Max Planck Institute for the History of Science the Hereditary Hourglass. Genetics and Epigenetics, 1868–2000

Total Page:16

File Type:pdf, Size:1020Kb

Max Planck Institute for the History of Science the Hereditary Hourglass. Genetics and Epigenetics, 1868–2000 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science 2010 PREPRINT 392 Ana Barahona, Edna Suarez-Díaz, and Hans-Jörg Rheinberger, (eds.) The Hereditary Hourglass. Genetics and Epigenetics, 1868–2000 Contents Part I. A Broader Conception of Heredity Introduction The Hereditary Hourglass: Narrowing and Expanding the Domain of Heredity Ana Barahona, Edna Suárez, and Hans-Jörg Rheinberger ……………………………………………………5 ‘Epigenesis’ in Epigenetics: Scientific Knowledge, Concepts, and Words Stefan Willer …………………………………………………………………………………………………… 13 William Keith Brooks (1848-1908) and the Defense of late-Nineteenth Century Darwinian Evolution Theory Keith R. Benson ………………………………………………………………………………………………… 23 Consanguinity, Heredity and Marriage The Path to Medical Intervention in Mexican Marriage Laws Fabricio González Soriano and Carlos López-Beltrán ……………………………………………………… 35 Ideas of Medical Doctors on Heredity in Mexico in the Late 19th Century Ana Barahona …………………………………………………………………………………………………… 47 Part II. The Restriction of Heredity: Cases in Genetics and Evolution Switches and Batteries: Two Models of Gene Regulation and a Note on the Historiography of 20th Century Biology Vivette García and Edna Suárez ……………………………………………………………………………… 59 The Metaphor of “Nuclear Reprogramming”: 1970’s Cloning Research and Beyond Christina Brandt ………………………………………………………………………………………………… 85 Science as Evolution of Technologies of Cognition Sergio F. Martínez ……………………………………………………………………………………………… 97 Won’t You Please Unite? Cultural Evolution and Kinds of Synthesis Maria E. Kronfeldner ……………………………………………………………………………………………111 Part III. The Public Perception of Heredity Between Genealogy, Degeneration and Reproduction: The Figure of the Bachelor in Science and Literature Ulrike Vedder ……………………………………………………………………………………………………129 Mutant, Hero or Monster? Genetics in Cinema Sophia Vackimes …………………………………………………………………………………………………137 Human Genetics in the Press: Three Lessons from a Case Study Matiana González-Silva ………………………………………………………………………………………149 Authors and Editors ……………………………………………………………………………………………159 Part I A Broader Conception of Heredity Introduction The Hereditary Hourglass: Narrowing and Expanding the Domain of Heredity1 Ana Barahona, Edna Suárez, and Hans-Jörg Rheinberger 1. Historical and scientific metaphors Over the past four decades the study of the phenomena of heredity has caught the attention of historians, sociologists, and philosophers of the life sciences. Undoubtedly, this is reflected in the progress made to unravel the conditions under which the very idea of heredity came to fruition (Churchill 1987; López-Beltrán 2004; Müller-Wille and Rheinberger 2007), as well as in the informed accounts of different practices, tools (be they conceptual or material), and institutions identified with this field of inquiry.2 The challenge for the student of science is the same as when confronting other scientific endeavors, namely, the question of how to deal with the continuous research on the particularities of cases and specific problems, while simultaneously seeking to produce a broader picture on the field of heredity, within which isolated events acquire new meanings.3 The questions students of science choose to ask may require both types of answers, the local account and a more extended context. To keep them balanced has been our goal in this project. In order to combine both strategies we adopted the image of the hourglass or sand clock as a metaphor for the shape of the changes that have taken place in the wide-ranging studies of heredity – and some of its implications for the study of evolution –, from the second half of the 19th century up to the present day. The image of the open extremes and the narrow neck seems appropriate to represent the transition between the rich approaches on heredity recognizing the role of the environment and epigenetic causes during the second half of the 19th century. Then came the narrow understanding 1 In 2007 the Max Planck Institute for the History of Science (MPIWG) and the Universidad Nacional Autónoma de Mexico (UNAM) started a collaboration under the auspices of the Proalmex program, supported by the DAAD (Deutscher Akademischer Austauschdienst) and Conacyt (Consejo Nacional de Ciencia y Tecnología). Thanks to this project, four German scholars have realized research stays in the Mexico City campus of UNAM, mirrored by the research stays of four Mexican PhD students and four Mexican scholars between 2007 and 2008. As part of this project, we organized the Conference “The Hereditary Pendulum: Narrowing and Expanding the Domain of Heredity,” at the Instituto de Investigaciones Filosóficas, UNAM, on October 1-2, 2008. Our collaboration has privileged inter- disciplinary approaches on genetics and epigenetics: cultural studies, philosophy, sociology, and the history of science have contributed to a complex and proliferating view on this field. The present preprint is a result of the fruitful exchanges between participants of this project. 2 The number of studies in this field is enormous. Some of the most influential include general narratives like Dunn (1965), Bowler (1989) and Olby (1985). On tools and practices, see Fortun and Mendelsohn (1999), Kohler (1994), Gaudillière and Rheinberger (2004); on institutions, Harwood (1993), Gaudillière and Löwy (2001). 3 This problem has been addressed by a number of scholars, after the predominance of case-studies in the history of science since the mid-1980s. See, for instance, the special section on Isis (2005, volume 96) featuring articles by Kohler, Findlen, Kaiser and Shapin; or the efforts by John Pickstone to give an extended account on the “ways of knowing”, using the category of “working-practices” (2001). 5 Ana Barahona, Edna Suárez, and Hans-Jörg Rheinberger of heredity around genes following the rise of the discipline of genetics at the turn of the 20th century. And, as the last century came to a close and the 21st century began, we witnessed a new widening of approaches searching for the causes of heredity, characterized by a broader preoccupation for development, evolution, the environment, and even culture. As we will see, however, the metaphor of the hourglass is – like all metaphors – just as good as the questions and problems it has helped open. Charles Darwin’s The Variation of Animals and Plants under Domestication, published in 1868, serves well as a point of departure for this historical image. The context of hereditarian phenomena Darwin was confronted with was rich, if not messy regarding the study of what a century before was contained within the older question of generation. And the question of generation as posed in the 18th century did not have the historical connotation that the concept of heredity would acquire during the 19th century. During this time, as Ohad Parnes (2007) has shown, the same word, generation, began to be used to refer to “the act of organismal creation and for a group of individuals sharing nothing but a vaguely defined age” (p. 316). According to Parnes, the conceptualization of populations in terms of generations gave way to a new order of heredity. In this new order, the idea of “transmission” (of knowledge, education, biological traits, and diseases) conveyed temporal and spatial coherence to groups of individuals. Taking together this notion of generation, with the medical contexts in which the metaphor of heredity was imported from law and became biologically reified (López Beltrán 2004; 2007), we are faced with the radical cultural changes which resulted in a more historical view of organisms during the 19th century. It is in this context where the acquisition, transmission, and development of traits in organisms took on a new biological natural meaning. The recognition of different and heterogeneous causes of heredity in the latter part of the 19th century was replaced by a narrower view at the beginning of the 20th century, in parallel with the slow but firm recognition of Mendel’s laws, and giving way to what has been called the “century of the gene” (Fox Keller 2000). The emphasis on genes in classical genetics, which culminated in the molecular and informational gene associated with DNA, had a lasting effect on theories of heredity which also influenced the fields of evolution, taxonomy, and medicine. At the end of the 20th century, however, the interest in epigenetics, regulation, and complex bodily and environmental interactions has witnessed a remarkable increase. Nowadays it seems that the late 19th century concerns of anthropologists, developmental biologists, novelists, and psychologists could provide inspiration for the interpretation of some recent developments in the life sciences. Though we are using a metaphor that specifically focuses on the temporal dimension of science, metaphors have been notorious as cognitive resources in the understanding of hereditary phenomena at large. As already mentioned, the very notion of heredity was metaphorized when imported by medical doctors from the legal to the biological sphere. Staffan Müller-Wille and Hans-Jörg Rheinberger (2007) have argued that this metaphor, with its rich semantics, provided enough room for the creation of a particular epistemic space for the study of hereditary phenomena. This epistemic space depends “on a vast configuration of distributed technologies and institutions connected by a system of exchange: botanical gardens, hospitals, chemical and physiological laboratories, genealogical and statistical
Recommended publications
  • Intelligent Design, Abiogenesis, and Learning from History: Dennis R
    Author Exchange Intelligent Design, Abiogenesis, and Learning from History: Dennis R. Venema A Reply to Meyer Dennis R. Venema Weizsäcker’s book The World View of Physics is still keeping me very busy. It has again brought home to me quite clearly how wrong it is to use God as a stop-gap for the incompleteness of our knowledge. If in fact the frontiers of knowledge are being pushed back (and that is bound to be the case), then God is being pushed back with them, and is therefore continually in retreat. We are to find God in what we know, not in what we don’t know; God wants us to realize his presence, not in unsolved problems but in those that are solved. Dietrich Bonhoeffer1 am thankful for this opportunity to nature, is the result of intelligence. More- reply to Stephen Meyer’s criticisms over, this assertion is proffered as the I 2 of my review of his book Signature logical basis for inferring design for the in the Cell (hereafter Signature). Meyer’s origin of biological information: if infor- critiques of my review fall into two gen- mation only ever arises from intelli- eral categories. First, he claims I mistook gence, then the mere presence of Signature for an argument against bio- information demonstrates design. A few logical evolution, rendering several of examples from Signature make the point my arguments superfluous. Secondly, easily: Meyer asserts that I have failed to refute … historical scientists can show that his thesis by not providing a “causally a presently acting cause must have adequate alternative explanation” for the been present in the past because the origin of life in that the few relevant cri- proposed candidate is the only known tiques I do provide are “deeply flawed.” cause of the effect in question.
    [Show full text]
  • The Early History of Medical Genetics in Canada William Leeming OCAD University [email protected]
    OCAD University Open Research Repository Faculty of Liberal Arts & Sciences and School of Interdisciplinary Studies 2004 The Early History of Medical Genetics in Canada William Leeming OCAD University [email protected] © Oxford University Press. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. Original source at DOI: 10.1093/shm/17.3.481. Recommended citation: Leeming, W. “The Early History of Medical Genetics in Canada.” Social History of Medicine 17.3 (2004): 481–500. Web. Leeming, W. (2004). The early history of medical genetics in Canada. Social History of Medicine, 17(3), 481-500. Pre-Publication Draft The Early History of Medical Genetics in Canada Abstract: This article shows that the intellectual and specialist movements that supported the growth of medical genetics in Canada between 1947 and 1990 were emergent phenomena, created, split, and reattached to different groups of actors, and reconfigured numerous times over the course of four decades. In each instance, new kinds of working relationships appeared; sets of diverse actors in local university- hospital settings coalesced into a new collectivity; and, as a collectivity, actors defined and/or redefined occupational roles and work rules. In its beginnings, medical genetics appears to be the object of a serious institutional manoeuver: a movement in support of the creation of examining and teaching positions in human genetics in North American medical schools. With time, the institutionalization of ‘medical genetics’ took hold, spurred on by changes in the rate and direction of service delivery associated with genetic consultation and laboratory services in clinical settings.
    [Show full text]
  • Genetics, Epigenetics and Disease a Literature Review By: Anthony M
    Genetics, Epigenetics and Disease A Literature Review By: Anthony M. Pasek Faculty Advisor: Rodger Tepe, PhD A senior research project submitted in partial requirement for the degree Doctor of Chiropractic August 11, 2011 Abstract Objective – This article provides an overview of the scientific literature available on the subject of genetic mechanisms of disease etiology as compared to epigenetic mechanisms of disease etiology. The effects of environmental influences on genetic expression and transgenerational inheritance will also be examined. Methods – Searches of the keywords listed below in the databases PubMed and EBSCO Host yielded referenced articles from indexed journals, literature reviews, pilot studies, longitudinal studies, and conference meeting reports. Conclusion – Although current research trends indicate a relationship between the static genome and the dynamic environment and offer epigenetics as a mechanism, further research is necessary. Epigenetic processes have been implicated in many diseases including diabetes mellitus, obesity, cardiovascular disease, metabolic disease, cancer, autism, Alzheimer’s disease, depression, and addiction. Keywords – genetics, central dogma of biology, genotype, phenotype, genomic imprinting, epigenetics, histone modification, DNA methylation, agouti mice, epigenetic drift, Överkalix, Avon Longitudinal Study of Parents and Children (ALSPAC). 2 Introduction Genetics has long been the central field of biology and it’s central dogma states that DNA leads to RNA, which leads to protein and ultimately determines human health or sickness1. The Human Genome Project marked a great triumph for humanity and researchers expected to solve the riddle of many complex diseases with the knowledge gleamed from this project. However, many more questions were raised than answered. Several rare genetic disorders including hemophilia and cystic fibrosis were explained by alterations in the genetic code but true genetic diseases only affect about one percent of the human population2.
    [Show full text]
  • Botany Genetics Mendelian Inheritance
    References 1. Elrod S., Stansfield W., 2002, Genetics, 4th Edition, Tata McGraw-Hill 2. Strickberger M. W., 1985, Genetics, 3rd Edition, Macmillan Publishing Company 3. Griffiths A. J., Wessler S.R., Lewontin R.C., Carrol S. B., 2008, Introduction to Genetic Analysis, 9th Edition, W. H. Freeman and Company 4. Klug W.S., Cumming M.R., Spencer C. A., Palladino M. A., 2009, Concepts of Genetics, 9th Edition, Benjamin Cummings Publication 5. Tamarin R. H., 2002, Principles of Genetics, 7th Edition, Tata McGraw-Hill 6. Hartwell L.H., Hood L., Goldberg M.L., Reynolds A.E., Silver L. M., Veres R. C., 2004, Genetics, 2nd Edition, McGraw-Hill 7. Pierce B.A., Genetics: A Conceptual Approach, 4th edition, W.H. Freeman 8. T.H. Noel Ellis, Julie M.I. Hofer, Gail M. Timmerman-Vaughan, Clarice J. Coyne and Roger P. Hellens, 2011, Mendel, 150 years on, Trends in Plant Science, Vol. 16, 590-596 Genetics Botany Mendelian Inheritance Learn More / Supporting Materials / Source of Further Reading 2.1 Glossary Starting Term Defination Related Term Character <Character> < Genotype > < Genotype of an organism is the gene combination it possesses. Genotype of phenotypically yellow seeded F1 may be YY or Yy.> <Character> < Phenotype > < Phenotype refers to the observable attributes of an organism. Plants with either of the two genotypes Yy or Yy are phenotypically yellow seeded.> <Character> < Homozygote > < A plant with a pair of identical alleles is called as Homozygote (Y/Y or y/y).> <Character> < Heterozygote > < a plant in which the <term2> allele of the pair differ is called as heterozygote (Y/y).> <Character> < locus > < A locus (plural: loci) is the location of a gene on a chromosome.
    [Show full text]
  • Elements of Genetics
    GENETICS AND PLANT BREEDING Elements of Genetics Dr. B. M. Prasanna National Fellow Division of Genetics Indian Agricultural Research Institute New Delhi-110012 (12-06- 2007) CONTENTS Introduction History Cell Cell Division Special Chromosomes Dominance Relationships Gene Interactions Multiple Alleles Sex Determination Sex Linkage Linkage and Crossing Over Genetic Mapping Structural Changes in Chromosomes Numerical Changes in Chromosomes Nature of the Genetic Material Gene Regulation Operon Concept Gene Concept Mutation Polygenic and Quantitative Inheritance Extrachromosomal Inheritance Plant Tissue Culture Keywords Mitosis, Meiosis 1 Introduction In biology, heredity is the passing on of characteristics from one generation to the next. It is the reason why offspring look like their parents. It also explains why cats always give birth to kittens and never puppies. The process of heredity occurs among all living organisms, including animals, plants, bacteria, protists and fungi. Genetic variation refers to the variation in a population or species. Genetics is the study of heredity and variation in living organisms. Two research approaches were historically important in helping investigators understand the biological basis of heredity. The first of these approaches, ‘transmission genetics’, involved crossing organisms and studying the offsprings' traits to develop hypotheses about the mechanisms of inheritance. The second approach involved using cytological techniques to study the machinery and processes of cellular reproduction. This approach laid a solid foundation for the more conceptual understanding of inheritance that developed as a result of transmission genetics. Ever since 1970s, with the advent of molecular tools and techniques, geneticists are able to intensively analyze genetic basis of trait variation in various organisms, including plants, animals and humans.
    [Show full text]
  • Molecular Biology and Applied Genetics
    MOLECULAR BIOLOGY AND APPLIED GENETICS FOR Medical Laboratory Technology Students Upgraded Lecture Note Series Mohammed Awole Adem Jimma University MOLECULAR BIOLOGY AND APPLIED GENETICS For Medical Laboratory Technician Students Lecture Note Series Mohammed Awole Adem Upgraded - 2006 In collaboration with The Carter Center (EPHTI) and The Federal Democratic Republic of Ethiopia Ministry of Education and Ministry of Health Jimma University PREFACE The problem faced today in the learning and teaching of Applied Genetics and Molecular Biology for laboratory technologists in universities, colleges andhealth institutions primarily from the unavailability of textbooks that focus on the needs of Ethiopian students. This lecture note has been prepared with the primary aim of alleviating the problems encountered in the teaching of Medical Applied Genetics and Molecular Biology course and in minimizing discrepancies prevailing among the different teaching and training health institutions. It can also be used in teaching any introductory course on medical Applied Genetics and Molecular Biology and as a reference material. This lecture note is specifically designed for medical laboratory technologists, and includes only those areas of molecular cell biology and Applied Genetics relevant to degree-level understanding of modern laboratory technology. Since genetics is prerequisite course to molecular biology, the lecture note starts with Genetics i followed by Molecular Biology. It provides students with molecular background to enable them to understand and critically analyze recent advances in laboratory sciences. Finally, it contains a glossary, which summarizes important terminologies used in the text. Each chapter begins by specific learning objectives and at the end of each chapter review questions are also included.
    [Show full text]
  • A Brief History of Genetics
    A Brief History of Genetics A Brief History of Genetics By Chris Rider A Brief History of Genetics By Chris Rider This book first published 2020 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2020 by Chris Rider All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-5885-1 ISBN (13): 978-1-5275-5885-4 Cover A cartoon of the double-stranded helix structure of DNA overlies the sequence of the gene encoding the A protein chain of human haemoglobin. Top left is a portrait of Gregor Mendel, the founding father of genetics, and bottom right is a portrait of Thomas Hunt Morgan, the first winner of a Nobel Prize for genetics. To my wife for her many years of love, support, patience and sound advice TABLE OF CONTENTS List of Figures.......................................................................................... viii List of Text Boxes and Tables .................................................................... x Foreword .................................................................................................. xi Acknowledgements ................................................................................. xiii Chapter 1 ...................................................................................................
    [Show full text]
  • 1 Genetics, Genomics and Cell Biology, Spring 2013 Instructors
    Genetics, Genomics and Cell Biology, Spring 2013 Monday, Wednesday, Friday 9-10 AM, 2050 VLSB Instructors Michael Levine, Ph.D. ([email protected]; office hours Friday 3-5 PM, 243 Dwinelle) Craig Miller, Ph.D. ([email protected]; office hours: Friday 3-5 PM, 243 Dwinelle) Rebecca Heald, Ph.D. ([email protected]; office hours: TBA) GSIs Jeremy Amon ([email protected]; office hours TBA) Peter Combs ([email protected]; office hours TBA) Anna Maria Desai ([email protected]; office hours TBA) Anna Park ([email protected]; office hours TBA) Jennifer Parks ([email protected]; office hours TBA) Course focus This course will introduce students to key concepts in genetic analysis, eukaryotic cell biology, and state-of-the-art approaches in genomics. Lectures will highlight basic knowledge of cellular processes that form the basis for human diseases. Prerequisite courses will have introduced students to the concepts of cells, the central dogma of molecular biology, and gene regulation. Emphasis in this course will be on eukaryotic cell processes, including cellular organization, dynamics and signaling. Grading Midterm 1 (Feb 21, 7:00-9:00 PM) 100 points Midterm 2 (Mar 14, 7:00-9:00 PM) 100 points Final exam (May 13, 7-10 PM) 200 points Quizzes (3 total, 25 points each) 75 points Mini Quizzes (10 total, 2.5 points each) 25 points Total 500 points Quizzes are given during discussion sections with weekly mini quizzes and one 25 point quiz during each third of the course. Your lowest mini quiz score will be dropped and your mini quiz total score will be based upon the remaining 9 mini quizzes.
    [Show full text]
  • The Third Base
    Appendix The Third Base Donald Forsdyke If I thought that by learning more and more I should ever arrive at the knowledge of absolute truth, I would leave off studying. But I believe I am pretty safe. Samuel Butler, Notebooks Darwin’s mentor, the geologist Charles Lyell, and Darwin himself, both con- sidered the relationship between the evolution of biological species and the evolution of languages [1]. But neither took the subject to the deep informa- tional level of Butler and Hering. In the twentieth century the emergence of a new science – Evolutionary Bioinformatics (EB) – was heralded by two dis- coveries. First, that DNA – a linear polymer of four base units – was the chromosomal component conveying hereditary information. Second, that much of this information was “a phenomenon of arrangement” – determined by the sequence of the four bases. We conclude with a brief sketch of the new work as it relates to William Bateson’s evolutionary ideas. However, imbued with true Batesonian caution (“I will believe when I must”), it is relegated to an Appendix to indicate its provisional nature. Modern languages have similarities that indicate branching evolution from common ancestral languages [2]. We recognize early variations within a language as dialects or accents. When accents are incompatible, communi- cation is impaired. As accents get more disparate, mutual comprehension de- creases and at some point, when comprehension is largely lost, we declare that there are two languages where there was initially one. The origin of lan- guage begins with differences in accent. If we understand how differences in accent arise, then we may come to understand something fundamental about the origin of language (and hence of a text written in that language).
    [Show full text]
  • Origins of Genetic Determinism in Medieval Creationism By
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of North Carolina at Greensboro Origins of Genetic Determinism in Medieval Creationism By: Douglas Wahlsten Wahlsten, D. (1998). Origins of genetic determinism in medieval creationism. Race, Gender & Class, 5: 90-107 Made available courtesy of The University of New Orleans, Sociology Department: http://soci.uno.edu/ ***Reprinted with permission. No further reproduction is authorized without written permission from The University of New Orleans, Sociology Department. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document.*** Abstract: The discovery of statistical laws of heredity by Gregor Mendel was an important advance in biological science. However, Mendel's opinion that the entire character was transmitted was not derived from his data and instead reflected prior beliefs outside the domain of science. It is argued here that Mendel, a monk and later abbot of an Augustine monastery, was influenced by St. Augustine's theory of divine creation of the rationes seminales which specified the form for all future beings in great detail. Furthermore, the continued adherence to genetic determinism among contemporary scientists is largely, despite strong evidence supporting a developmental systems or dialectical view of heredity and development. Keywords: St. Augustine, Mendel, Bateson, heredity, epigenesis, dialectics, reductionism Article: On the occasion of the centenary of Mendel's famous paper on hybrid crosses of garden peas, Oliver (1967) distinguished between the forefathers and modern practitioners of genetics: "Early Mendelists supposed that there was regularly a one-to-one relationship between genetic factors and their associated characters.
    [Show full text]
  • Chromosomes in the Clinic: the Visual Localization and Analysis of Genetic Disease in the Human Genome
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Chromosomes in the Clinic: The Visual Localization and Analysis of Genetic Disease in the Human Genome Andrew Joseph Hogan University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the History of Science, Technology, and Medicine Commons Recommended Citation Hogan, Andrew Joseph, "Chromosomes in the Clinic: The Visual Localization and Analysis of Genetic Disease in the Human Genome" (2013). Publicly Accessible Penn Dissertations. 873. https://repository.upenn.edu/edissertations/873 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/873 For more information, please contact [email protected]. Chromosomes in the Clinic: The Visual Localization and Analysis of Genetic Disease in the Human Genome Abstract This dissertation examines the visual cultures of postwar biomedicine, with a particular focus on how various techniques, conventions, and professional norms have shaped the `look', classification, diagnosis, and understanding of genetic diseases. Many scholars have previously highlighted the `informational' approaches of postwar genetics, which treat the human genome as an expansive data set comprised of three billion DNA nucleotides. Since the 1950s however, clinicians and genetics researchers have largely interacted with the human genome at the microscopically visible level of chromosomes. Mindful of this, my dissertation examines
    [Show full text]
  • M.Sc. Microbiology (2019 ONWARDS)
    PONDICHERRY UNIVERSITY PUDUCHERRY 605 014 CURRICULUM AND SYLLABUS of M.Sc. Microbiology (2019 ONWARDS) Department of Microbiology School of Life Sciences About the course The Department of Microbiology is committed to excellence in education, research and extension. This Department is being strengthened with various research units and periodical update / modernization of the curricula. The Department of Microbiology at the Pondicherry University, School of Life Sciences, brings together a variety of researchers as faculty of this programme who are specialized in their domains and united by the common goal of understanding the “Microbes”. Microbes are playing important role in the bioprocess of all living things and maintain homeostasis of the universe. Without microbes, one cannot imagine such a biologically balanced and diverse universe; rather our earth would have placed as a barren planet. As the microbial activities are so diverse, the microbiology programme is a multidisciplinary subject, which will have the roots of life science, environmental science, and engineering. Traditional microbiology is considered to be an important area of study in biology since it has enormous potential and vast scope in fermentation, bioremediation and biomedical technology. But the recent developments from human microbiome project, metagenomics and microbial genome projects has expanded its scope and potential in the next generation drug design, molecular pathogenesis, phylogeography, production of smart biomolecules, etc. Modern Microbiology has expanded its roots in genome technology, nanobiotechnology, green energy (biofuel) technology, bioelectronics etc. Considering recent innovations and rapid growth of microbiological approaches and applications in human and environmental sustainability, the M.Sc. Microbiology curricula is designed to enlighten the students in basics of Microbiology to recent developments.
    [Show full text]