Economic Botany, Genetics and Plant Breeding

Total Page:16

File Type:pdf, Size:1020Kb

Economic Botany, Genetics and Plant Breeding BSCBO- 302 B.Sc. III YEAR Economic Botany, Genetics And Plant Breeding DEPARTMENT OF BOTANY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY Economic Botany, Genetics and Plant Breeding BSCBO-302 Expert Committee Prof. J. C. Ghildiyal Prof. G.S. Rajwar Retired Principal Principal Government PG College Government PG College Karnprayag Augustmuni Prof. Lalit Tewari Dr. Hemant Kandpal Department of Botany School of Health Science DSB Campus, Uttarakhand Open University Kumaun University, Nainital Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Board of Studies Prof. Y. S. Rawat Prof. C.M. Sharma Department of Botany Department of Botany DSB Campus, Kumoun University HNB Garhwal Central University, Nainital Srinagar Prof. R.C. Dubey Prof. P.D.Pant Head, Department of Botany Director I/C, School of Sciences Gurukul Kangri University Uttarakhand Open University Haridwar Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Programme Coordinator Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University Haldwani, Nainital Unit Written By: Unit No. 1. Prof. I.S.Bisht 1, 2, 3, 5, 6, 7 National Bureau of Plant Genetic Resources (ICAR) & 8 Regional Station, Bhowali (Nainital) Uttarakhand UTTARAKHAND OPEN UNIVERSITY Page 1 Economic Botany, Genetics and Plant Breeding BSCBO-302 2-Dr. Pooja Juyal 04 Department of Botany Uttarakhand Open University Haldwani 3. Dr. Atal Bihari Bajpai 9 & 11 Department of Botany, DBS PG College Dehradun-248001 4-Dr. Urmila Rana 10 & 12 Department of Botany, Government College, Chinayalisaur, Uttarakashi Course Editor Prof. Y.S. Rawat Department of Botany DSB Campus, Kumaun University Nainital Title : Economic Botany, Genetics and Plant Breeding ISBN No. : Copyright : Uttarakhand Open University Edition : Published By: Uttarakhand Open University, Haldwani, Nainital-263139 UTTARAKHAND OPEN UNIVERSITY Page 2 Economic Botany, Genetics and Plant Breeding BSCBO-302 BSCBO-302 ECONOMIC BOTANY, GENETICS AND PLANT BREEDING SCHOOL OF SCIENCES DEPARTMENT OF BOTANY UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in UTTARAKHAND OPEN UNIVERSITY Page 3 Economic Botany, Genetics and Plant Breeding BSCBO-302 CONTENTS BLOCK-1 ECONOMIC BOTANY PAGE NO. Unit-1- Cereals, Millets and Legumes 6-40 Unit-2- Fruits, Vegetables, Fibre-yielding and Timber-yielding forest species 41-82 Unit-3- Medicinal plants, Oils and Beverages 83-120 Unit-4- Ethnobotany 121-144 BLOCK-2 GENETICS PAGE NO. Unit-5- Genetic Inheritance 146-159 Unit-6- Linkage and Crossing over 160-172 Unit-7- Polyploidy and Mutations 173-187 Unit-8- Sex determination and Sex-linked inheritance 188-202 BLOCK-3 PLANT BREEDING PAGE NO. Unit-9- Aims, Objectives and Basic techniques of plant breeding 204-228 Unit-10-Crop improvement 229-244 Unit-11-Mutational Breeding 245-266 Unit-12-Centres of Origin of crop plants 267-279 UTTARAKHAND OPEN UNIVERSITY Page 4 Economic Botany, Genetics and Plant Breeding BSCBO-302 BLOCK-1 ECONOMIC BOTANY UTTARAKHAND OPEN UNIVERSITY Page 5 Economic Botany, Genetics and Plant Breeding BSCBO-302 UNIT-1 CEREALS, MILLETS AND LEGUMES 1.1-Objectives 1.2-Introduction 1.3-Cultivation, production and uses of cereals and millets 1.3.1-Wheat 1.3.2-Paddy 1.3.3-Maize 1.3.4-Bajra 1.3.5-Jowar 1.4-Cultivation, production and uses of legumes 1.4.1-Pigeon pea 1.4.2-Pea 1.4.3-Green gram 1.4.4-Black gram 1.4.5-Rajmash 1.4.6-Gram 1.4.7-Lentil 1.5- Summary 1.6- Glossary 1.7-Self Assessment Questions 1.8- References 1.9-Suggested Readings 1.10-Terminal Questions UTTARAKHAND OPEN UNIVERSITY Page 6 Economic Botany, Genetics and Plant Breeding BSCBO-302 1.1 OBJECTIVES After reading this unit students will be able- To study origin, domestication, genetics, cultivation and production of cereals, millets and legumes. To establish link between biology and anthropology and exploiting ways humans use cereals, millets and legumes for food and other purposes. 1.2 INTRODUCTION Economic botany is the commercial exploitation of plants by people. It contributes significantly to anthropology, biology, conservation, botany, and other related field of science. Economic plants are defined as being useful either directly, as in food, or indirectly, as products we use or that enhance the environment. Plants that humans use for food are of high economic importance. The present chapter describes commercial use of cereals, millets and legumes including anthropology, biology, cultivation, production, conservation, botany and related aspects of these food crops. 1.3 CULTIVATION, PRODUCTION AND USES OF CEREALS AND MILLETS 1.3.1 Wheat Wheat (Triticum spp.) is a cereal grain that belongs to the family Poaceae (family of grasses). It originates from the Levant region of the Near East but now cultivated worldwide. Wheat represents staple food in most countries in the world and inevitable part of human life. Proteins and starch isolated from wheat have application in numerous industries. The world production of wheat was 713 million tons in 2014, making it the third most-produced cereal after maize (1,016 million tons) and rice (745 million tons). World trade in wheat is greater than for all other crops combined. Globally, wheat is the leading source of vegetable protein in human food, having a higher protein content than other major cereals, maize (corn) or rice. There are six wheat classifications: 1) hard red winter, 2) hard red spring, 3) soft red winter, 4) durum (hard), 5) hard white, and 6) soft white wheat. The hard wheat have the most amount of gluten and are used for making bread, rolls and all- purpose flour. The soft wheat are used for making flat bread, cakes, pastries, crackers, muffins, and biscuits. Origin and domestication Wheat is one of the first cereals known to have been domesticated. The archaeological record suggests that this first occurred in the regions known as the Fertile Crescent. Cultivation of UTTARAKHAND OPEN UNIVERSITY Page 7 Economic Botany, Genetics and Plant Breeding BSCBO-302 wheat began to spread beyond the Fertile Crescent after about 8000 BC. The spread of cultivated emmer wheat (Triticum turgidum subsp. dicoccum) has been traced starting in the Fertile Crescent sometime before 8800 BC. Archaeological analysis of wild emmer (T. dicoccoides) indicates that it was first cultivated in the southern Levant with finds dating back as far as 9600 BC. Genetic analysis of wild einkorn (T. monococcum) wheat suggests that it was first grown in the Karacadag mountains in south-eastern Turkey. The cultivation of emmer reached Greece, Cyprus and India by 6500 BC; Egypt shortly after 6000 BC, and Germany and Spain by 5000 BC. By 3000 BC, wheat had reached England and Scandinavia. A millennium later it reached China. The first identifiable bread wheat (T. aestivum) with sufficient gluten for yeasted breads has been identified using DNA analysis in samples from a granary dating to approximately 1350 BC in Greek Macedonia. Genetics Wheat genetics is more complicated than that of most other domesticated species. Some wheat species are diploid, with two sets of chromosomes, but many are stable polyploids, with four sets of chromosomes (tetraploid) or six (hexaploid). Einkorn wheat (T. monococcum) is diploid (AA, two complements of seven chromosomes, 2n=14). Most tetraploid wheats (e.g. emmer and durum wheat) are derived from wild emmer, T. dicoccoides. Wild emmer is itself the result of a hybridization between two diploid wild grasses, T. urartu and a wild goatgrass such as Aegilops searsii or A. speltoides. The hybridization that formed wild emmer (AABB) occurred in the wild, long before domestication, and was driven by natural selection. Hexaploid wheats evolved in farmers' fields. Either domesticated emmer or durum wheat hybridized with yet another wild diploid grass (A. tauschii) to make the hexaploid wheats, spelt wheat and bread wheat. These have three sets of paired chromosomes, three times as many as in diploid wheat. Genes for the 'dwarfing' trait, first used by Japanese wheat breeders to produce short-stalked wheat, have had a huge effect on wheat yields world-wide, and were major factors in the success of the Green Revolution in Mexico and Asia, an initiative led by Norman Borlaug. Dwarfing genes helped prevent the problem of lodging, planting of semi-dwarf wheat worldwide increased yields and responded better to nitrogenous fertilizer. In 2012, an essentially complete gene set of bread wheat has been published. Random shotgun libraries of total DNA and cDNA from the T. aestivum cv. Chinese Spring (CS42) were sequenced. This sequence data provides direct access to about 96,000 genes, relying on orthologous gene sets from other cereals and represents an essential step towards a systematic understanding of biology and engineering the cereal crop for valuable traits. Plant breeding In traditional agricultural systems wheat populations often consist of landraces, informal farmer-maintained populations that often maintain high levels of morphological diversity. Although landraces of wheat are no longer grown in Europe and North America, they continue to be important elsewhere. The origins of formal wheat breeding lie in the UTTARAKHAND OPEN UNIVERSITY Page 8 Economic Botany, Genetics and Plant Breeding BSCBO-302 nineteenth century, when single line varieties were created through selection of seed from a single plant noted to have desired properties. Modern wheat breeding developed in the first years of the twentieth century and was closely linked to the development of Mendelian genetics. The standard method of breeding inbred wheat cultivars is by crossing two lines using hand emasculation, then selfing or inbreeding the progeny. It takes ten or more generations before release as a variety or cultivar in conventional plant breeding. The major breeding objectives include high grain yield, good quality, disease and insect resistance and tolerance to abiotic stresses, including mineral, moisture and heat tolerance.
Recommended publications
  • Intelligent Design, Abiogenesis, and Learning from History: Dennis R
    Author Exchange Intelligent Design, Abiogenesis, and Learning from History: Dennis R. Venema A Reply to Meyer Dennis R. Venema Weizsäcker’s book The World View of Physics is still keeping me very busy. It has again brought home to me quite clearly how wrong it is to use God as a stop-gap for the incompleteness of our knowledge. If in fact the frontiers of knowledge are being pushed back (and that is bound to be the case), then God is being pushed back with them, and is therefore continually in retreat. We are to find God in what we know, not in what we don’t know; God wants us to realize his presence, not in unsolved problems but in those that are solved. Dietrich Bonhoeffer1 am thankful for this opportunity to nature, is the result of intelligence. More- reply to Stephen Meyer’s criticisms over, this assertion is proffered as the I 2 of my review of his book Signature logical basis for inferring design for the in the Cell (hereafter Signature). Meyer’s origin of biological information: if infor- critiques of my review fall into two gen- mation only ever arises from intelli- eral categories. First, he claims I mistook gence, then the mere presence of Signature for an argument against bio- information demonstrates design. A few logical evolution, rendering several of examples from Signature make the point my arguments superfluous. Secondly, easily: Meyer asserts that I have failed to refute … historical scientists can show that his thesis by not providing a “causally a presently acting cause must have adequate alternative explanation” for the been present in the past because the origin of life in that the few relevant cri- proposed candidate is the only known tiques I do provide are “deeply flawed.” cause of the effect in question.
    [Show full text]
  • Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: a Review
    molecules Review Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review Hanghang Lou 1,†, Lifei Hu 2,†, Hongyun Lu 1, Tianyu Wei 1 and Qihe Chen 1,* 1 Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; [email protected] (H.L.); [email protected] (H.L.); [email protected] (T.W.) 2 Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0571-8698-4316 † These authors are equally to this manuscript. Abstract: Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, phar- maceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review. Citation: Lou, H.; Hu, L.; Lu, H.; Wei, Keywords: flavonoids; metabolic engineering; co-culture system; biosynthesis; microbial cell factories T.; Chen, Q.
    [Show full text]
  • Influence of Some Fruit Traits of Mango, Mangifera Indica L. Varieties Against Maggot Development and Infestation of Mango Fruit
    Journal of Entomology and Zoology Studies 2018; 6(2): 2621-2627 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Influence of some fruit traits of mango, Mangifera JEZS 2018; 6(2): 2621-2627 © 2018 JEZS indica L. varieties against maggot development Received: 07-01-2018 Accepted: 10-02-2018 and infestation of mango fruit fly, Bactrocera JS Choudhary dorsalis (Hendel) ICAR Research Complex for Eastern Region Research Centre, Plandu, Ranchi, Jharkhand, India JS Choudhary, MK Dhakar, Debu Mukherjee, Moanaro, Bikash Das, AK Singh and BP Bhatt MK Dhakar ICAR Research Complex for Eastern Region Research Centre, Abstract Plandu, Ranchi, Jharkhand, The present study (during year 2014 and 2015) examined the various fruit traits of 10 popular varieties of India mango, Mangifera indica in relation to resistance against B. dorsalis under field conditions. Results indicated significant variations among tested varieties in levels of fruit infestation and maggot density Debu Mukherjee inside the fruit. The varieties Amrapali (6.67%), Gulab Khas (20.00%) and Dashehari (15.00%) were ICAR Research Complex for found resistant; Jardalu (21.67%) and Maldah (25.00%) were moderately resistant; Himsagar (36.67%) Eastern Region Research Centre, were susceptible while Chausa (40.00%), Mallika (58.33%), Fazli (58.33%) and Bombay Green Plandu, Ranchi, Jharkhand, (61.67%) were found the highly susceptible to B. dorsalis infestation. Principal components were India extracted based on fruit traits and first four principal components explained cumulative variation of 89.97 % with eigenvalues >0.5 in B. dorsalis infestation. Mango varieties Amrapali, Gulab Khas and Dashehari Moanaro, Bikash Das ICAR Research Complex for were classified as resistant to B.
    [Show full text]
  • The 'Van Dyke' Mango
    7. MofTet, M. L. 1973. Bacterial spot of stone fruit in Queensland. 12. Sherman, W. B., C. E. Yonce, W. R. Okie, and T. G. Beckman. Australian J. Biol. Sci. 26:171-179. 1989. Paradoxes surrounding our understanding of plum leaf scald. 8. Sherman, W. B. and P. M. Lyrene. 1985. Progress in low-chill plum Fruit Var. J. 43:147-151. breeding. Proc. Fla. State Hort. Soc. 98:164-165. 13. Topp, B. L. and W. B. Sherman. 1989. Location influences on fruit 9. Sherman, W. B. and J. Rodriquez-Alcazar. 1987. Breeding of low- traits of low-chill peaches in Australia. Proc. Fla. State Hort. Soc. chill peach and nectarine for mild winters. HortScience 22:1233- 102:195-199. 1236. 14. Topp, B. L. and W. B. Sherman. 1989. The relationship between 10. Sherman, W. B. and R. H. Sharpe. 1970. Breeding plums in Florida. temperature and bloom-to-ripening period in low-chill peach. Fruit Fruit Var. Hort. Dig. 24:3-4. Var.J. 43:155-158. 11. Sherman, W. B. and B. L. Topp. 1990. Peaches do it with chill units. Fruit South 10(3): 15-16. Proc. Fla. State Hort. Soc. 103:298-299. 1990. THE 'VAN DYKE' MANGO Carl W. Campbell History University of Florida, I FAS Tropical Research and Education Center The earliest records we were able to find on the 'Van Homestead, FL 33031 Dyke' mango were in the files of the Variety Committee of the Florida Mango Forum. They contain the original de scription form, quality evaluations dated June and July, Craig A.
    [Show full text]
  • Genetic Diversity and Population Structure of Pummelo (Citrus Maxima) Germplasm in China
    Tree Genetics & Genomes (2017) 13: 58 DOI 10.1007/s11295-017-1133-0 ORIGINAL ARTICLE Genetic diversity and population structure of pummelo (Citrus maxima) germplasm in China Huiwen Yu1 & Xiaoming Yang 1 & Fei Guo1 & Xiaolin Jiang1 & Xiuxin Deng1 & Qiang Xu1 Received: 31 July 2016 /Revised: 11 March 2017 /Accepted: 19 March 2017 /Published online: 26 April 2017 # Springer-Verlag Berlin Heidelberg 2017 Abstract Pummelo (Citrus maxima) is one of the basic spe- Keywords Pummelo . Genetic diversity . Population cies of Citrus. It has been cultivated for about 4000 years in structure . Nuclear simple sequence repeat (nSSR) China, and therefore, there are abundant germplasm during the long time of culture. However, there is still a lack of a detailed study of the genetic characteristics of pummelo pop- Introduction ulation. In this study, genetic diversity and population struc- ture among 274 pummelo accessions collected in China were Citrus is one of the most important fruit crops in the world. analyzed using 31 nuclear simple sequence repeat (nSSR) The genetic background of citrus is very complicated because markers. The observed heterozygosity was calculated as of its biological characteristics, such as wide sexual compati- 0.325 and genetic differentiation Fst as 0.077. Genetic struc- bility on interspecies and intergenus levels. The complex ge- ture analysis divided the whole germplasm into three subpop- netic background has hindered the genetic studies in citrus. ulations, Pop-a, Pop-b, and Pop-c. Pop-a was composed of Exploring genetic variation within a single species will facil- accessions mostly from Southeast China, Pop-b was com- itate genetic analysis such as genome-wide association studies posed of accessions from the central region of South China, (GWAS) of important traits.
    [Show full text]
  • Saurashtra University Re – Accredited Grade ‘B’ by NAAC (CGPA 2.93)
    Saurashtra University Re – Accredited Grade ‘B’ by NAAC (CGPA 2.93) Odedra, Nathabhai K., 2009, “Ethnobotany of Maher Tribe In Porbandar District, Gujarat, India”, thesis PhD, Saurashtra University http://etheses.saurashtrauniversity.edu/id/eprint/604 Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Saurashtra University Theses Service http://etheses.saurashtrauniversity.edu [email protected] © The Author ETHNOBOTANY OF MAHER TRIBE IN PORBANDAR DISTRICT, GUJARAT, INDIA A thesis submitted to the SAURASHTRA UNIVERSITY In partial fulfillment for the requirement For the degree of DDDoDoooccccttttoooorrrr ooofofff PPPhPhhhiiiilllloooossssoooopppphhhhyyyy In BBBoBooottttaaaannnnyyyy In faculty of science By NATHABHAI K. ODEDRA Under Supervision of Dr. B. A. JADEJA Lecturer Department of Botany M D Science College, Porbandar - 360575 January + 2009 ETHNOBOTANY OF MAHER TRIBE IN PORBANDAR DISTRICT, GUJARAT, INDIA A thesis submitted to the SAURASHTRA UNIVERSITY In partial fulfillment for the requirement For the degree of DDooooccccttttoooorrrr ooofofff PPPhPhhhiiiilllloooossssoooopppphhhhyyyy In BBoooottttaaaannnnyyyy In faculty of science By NATHABHAI K. ODEDRA Under Supervision of Dr. B. A. JADEJA Lecturer Department of Botany M D Science College, Porbandar - 360575 January + 2009 College Code.
    [Show full text]
  • Plant Breeding for Agricultural Diversity
    Session 3 Plant Breeding For Agricultural Diversity PHILLIPS, S. L. AND WOLFE, M. S. Elm Farm Research Centre, Hamstead Marshall, Nr Newbury, Berkshire, RG20 0HR ABSTRACT Plants bred for monoculture require inputs for high fertility, and to control weeds, pests and diseases. Plants that are bred for such monospecific communities are likely to be incompatible with the deployment of biodiversity to improve resource use and underpin ecosystem services. Two different approaches to breeding for agricultural diversity are described: (1) the use of composite cross populations and (2) breeding for improved performance in crop mixtures. INTRODUCTION Monocultural plant communities dominate modern agriculture. Monocultures are crops of a single species and a single variety; hence the degree of heterogeneity within such communities is severely limited. The reasons for the dominance of monoculture include the simplicity of planting, harvesting and other operations, which can all be mechanised, uniform quality of the crop product and a simplified legal framework for variety definition. Monocultural production supports the design of crop plants from conceptual ideotypes. The wheat plant ideotype is a good example of a plant designed for monoculture. Wheat plants that perform well in monoculture interfere minimally with their neighbours under high fertility conditions, where all ameliorable factors are controlled. The aim of this design is to provide a crop community that makes best use of light supply to the best advantage of grain production (Donald, 1968). This design has produced wheats with a high proportion of seminal roots, erect leaves, large ears and a relatively dwarf structure. This ‘pedigree line for monoculture’ approach is highly successful, but it has delivered crop communities that do best where light is the only, or the main, limiting factor for productivity: therefore the products of this approach to breeding require inputs to raise fertility, and to control weeds, pests and diseases.
    [Show full text]
  • Genetics, Epigenetics and Disease a Literature Review By: Anthony M
    Genetics, Epigenetics and Disease A Literature Review By: Anthony M. Pasek Faculty Advisor: Rodger Tepe, PhD A senior research project submitted in partial requirement for the degree Doctor of Chiropractic August 11, 2011 Abstract Objective – This article provides an overview of the scientific literature available on the subject of genetic mechanisms of disease etiology as compared to epigenetic mechanisms of disease etiology. The effects of environmental influences on genetic expression and transgenerational inheritance will also be examined. Methods – Searches of the keywords listed below in the databases PubMed and EBSCO Host yielded referenced articles from indexed journals, literature reviews, pilot studies, longitudinal studies, and conference meeting reports. Conclusion – Although current research trends indicate a relationship between the static genome and the dynamic environment and offer epigenetics as a mechanism, further research is necessary. Epigenetic processes have been implicated in many diseases including diabetes mellitus, obesity, cardiovascular disease, metabolic disease, cancer, autism, Alzheimer’s disease, depression, and addiction. Keywords – genetics, central dogma of biology, genotype, phenotype, genomic imprinting, epigenetics, histone modification, DNA methylation, agouti mice, epigenetic drift, Överkalix, Avon Longitudinal Study of Parents and Children (ALSPAC). 2 Introduction Genetics has long been the central field of biology and it’s central dogma states that DNA leads to RNA, which leads to protein and ultimately determines human health or sickness1. The Human Genome Project marked a great triumph for humanity and researchers expected to solve the riddle of many complex diseases with the knowledge gleamed from this project. However, many more questions were raised than answered. Several rare genetic disorders including hemophilia and cystic fibrosis were explained by alterations in the genetic code but true genetic diseases only affect about one percent of the human population2.
    [Show full text]
  • Botany Genetics Mendelian Inheritance
    References 1. Elrod S., Stansfield W., 2002, Genetics, 4th Edition, Tata McGraw-Hill 2. Strickberger M. W., 1985, Genetics, 3rd Edition, Macmillan Publishing Company 3. Griffiths A. J., Wessler S.R., Lewontin R.C., Carrol S. B., 2008, Introduction to Genetic Analysis, 9th Edition, W. H. Freeman and Company 4. Klug W.S., Cumming M.R., Spencer C. A., Palladino M. A., 2009, Concepts of Genetics, 9th Edition, Benjamin Cummings Publication 5. Tamarin R. H., 2002, Principles of Genetics, 7th Edition, Tata McGraw-Hill 6. Hartwell L.H., Hood L., Goldberg M.L., Reynolds A.E., Silver L. M., Veres R. C., 2004, Genetics, 2nd Edition, McGraw-Hill 7. Pierce B.A., Genetics: A Conceptual Approach, 4th edition, W.H. Freeman 8. T.H. Noel Ellis, Julie M.I. Hofer, Gail M. Timmerman-Vaughan, Clarice J. Coyne and Roger P. Hellens, 2011, Mendel, 150 years on, Trends in Plant Science, Vol. 16, 590-596 Genetics Botany Mendelian Inheritance Learn More / Supporting Materials / Source of Further Reading 2.1 Glossary Starting Term Defination Related Term Character <Character> < Genotype > < Genotype of an organism is the gene combination it possesses. Genotype of phenotypically yellow seeded F1 may be YY or Yy.> <Character> < Phenotype > < Phenotype refers to the observable attributes of an organism. Plants with either of the two genotypes Yy or Yy are phenotypically yellow seeded.> <Character> < Homozygote > < A plant with a pair of identical alleles is called as Homozygote (Y/Y or y/y).> <Character> < Heterozygote > < a plant in which the <term2> allele of the pair differ is called as heterozygote (Y/y).> <Character> < locus > < A locus (plural: loci) is the location of a gene on a chromosome.
    [Show full text]
  • Antinociceptive Effect of Methanol Extract of Dalbergia Sissoo Leaves in Mice Md
    Mannan et al. BMC Complementary and Alternative Medicine (2017) 17:72 DOI 10.1186/s12906-017-1565-y RESEARCH ARTICLE Open Access Antinociceptive effect of methanol extract of Dalbergia sissoo leaves in mice Md. Abdul Mannan*, Ambia Khatun and Md. Farhad Hossen Khan Abstract Background: Dalbergia sissoo DC. (Family: Fabaceae) is a medium to large deciduous tree, is locally called “shishu” in Bangladesh. It is used to treat sore throats, dysentery, syphilis, bronchitis, inflammations, infections, hernia, skin diseases, and gonorrhea. This study evaluated the antinociceptive effect of the methanol extract of D. sissoo leaves (MEDS) in mice. Methods: The extract was assessed for antinociceptive activity using chemical and heat induced pain models such as hot plate, tail immersion, acetic acid-induced writhing, formalin, glutamate, and cinnamaldehyde test models in mice at the doses of 100, 200, and 400 mg/kg (p.o.) respectively. Morphine sulphate (5 mg/kg, i.p.) and diclofenac sodium (10 mg/kg, i.p.) were used as reference analgesic drugs. To confirm the possible involvement of opioid receptor in the central antinociceptive effect of MEDS, naloxone was used to antagonize the effect. Results: MEDS demonstrated potent and dose-dependent antinociceptive activity in all the chemical and heat induced mice models (p < 0.001). The findings of this study indicate that the involvement of both peripheral and central antinociceptive mechanisms. The use of naloxone verified the association of opioid receptors in the central antinociceptive effect. Conclusions: This study indicated the peripheral and central antinociceptive activity of the leaves of D. sissoo. These results support the traditional use of this plant in different painful conditions.
    [Show full text]
  • Hodnocení a Změny Různých Odrůd Chilli Papriček a Výrobků Z Nich V Průběhu Úchovy
    Hodnocení a změny různých odrůd chilli papriček a výrobků z nich v průběhu úchovy Bc. Gabriela Gaubová Diplomová práce 2020 PROHLÁŠENÍ AUTORA DIPLOMOVÉ PRÁCE Beru na vědomí, ţe: diplomová práce bude uloţena v elektronické podobě v univerzitním informačním systému a dostupná k nahlédnutí; na moji diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších právních předpisů, zejm. § 35 odst. 3; podle § 60 odst. 1 autorského zákona má Univerzita Tomáše Bati ve Zlíně právo na uzavření licenční smlouvy o uţití školního díla v rozsahu § 12 odst. 4 autorského zákona; podle § 60 odst. 2 a 3 autorského zákona mohu uţít své dílo – diplomovou práci nebo poskytnout licenci k jejímu vyuţití jen s předchozím písemným souhlasem Univerzity Tomáše Bati ve Zlíně, která je oprávněna v takovém případě ode mne poţadovat přiměřený příspěvek na úhradu nákladů, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření díla vynaloţeny (aţ do jejich skutečné výše); pokud bylo k vypracování diplomové práce vyuţito softwaru poskytnutého Univerzitou Tomáše Bati ve Zlíně nebo jinými subjekty pouze ke studijním a výzkumným účelům (tj. k nekomerčnímu vyuţití), nelze výsledky diplomové práce vyuţít ke komerčním účelům; pokud je výstupem diplomové práce jakýkoliv softwarový produkt, povaţují se za součást práce rovněţ i zdrojové kódy, popř. soubory, ze kterých se projekt skládá. Neodevzdání této součásti můţe být důvodem k neobhájení práce. Prohlašuji, ţe jsem diplomové práci pracoval samostatně a pouţitou literaturu jsem citoval. V případě publikace výsledků budu uveden jako spoluautor. ţe odevzdaná verze diplomové práce a verze elektronická nahraná do IS/STAG jsou obsahově totoţné.
    [Show full text]
  • Tackling Climate Change Through Plant Breeding and Better Use of Plant Genetic Resources
    Tackling Climate Change through Plant Breeding and Better Use of Plant Genetic Resources Climate change is threatening to push the number of hungry even higher in the decades to come, due to new challenges to agriculture and food production. Temperatures across the world could rise up to 6OC by 2050. The main challenges from climate change to agriculture and food production are the more frequent and severe drought and floods, and higher pressure from insects and diseases. Crop production under drought results in low yield, high production costs and less than desirable agronomic practices. Irrigation, a means to mitigate drought, has its own environmental and economic costs, making it an option not suitable to all scenarios. One of the effective ways for crop production to grow or at least to stay stable under new challenges from climate change is through improved varieties developed by plant breeding. The genetic diversity of crop plants is the foundation for the sustainable development of new varieties for present and Climate Change: future major future challenges. Resource-poor farmers have been using genetic diversity intelligently over centuries to develop varieties challenge for food security adapted to their own environmental stress conditions. • Common beans biodiversity has been used by plant breeding to develop both heat and cold tolerant varieties Biodiversity: the raw material grown from the hot Durango region in Mexico to the cold for crop genetic improvement high altitudes of Colombia and Peru. • Corn genetic resources have been used in breeding varieties adapted to cultivation from sea level to over 3,000 masl, as in Nepal.
    [Show full text]