Predictive Decoding of Neural Data Yaroslav O
Total Page:16
File Type:pdf, Size:1020Kb
New Jersey Institute of Technology Digital Commons @ NJIT Dissertations Theses and Dissertations Spring 2009 Predictive decoding of neural data Yaroslav O. Halchenko New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/dissertations Part of the Computer Sciences Commons Recommended Citation Halchenko, Yaroslav O., "Predictive decoding of neural data" (2009). Dissertations. 901. https://digitalcommons.njit.edu/dissertations/901 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Cprht Wrnn & trtn h prht l f th Untd Stt (tl , Untd Stt Cd vrn th n f phtp r thr rprdtn f prhtd trl. Undr rtn ndtn pfd n th l, lbrr nd rhv r thrzd t frnh phtp r thr rprdtn. On f th pfd ndtn tht th phtp r rprdtn nt t b “d fr n prp thr thn prvt td, hlrhp, r rrh. If , r rt fr, r ltr , phtp r rprdtn fr prp n x f “fr tht r b lbl fr prht nfrnnt, h ntttn rrv th rht t rf t pt pn rdr f, n t jdnt, flfllnt f th rdr ld nvlv vltn f prht l. l t: h thr rtn th prht hl th r Inttt f hnl rrv th rht t dtrbt th th r drttn rntn nt: If d nt h t prnt th p, thn lt “ fr: frt p t: lt p n th prnt dl rn h n tn lbrr h rvd f th prnl nfrtn nd ll ntr fr th pprvl p nd brphl th f th nd drttn n rdr t prtt th dntt f I rdt nd flt. ABSTRACT PREDICTIVE DECODING OF NEURAL DATA by Yaroslav 0. Halchenko In the last five decades the number of techniques available for non-invasive functional imaging has increased dramatically. Researchers today can choose from a variety of imaging modalities that include EEG, MEG, PET, SPECT, MRI, and fMRI. This doctoral dissertation offers a methodology for the reliable analysis of neural data at different levels of investigation. By using statistical learning algorithms the proposed approach allows single-trial analysis of various neural data by decoding them into variables of interest. Unbiased testing of the decoder on new samples of the data provides a generalization assessment of decoding performance reliability. Through consecutive analysis of the constructed decoder's sensitivity it is possible to identify neural signal components relevant to the task of interest. The proposed methodology accounts for covariance and causality structures present in the signal. This feature makes it more powerful than conventional univariate methods which currently dominate the neuroscience field. Chapter 2 describes the generic approach toward the analysis of neural data using statistical learning algorithms. Chapter 3 presents an analysis of results from four neural data modalities: extracellular recordings, EEG, MEG, and fMRI. These examples demonstrate the ability of the approach to reveal neural data components which cannot be uncovered with conventional methods. A further extension of the methodology, Chapter 4 is used to analyze data from multiple neural data modalities: EEG and fMRI. The reliable mapping of data from one modality into the other provides a better understanding of the underlying neural processes. By allowing the spatial-temporal exploration of neural signals under loose moeig assumios i emoes oeia ias i e aaysis o eua aa ue o oewise ossie owa moe misseciicaio e oose meooogy as ee omaie io a ee a oe souce yo amewok o saisica eaig ase aa aaysis is amewok yMA is escie i Cae 5 PREDICTIVE DECODING OF NEURAL DATA by Yaroslav 0. Halchenko A Dissertation Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science Department of Computer Science May 2009 Coyig © 9 y Yaosa aceko A IGS ESEE APPROVAL PAGE PREDICTIVE DECODING OF NEURAL DATA Yaroslav 0. Halchenko Dr. Jason RI,. Wang, Dissertation Co-Advisor Date Professor of Computer Science, NJIT Dr. Stephen J. Hanson, Dissertation Co-Advisor Date Professor, 'Psychology, Rutgers-Newark Dr. Zoi-Heleni Michalopoulou, Committee Member Date Professor of Mathematical Sciences & Electrical and Computer Engineering, NJIT Dr. David Nassimi, Committee Member Date Associate Professor of Computer Science, NJIT / Dr. Chengjun Liu, Committee Member Date Associate Professor of Computer Science, NJIT Dr. Barak A. Pearlmutter, Committee Member Date Professor of Computer Science, Hamilton Institute, National University of Ireland, Maynooth BIOGRAPHICAL SKETCH Author: Yaosa aceko Degree: oco o iosoy Date: May 9 Undergraduate and Graduate Education: • oco o iosoy i Comue Sciece ew esey Isiue o ecoogy ewak USA 9 • Mase o Sciece i Comue Sciece Uiesiy o ew Meico Auqueque M USA • Mase o Sciece i ase a Ooeecoic Egieeig iysya Sae Uiesiy iysya Ukaie 1999 • aceos egee i ase a Ooeecoic Egieeig iysya Sae Uiesiy iysya Ukaie 199 Major: Comue Sciece Presentations and Publications: J. amsey S aso C aso Y aceko A oack a C Gymou Si oems o causa ieece om MI I sumissio A oack Y aceko a S aso ecoig e age-scae sucue o ai ucio y cassiyig mea saes acoss iiiuas sycoogica Sciece I ess M ake Y aceko Seeeg a M uges e yMA Maua Aaiae oie a //wwwymaog/yMA-Maua M ake Y aceko Seeeg S aso ay a S oma yMA A yo ooo o muiaiae ae aaysis o MI aa euoiomaics 7(137-53 Ma 9 M ake Y aceko Seeeg E Oiei I ü J. W iege C S ema ay S aso a S oma yMA A uiyig aoac o e aaysis o euoscieiic aa oies i euoiomaics 3 (3 9 iv S. J. Hanson and Y. O. Halchenko. Brain reading using full brain support vector machines for object recognition: There is no face identification area. Neural Computation, 20 (2):486-503, February 2008. S. J. Hanson, C. Hanson, Y. O. Halchenko, T. Matsuka, and A. Zaimi. Bottom-up and top- down brain functional connectivity underlying comprehension of everyday visual action. Brain Struct Funct, 212(3-4):231-44, 2007. S. J. Hanson, D. Rebbechi, C. Hanson, and Y. O. Halchenko. Dense mode clustering in brain maps. Magn Reson Imaging, 25(9):1249-62, 2007. Y. O. Halchenko, S. J. Hanson, and B. A. Pearlmutter. Multimodal integration: fMRI, MRI, EEG, and MEG. In L. Landini, V. Positano, and M. F. Santarelli, editors, Advanced Image Processing in Magnetic Resonance Imaging, Signal Processing and Communications, chapter 8, pages 223-265. Dekker, 2005. ISBN 0824725425. S. J. Hanson, T. Matsuka, C. Hanson, D. Rebbechi, Y. O. Halchenko, A. Zaimi, and B. A. Pearlmutter. Structural equation modeling of neuroimaging data: Exhaustive search and Markov chain Monte Carlo. In Human Brain Mapping, 2004. Y. O. Halchenko, S. J. Hanson, and B. A. Pearlmutter. Fusion of functional brain imaging modalities using 1-norms signal reconstruction. In Proceedings of the Annual Meeting of the Cognitive Neuroscience Society, San Francisco, CA, 2004. Y. O. Halchenko, B. A. Pearlmutter, S. J. Hanson, and A. Zaimi. Fusion of functional brain imaging modalities via linear programming. Biomedizinische Technik (Biomedical Engineering), 48(2):102-104, 2004. L. I. Timchenko, Y. F. Kutaev, A. A. Gertsiy, Y. O. Halchenko, L. V. Zahoruiko, and T. Mansur. Method for image coordinate definition on extended laser paths. In S. B. Gurevich, Z. T. Nazarchuk, and L. I. Muraysky, editors, Optoelectronic and Hybrid Optical/Digital Systems for Image and Signal Processing, volume 4148:1, pages 19-26. SPIE, 2000. L. I. Timchenko, Y. F. Kutaev, A. A. Gertsiy, L. V. Zahoruiko, Y. O. Halchenko, and T. Mansur. Approach to parallel-hierarchical network learning for real-time image sequence recognition. In J. W. V. Miller, S. S. Solomon, and B. G. Batchelor, editors, Machine Vision Systems for Inspection and Metrology VIII, volume 3836:1, pages 71-81. SPIE, 1999. L. I. Timchenko, A. A. Gertsiy, L. V. Zahoruiko, Y. F. Kutaev, and Y. O. Halchenko. Pre-processing of extended laser path images. In Industrial Lasers and Inspection: Diagnostic Imaging Technologies and Industrial Applications, Munich, Germany, June 1999. EOS/SPIE International Symposium. [3827-26]. L. I. Tymchenko, J. Scorukova, S. Markov, and Y. O. Halchenko. Image segmentation on the basis of spatial connected features. In Visnyk VSTU, volume 4, pages 39-43. VSTU University Press, Vinnytsya, Ukraine, 1998. In Ukrainian. T. B. Martinyuk, A. V. Kogemiako, and Y. 0. Halchenko. The model of associative processor for numerical data sorting. In Visnyk VSTU, volume 2, pages 19-23. VSTU University Press, Vinnytsya, Ukraine, 1997. In Ukrainian. L. I. Tymchenko, J. Scorukova, J. Kutaev, S. Markov, T. Martynuk, and Y. 0. Halchenko. Method spatial connected segmentation of images. In The Third All-Ukrainian International Conference Ukrobraz, Kijiv, Ukraine, November 1996. In Ukrainian. vi ii LIST OF TERMS Abbreviation ANOVA Analysis of Variance BCI Brain Computer Interface BEM Boundary Elements Method BMA Bayesian Model Averaging BOLD Blood Oxygenation Level Dependent DC Direct Current DECD Distributed ECD ECD Equivalent Current Dipole EEG Electroencephalography EIT Electrical Impedance Tomography EMF Electromotive Force F/MEG EEG and/or MEG EM Expectation Maximization EMSI Electromagnetic Source Imaging EPI Echo Planar Imaging ER Event-related ERF Event-related Magnetic Field (in MEG) ERP Event-related Potential (in EEG) FDA Food and Drug Administration FDM Finite Difference Method FEM Finite Elements Method FFA Fusiform Face Area FG Fusiform Gyrus FLIRT FMRIB's Linear Image Registration Tool FMRI Functional MRI FMRIB Oxford Centre for Functional MRI of the Brain FOSS Free and Open Source Software FSL FMRIB Software Library GLM General Linear Model