning. They wanted to supplant the established approaches, which were based on Euclid’s, but which handled awkwardly and imprecisely some concepts that Euclid did not treat fully. They would present geometry with the precision required for general- ization and applications to new, delicate problems in higher mathematics—precision beyond the norm for most elementary classes. Work in this area was controversial: these mathematicians departed from tradition, criticized previous standards of rigor, and addressed fundamental questions in logic and philosophy of mathematics.2 After establishing background, this paper tells a story about research into the ques- tion, Which geometric concepts are most elementary? It describes a false start, some successful solutions, and a demonstration that one of those is in a sense optimal.
    [Show full text]
  • Pasquale Del Pezzo, Duke of Caianello, Neapolitan Mathematician
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Diposit Digital de la Universitat de Barcelona Arch. Hist. Exact Sci. DOI 10.1007/s00407-012-0110-0 Pasquale del Pezzo, Duke of Caianello, Neapolitan mathematician Ciro Ciliberto · Emma Sallent Del Colombo Author Proof Received: 10 July 2012 © Springer-Verlag 2012 1 Abstract This article is dedicated to a reconstruction of some events and achieve- 2 ments, both personal and scientific, in the life of the Neapolitan mathematician 3 Pasquale del Pezzo, Duke of Caianello. 4 Contents 5 1 Introduction .................................... 6 2 Del Pezzo’s life ................................... 7 3 Written works ................................... 8 4 Conclusions .................................... 9 1 Introduction 10 11 Francesco Tricomi (1897–1978), in his collection of short biographies of Italian math- ematicians, said of Del Pezzo1 1 The preposition del in a noble surname, such as that of Pasquale del Pezzo, is written in lower-case letters when preceded by the given name. There are different schools of thought on the orthography when the sur- name is not preceded by the given name: in this case we write the first letter in upper-case, as Benedetto Croce (1866–1952) used to do, e.g., see Croce (1981). However, in citations, the original orthography is maintained. Communicated by Jeremy Gray. C. Ciliberto (B) Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy e-mail: [email protected] E. Sallent Del Colombo Departament de Física Fonamental,uncorrected Universitat de Barcelona, proof Martí i Franquès 1, 08028 Barcelona, Spain 123 Journal: 407 Article No.: 0110 TYPESET DISK LE CP Disp.:2012/8/3 Pages: 44 Layout: Small-X C.
    [Show full text]
  • Toward a Scientific and Personal Biography of Tullio Levi-Civita (1873-1941) Pietro Nastasi, Rossana Tazzioli
    Toward a scientific and personal biography of Tullio Levi-Civita (1873-1941) Pietro Nastasi, Rossana Tazzioli To cite this version: Pietro Nastasi, Rossana Tazzioli. Toward a scientific and personal biography of Tullio Levi-Civita (1873-1941). Historia Mathematica, Elsevier, 2005, 32 (2), pp.203-236. 10.1016/j.hm.2004.03.003. hal-01459031 HAL Id: hal-01459031 https://hal.archives-ouvertes.fr/hal-01459031 Submitted on 7 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Towards a Scientific and Personal Biography of Tullio Levi-Civita (1873-1941) Pietro Nastasi, Dipartimento di Matematica e Applicazioni, Università di Palermo Rossana Tazzioli, Dipartimento di Matematica e Informatica, Università di Catania Abstract Tullio Levi-Civita was one of the most important Italian mathematicians in the early part of the 20th century, contributing significantly to a number of research fields in mathematics and physics. In addition, he was involved in the social and political life of his time and suffered severe political and racial persecution during the period of Fascism. He tried repeatedly and in several cases successfully to help colleagues and students who were victims of anti-Semitism in Italy and Germany.
    [Show full text]
  • Catalogo Pubblicazioni 2017 Indice
    CATALOGO PUBBLICAZIONI 2017 INDICE Collane - Opere di Grandi Matematici - Monografie Matematiche - Quaderni Collane a cura dell’UMI: - Studi e testi di storia della matematica - La Cultura Matematica - Convergenze - Nuove Convergenze - UMI Lecture Notes Atti di Congressi - Atti dei Congressi quadriennali - Atti dei Convegni - Atti Joint Meeting Pubblicazioni periodiche - Notiziario UMI - Bollettino UMI - Rivista UMI Altre pubblicazioni COLLANA OPERE DI GRANDI MATEMATICI Da circa 45 anni, l’UMI cura la pubblicazione di Opere dei Grandi Matematici Italiani (Opere complete e Selecta). La pubblicazione viene decisa da parte della Commissione Scientifica dell’UMI, sentito il parere di una commissione da essa all’uopo costituita. (Ai Soci UMI sconto 20%) CESARE ARZELÀ (1847-1912) Opere Complete – Volume I 1992, pp.XXXIX+348, brossura f.to 17 cm x 24 cm Opere Complete – Volume II 1992, pp. VII+357, brossura f.to 17 cm x 24 cm Prezzo dei 2 volumi indivisibili € 49,90 Sono state raccolte, in due volumi, tutte le opere scientifiche di Cesare Arzelà. La ristampa degli scritti è preceduta da un saggio, dovuto a G. Letta, P.L. Papini e L. Pepe su «Cesare Arzelà e l’Analisi reale in Italia». I volumi sono corredati, oltre che dall’elenco delle pubblicazioni scientifiche, anche da una bibliografia scientifica riferentesi ad Arzelà, da una notizia di scritti su Cesare Arzelà e da un breve elenco delle onoranze che gli furono dedicate. L’indice dei nomi contenuto nel secondo volume completa l’opera. LUIGI BIANCHI (1856-1928) Vol. I -Aritmetica, Algebra e Analisi. Parte prima 1952, ristampa 2001, pp. 616, brossura f.to 17 cm x 24 cm € 33,90 Vol.
    [Show full text]
  • Archivio Istituzionale Open Access Dell'università Di Torino Original
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino From Emancipation to Persecution: Aspects and Moments of the Jewish Mathematical Milieu in Turin (1848-1938) This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/1677679 since 2019-01-02T09:39:53Z Published version: DOI:10.19272/201809201005 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 28 September 2021 BOLLETTINO DI STORIA DELLE SCIENZE MATEMATICHE Anno XXXVIII · Numero 1 · Giugno 2018 PISA · ROMA FABRIZIO SERRA EDITORE MMXVIII Autorizzazione del Tribunale di Pisa n. 13 del 17.07.2001. Direttore responsabile: Lucia Corsi * Amministrazione e abbonamenti Fabrizio Serra editore® Casella postale n. 1, succursale n. 8, I 56123 Pisa Uffici di Pisa: Via Santa Bibbiana 28, I 56127 Pisa, tel. +39 050542332, fax +39 050574888, [email protected] Uffici di Roma: Via Carlo Emanuele I, I 00185 Roma, tel. +39 0670493456, fax +39 0670476605, [email protected] I prezzi ufficiali di abbonamento cartaceo e Online sono consultabili presso il sito Internet della casa editrice www.libraweb.net. Print and Online official subscription rates are available at Publisher’s website www.libraweb.net. I pagamenti possono essere effettuati tramite versamento su c.c.p.
    [Show full text]
  • TOWARDS a HISTORY of the GEOMETRIC FOUNDATIONS of MATHEMATICS LATE Xixth CENTURY*
    ARTICLES TOWARDS A HISTORY OF THE GEOMETRIC FOUNDATIONS OF MATHEMATICS LATE XIXth CENTURY* Rossana TAZZIOLI RÉSUMÉ : Beaucoup de « géomètres » du XIXe siècle – Bernhard Riemann, Hermann von Helmholtz, Felix Klein, Riccardo De Paolis, Mario Pieri, Henri Poincaré, Federigo Enriques, et autres – ont joué un rôle important dans la discussion sur les fondements des mathématiques. Mais, contrairement aux idées d’Euclide, ils n’ont pas identifié « l’espace physique » avec « l’espace de nos sens ». Partant de notre expérience dans l’espace, ils ont cherché à identifier les propriétés les plus importantes de l’espace et les ont posées à la base de la géométrie. C’est sur la connaissance active de l’espace que les axiomes de la géométrie ont été élaborés ; ils ne pouvaient donc pas être a priori comme ils le sont dans la philosophie kantienne. En outre, pendant la dernière décade du siècle, certains mathématiciens italiens – De Paolis, Gino Fano, Pieri, et autres – ont fondé le concept de nombre sur la géométrie, en employant des résultats de la géométrie projective. Ainsi, on fondait l’arithmétique sur la géométrie et non l’inverse, comme David Hilbert a cherché à faire quelques années après, sans succès. MOTS-CLÉS : Riemann, Helmholtz, fondements des mathématiques, géométrie, espace. ABSTRACT : Many XIXth century « geometers » – such as Bernhard Riemann, Hermann von Helmholtz, Felix Klein, Riccardo De Paolis, Mario Pieri, Henri Poincaré, Federigo Enriques, and others – played an important role in the discussion about the founda- tions of mathematics. But in contrast to Euclid’s ideas, they did not simply identify « physical space » with the « space of the senses ».
    [Show full text]