Novel Process for the Preparation of Serinol

Total Page:16

File Type:pdf, Size:1020Kb

Novel Process for the Preparation of Serinol Europaisches Patentamt 0 348 223 J European Patent Office fin Publication number: A2 Office europeen des brevets EUROPEAN PATENT APPLICATION Application number: 89306393.3 int. a*: C 07 C 89/00 C 07 C 91/12 Date of filing: 23.06.89 Priority: 23.06.88 US 210945 ® Applicant: W.R. Grace & Co.-Conn. 1114 Avenue of the Americas New York New York 1 0036 (US) Date of publication of application: 27.12.89 Bulletin 89/52 @ Inventor: Quirk, Jennifer Maryann 6566 River Clyde Drive Designated Contracting States: 20777 (US) AT BE CH DE ES FR GB GR IT LI LU NL SE Highland Maryland Harsy, Stephen Glen 16236 Compromise Court Mt. Airy Maryland 21771 (US) Hakansson, Christer Lennart Vikingsgaten 3 S-25238Helsingborg (SE) @ Representative: Bentham, Stephen et al J.A. Kemp & Co. 14 South Square Gray's Inn London WC1R5EU (GB) @ Novel process for the preparation of serinol. (g) A process for forming 2-amino-1 ,3-propanediol by reduc- ing a 5-nitro-1,3-dioxane and subsequently hydrolyzing the reduced compound. CO SI 00 3 Q_ LU Bundesdruckerei Berlin EP 0 348 223 A2 Description NOVEL PROCESS FOR THE PREPARATION OF SERINOL The present invention relates to a novel process to form 2-amino-1 ,3-propanediol (commonly known as "serinol"). The present process provides a means of forming serinol using readily formed materials under mild 5 and easily handled conditions suitable for industrial application. Serinol is a highly desired material required for the preparation of nonionic x-ray contrast media, such as iopanediol (N,N'-bis[2-hydroxy-1-(hydroxymethyl)ethyl]-2,4,6-triiodo-5-lactamidisophthalamide). Serinol has been previously prepared from 2-oximino-1 ,3-propanediol, 2-nitro-1 ,3-propanediol, serine, serine methyl ester, or oximinomalonic acid diethyl ester. In most cases the required processes provided low 10 yields and, in certain instances, utilizes poorly accessible starting materials. In addition, the processes normally entail the generation of decomposable and dangerous imtermediates which require special equipment and handling practices. The expense of the reactants and equipment required, as well as the special handling needed leads to unsatisfactory processes for industrial application. The major commercial method of producing serinol is disclosed in U.S. 4,448,999 and involves an 15 improvement of a process disclosed in DE 2,742,981. The process requires the initial formation of a solid product, sodium nitro-1 ,3-propanediol. The diol must be removed from the reaction zone in order to minimize unwanted further reaction to the triol. The diol is then subjected to hydrogenation at elevated pressures of 50 bars or greater in the presence of palladium on carbon as the hydrogenation catalyst. U.S. '999 discloses that the hydrogenation process should be carried out under stringent temperature conditions to achieve 20 consistently good yields. The difficulty with this method is the need for isolating and utilizing sodium nitro-1 ,3-propanediol which is known to be an unstable material which decomposes with catastrophic results. An alternate method for producing serinol is disclosed in DE 2,829,916. This process involves the reductive amination of 1 ,3-dihydroxyacetone. Due to the difficulty in synthesizing the required starting ketone, this process is not economically competative and is not widely used on an industrial scale. 25 It is highly desired to have a process capable of forming serinol which utilizes readily available and easily handled materials. Summary of the Invention 30 The present invention is directed to a process which is readily adaptable to industrial application and utilizes reactants and conditions which do not present a handling problem. The instant process comprises hydrogenation of certain 5-nitro-1 ,3-dioxanes under mild conditions to form the corresponding amino derivatives and hydrolyzing the amino derivatives to give the desired serinol. 35 Detailed Description of the Invention The present process provides the desired serinol using readily available reactants under conditions easily 40 adaptable for industrial application. The total synthesis can be accompanied by the following reactions: 1. Nitromethane is reacted with three moles of formaldehyde to form tris (hydroxymethyl)nitromethane (I). CH NO, + 3CH_O >C-(CH_OH)- 45AC I NO2 (I) This Henry Reaction is carried out by contacting the nitromethane and formaldehyde in a solvent normally selected from a lower alkyl alcohol or water (preferably methanol) in the presence of a catalytic amount of base SO such as sodium or potassium hydroxide. The formaldehyde should be present in at least stoichiometric amounts based on nitromethane (i.e. 3 moles of formaldehyde per mole of nitromethane). This reaction is known and the product can be commercially obtained. This product, unlike the dihydroxymethyl nitromethane sodium salt used in U.S. '999, is a stable product which is readily obtained in very high ( 90%) yields because the substitution is allowed to go to completion. 55 The formaldehyde and nitromethane can be contacted in less than a 3:1 molar ratio provided the reaction product is not isolated but, instead, the product solution is used directly in step two described below and, in turn, the product solution of step 2 is used in step three, as also described below. The formaldehyde and nitromethane can be used in molar ratios of about 2.25 or greater. When used in molar ratios of less than 3, the resultant solution will contain a mixture of di and trihydroxymethyl nitromethane. The product should not be go isolated but, instead, the solution should be directly treated with a ketone or an ether as described below in the presence of an acid (sufficient to neutralize the small amount of base present and to make the solution acidic). The solution containing the products of this procedure should be directly used in the procedure of step three to provide product III. EP 0 348 223 A2 When the molar ratio is greater than 3, the products of steps 1 and 2 may be isolated or the solution may be directly used in the subsequent step. 2. The formed tris(hydroxymethyl)nitromethane (I) is then reacted with a ketone in the presence of a catalytic amount of a strong acid to form the corresponding acetal, the 5-hydroxymethyl-5-nitro-1,3-dioxane which has substitution in the 2 position (II), in good yields. 0 NO- ^CH»OH2 II H+ ^^v>^C C(CHn0H)o + RCR1 I 2 '3 10 NO_ 2 0 R R' 15 (I) (ID Each R and R' can independently be selected from a C1-C10 alkyl, C3-C10 cycloalkyl or aryl (preferably phenyl) 20 group or R and R' can together form a C4-C10 alkylene group, and preferably a C4-C6 alkylene group. The particular identity of R and R' is not critical to this reaction nor to the overall synthesis. Examples of suitable ketones include acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone and the like. The reaction can be run neat using excess ketone as the reaction medium (preferred) or by using an inert solvent in which both compound I and the ketone are soluble. The reaction is catalyzed by the presence of catalytic amounts 25 (normally from about 0.001 to 1 weight percent based on the weight of ketone) of a strong acid, such as a mineral acid (HCI, H2SO4 and the like) or a strong organic acid such as glacial acetic acid, toluene sulfonic acid and the like. The above reaction (2) produces water as a by-product. The water must be removed in order to prevent reversion of the formed acetal back to the ketone and alcohol. When the reaction utilizes a high boiling ketone 30 (having a B.P. higher than water and suitable for separating the water from ketone by distillation), such as cyclohexanone, the water by-product can be removed by azeotropic distillation during the progress of the reaction. When a low boiling ketone, having a boiling point lower than the water, such as acetone, is used the procedure requires the presence of a dessicant, such as boron trifluoride etherate or a molecular sieve which collects water to remove the water as it forms. 35 Although the above reaction utilizes readily attainable and inexpensive reactants, the need to remove the water by-product as it forms may add to the cost of the reaction and the overall synthesis. If such economics presents a factor, the formation of an acetal can be accomplished without the production of water by alternate reactions, as described hereinbelow. 2(A). The tris(hydroxymethyl)nitromethane (I) can be converted to an acetal by reacting it with vinyl ether in 40 the presence of a catalytic amount of strong acid (such as mineral acids, glacial acetic acid and the like) by the following reaction: f2 N^/CH2OH C(CH2OH)3 + H2C = CHOR 50 I Ha 55 R can represent any alkyl, cycloalkyl or aryl group and is preferably a lower alkyl. Examples of suitable vinyl ethers include ethyl vinylether, methyl vinylether and the like. The resultant by-product alcohol does not interfere with the reaction. 2(B). Again, as an alternate means, the desired acetal compound can be provided by reacting the tris(hydroxymethyl)nitromethane (I) with certain gem diethers in the presence of a catalytic amount of a strong 60 acid (such as mineral acid, glacial acetic acid and the like) by the following reaction: 65 EP 0 348 223 A2 NO OR" NO,, CH.OH ^ C(CH2OH)3 + R-C-R' * f OR" 0 0+ R"0H 10 ^R ^R1 The symbols, R and R' are the same as described above with respect to reaction 2 and R" can be any alkyl, preferably a lower alkyl such as methyl, ethyl, propyl and the like.
Recommended publications
  • Ready-To-Run Buffers and Solutions
    Electrophoresis Ready-to-Run Buffers and Solutions Bio-Rad is a premier provider of buffers and premixed reagents for life science research. We offer a variety of different products for all your protein and nucleic acid experiments. Whether you need powdered reagents or premixed solutions, Bio-Rad reagents meet the highest quality standards to ensure consistency and reliability in your experiments. FastCast™ Solutions FastCast Solutions Access all the benefits of TGX™ and Solution Applications TGX Stain-Free™ gel chemistries with TGX™ FastCast™ acrylamide starter kit, 7.5% Protein Separation the fastest gel run times, the most TGX FastCast acrylamide kit, 7.5% Protein Separation efficient transfers, stain-free visualization TGX FastCast acrylamide starter kit, 10% Protein Separation in 5 minutes, as well as a long shelf life TGX FastCast acrylamide kit, 10% Protein Separation (1 month after casting) using convenient TGX FastCast acrylamide starter kit, 12% Protein Separation premixed handcasting solutions. TGX FastCast acrylamide kit, 12% Protein Separation Long shelf life TGX chemistry retains TGX Stain-Free™ FastCast™ acrylamide starter kit, 7.5% Protein Separation Laemmli-like separation characteristics TGX Stain-Free FastCast acrylamide kit, 7.5% Protein Separation while using a standard Tris/glycine TGX Stain-Free FastCast acrylamide starter kit, 10% Protein Separation running buffer system. TGX Stain-Free FastCast acrylamide kit, 10% Protein Separation TGX Stain-Free FastCast acrylamide starter kit, 12% Protein Separation TGX Stain-Free FastCast acrylamide kit, 12% Protein Separation Gel Casting Solutions Gel Casting Buffers Tris Buffers and Acrylamide Solutions Solution Applications for Gel Casting 1.5 M Tris-HCI, pH 8.8 Resolving gel preparation Bio-Rad offers a variety of prepared 0.5 M Tris-HCI, pH 6.8 Stacking gel preparation solutions for casting polyacrylamide Acrylamide Solutions gels.
    [Show full text]
  • Tris(Hydroxymethyl)Aminomethane; Tris
    Tris(hydroxymethyl)aminomethane; Tris Technical Bulletin No. 106B IMPORTANT NOTICE The "Tris" described in this bulletin is Tris(hydroxymethyl)aminomethane. It is not the "Tris" used to flame-proof fabric. The latter, Tris(2,3-dibromopropyl)phosphate, has been reported to be a cancer suspect agent. Trizma® is Sigma's registered trademark applied to various compounds of tris(hydroxymethyl)- aminomethane (tris) prepared by Sigma. For example, Trizma HCl is the completely neutralized crystalline hydrochloride salt of tris. Trizma Base is the pure tris itself. Trizma and its salts have been useful as buffers in a wide variety of biological systems. Uses include pH control in vitro1,2 and in vivo,3,4 for body fluids and as an alkalizing agent in the treatment of acidosis of the blood.5 Trizma has been used as a starting material for polymers, oxazolones (with carboxylic acids) and oxazolidines (with aldehydes).6 Trizma does not precipitate calcium salts and is of value in maintaining solubility of manganese salts.7 PRIMARY BASIMETRIC STANDARD Trizma Base meets many of the requirements for a primary basimetric standard. It is pure, essentially stable, relatively non-hygroscopic and has a high equivalent weight. Trizma Base can be dried at 100°C for up to 4 hours.8 It can be used for the direct standardization of a strong acid solution; the equivalence point can be determined either potentiometrically or by use of a suitable indicator: [3-(4-Dimethylamino-1-naphthylazo)-4- methoxybenzenesulfonic acid, Product No. D5407]. Tris(hydroxymethyl)aminomethane (Trizma Base) -- Physical Data Empirical Formula: C4 H11 N O3 Molecular Weight: 121.14 Equivalent Weight: 121.14 pH of 0.05 M aqueous solution: 10.4* Kb = 1.202 × 10-6 at 25° (pKa = 8.08)9 Trizma HCl -- Physical Data Empirical Formula: C4 H12 Cl N O3 Molecular Weight: 157.6 Equivalent Weight: 157.6 pH of 0.05 M aqueous solution: 4.7* *Trizma HCl in solution will produce a pH of approximately 4.7, but will have little if any buffering capacity.
    [Show full text]
  • Bis-Tris (B4429)
    Bis-Tris Cell Culture Tested Product Number B 4429 Product Description Bis-Tris buffer has been utilized in a study of λ cro 7 Molecular Formula: C8H19NO5 repressor self-assembly and dimerization. An Molecular Weight: 209.2 investigation of the ligand binding properties of the CAS Number: 6976-37-0 human hemoglobin variant (Hb Hinsdale) has used 8 pKa: 6.5 (25 °C) Bis-Tris buffer. Synonyms: 2-bis(2-hydroxyethyl)amino-2- (hydroxymethyl)-1,3-propanediol, bis(2- Precautions and Disclaimer hydroxyethyl)amino-tris(hydroxymethyl)methane, For Laboratory Use Only. Not for drug, household or 2,2-bis(hydroxymethyl)-2,2',2''-nitrilotriethanol other uses. This product is cell culture tested (4.2 mg/ml) and is Preparation Instructions designated as Biotechnology Performance Certified. It This product is soluble in water (500 mg/ml), yielding a is tested for endotoxin levels and for the absence of clear, colorless to very faint yellow solution. nucleases and proteases. References Bis-Tris is a zwitterionic buffer that is used in 1. Good, N. E., et al, Hydrogen ion buffers for biochemistry and molecular biology research. It is biological research. Biochemistry, 5(2), 467-477 structurally analogous to the the Good buffers that (1966). were developed to provide buffers in the pH range of 2. Molecular Cloning: A Laboratory Manual, 3rd ed., 6.15 - 8.35 for wide applicability to biochemical Sambrook, J. and Russell, D. W., CSHL Press studies.1 The useful pH range of Bis-Tris is 5.8 - 7.2. (Cold Spring Harbor, NY: 2001), pp. 7.26-7.30.
    [Show full text]
  • Formaldehyde Cross-Linking of Chromatin from Drosophila
    2 Formaldehyde Cross-linking of Chromatin from Drosophila Protocol from modEncode IGSB University of Chicago originally written by Alex Crofts and Sasha Ostapenko and updated by Matt Kirkey. 1. Set centrifuge on fast temp to cool down to 4°C (sign out centrifuge). 2. Turn on sonicator, clean probes (sign out sonicator). 3. Prep A1 and Lysis buffers. 4. Collect material, wash with embryo wash buffer. 5. Add material to a Broeck-type homogenizers(Wheaton #357426). Embryo’s can be collected directly in Douncer-type homogenizer(Wheaton #357544). 6. Add 6 mL A1 buffer to Potter homogenizers. 7. Add 500 uL of 20% formaldehyde (to 1.8%) and begin 15’ timer. 8. Homogenize material (100-300mg/IP of embryos, larvae, pupae, adults) first in Broeck homogenizer (frosted) and then in Douncer (clear) with type A pestle (tight) at RT (6 strokes each). 9. Transfer homogenate to 15mL polystyrene tube. Mix by inverting every 5 minutes. 10. Once 15’ timer is up, add 540 uL of 225 mM glycine solution, mix and incubate 5’ at RT. 11. Put on ice and keep on ice unless specified. 12. Centrifuge 5’ at 4000 rpm at 4°C. Discard supernatant. 13. Add 3mL of buffer A1. Resuspend the pellet and centrifuge for 5’ at 4000 rpm and 4°C. Repeat this washing step 3 more times. 14. Wash once in 3 mL of lysis buffer without SDS. Centrifuge for 5’ at 4000 rpm and 4°C. Discard supernatant. 15. Resuspend the cross-linked material in 0.5 mL of lysis buffer. Add SDS to 0.1% (2.5 uL of 20% SDS) and N-lauroylsarcosine to 0.5% (12.5 uL of 20% solution).
    [Show full text]
  • Protein Gel Electrophoresis Technical Handbook Separate Transfer Detect 2
    Western blotting Protein gel electrophoresis technical handbook separate transfer detect 2 Comprehensive solutions designed to drive your success Protein gel electrophoresis is a simple way to separate proteins prior to downstream detection or analysis, and is a critical step in most workflows that isolate, identify, and characterize proteins. We offer a complete array of products to support rapid, reliable protein electrophoresis for a variety of applications, whether it is the first or last step in your workflow. Our portfolio of high-quality protein electrophoresis products unites gels, stains, molecular weight markers, running buffers, and blotting products for your experiments. For a complete listing of all available products and more, visit thermofisher.com/separate For orderingordering informationinformation referrefer to pagepage XX.XX ForForqr quickquickrk referencereferencee on the protocolprotocol pleasepleasere referrefertr totopo pagepage XX. Prepare samples Choose the electrophoresis Select precast gel and select buffers Select the standard chamber system and power supply Run the gel Stain the gel Post stain 3 Contents Electrophoresis overview 4 Select precast gel Gel selection guide 8 Gels 10 Prepare samples and select buffers Sample prep kits 26 Buffers and reagents 28 Buffers and reagents selection guide 29 Select the standard Protein ladders 34 Protein standards selection guide 36 Choose the electrophoresis chamber system and power supply Electrophoresis chamber systems 50 Electrophoresis chamber system selection guide 51
    [Show full text]
  • Biological Buffers Download
    infoPoint Biological Buffers Application Many biochemical processes are markedly impaired by even small changes in the concentrations of free H+ ions. It is therefore usually necessary to stabilise the H+ concentration in vitro by adding a suitable buffer to the medium, without, however, affecting the functioning of the system under investigation. A buffer keeps the pH value of a solution constant by taking up protons that are released during reactions, or by releasing protons when Keywords they are consumed by reactions. • Buffer characteristics This handout summarizes the most commonly • Useful pH range used buffer substances and their respective • Preparing buffer solutions physical and chemical properties. • Common buffer solutions Practical tips – Preparing buffer solutions Recommendations for the setting of the pH value of a buffer and storage conditions Temperature 3. If a buffer is available in the protonised form (acid) and the non-protonised form (base), the Depending on the buffer substance, its pH may pH value can also be set by mixing the two vary with temperature. It is therefore advisable, substances. as far as possible, to set the pH at the working 4. Setting of the ionic strength of a buffer solution temperature to be used for the investigation. (if necessary) should be done in the same way as For instance the physiological pH value for most the setting of the pH value when selecting the mammalian cells at 37°C is between 7.0 and 7.5. electrolyte, since this increases depending on the The temperature dependence of a buffer system electrolyte used. is expressed as d(pKa)/dT, which describes the 5.
    [Show full text]
  • Guidesheet and Formulas Learly Label All Containers with Content Name
    Biological Abbreviations GuideSheet and Formulas learly label all containers with content name. Write out the complete chemical and/or biological name or use abbreviations (useful for small containers). If abbreviations are used, display this guide sheet prominently at C several locations in each lab. Extend the list with lab-specific abbreviations, as necessary. Full Name/Formula Abbreviation Full Name/Formula Abbreviation 2-(N-morpholino)ethanesulfonic acid MES Tris/borate/EDTA TBE 3-(N-morpholino)propanesulfonic acid MOPS Tris/EDTA TE 3-[(3-Cholamidopropyl) Tris/EDTA/sodium chloride TEN CHAPS dimethylammonio]-1-propanesulfonate Tris/glycine/SDS TGS 4-(2-hydroxyethyl)-1- HEPES piperazineethanesulfonic acid Tris/phosphate/EDTA TPE Bovine serum albumin BSA Tris/sodium chloride/Tween 20 TNT Dulbecco's Modified Eagle Medium DMEM Tween 20/TBS TTBS Dulbecco's phosphate-buffered saline DPBS Glycerol, Tris-HCl, EDTA, Bromphenol 6 x DNA Loading dye Blue, Xylene Cyanol FF (DNA Agarose gels) (RT) Ethylene glycol-bis(β-aminoethyl EGTA ether)-N,N,N′,N′-tetraacetic acid Protein A/G A/G (4°) Ethylenediaminetetraacetic acid EDTA Alkaline Phosphatase AP (4°) g,4-Dihydroxy-2-(6-hydroxy-1- Fetal bovine serum FBS BFA – Brefeldin A heptenyl)-4 cyclopentanecrotonic acid Solution (4°) Hanks balanced salt solution HBSS l-lactone HEPES-buffered saline solution HeBS 2-Bis(2-hydroxyethyl)amino-2- Bis-Tris (RT) (hydroxymethyl)-1,3-propanediol piperazine-N,N′-bis(2-ethanesulfonic PIPES acid) Caesium chloride (used for plasmid CsCl2 (RT) prep) Phosphate-buffered
    [Show full text]
  • Chapter 8: Monoprotic Acid-Base Equilibria
    Chapter 8: Monoprotic Acid-Base Equilibria Chapter 6: Strong acids (SA) and strong bases (SB) ionize completely in water (very large K) [H +] ions produced equals [S.A.] Example: What is the pH of 0.050 M HCl solution? HCl is S.A. so [HCl] = [H +]. Thus, pH = - log [H +] = - log (0.050); pH = 1.30 Similarly, [OH -] in solution will be equal to [S.B.] x number OH - per formula unit Challenge: What is the pH of 1.0 x 10 -8 M HCl? What is the pH of 1.0 x 10 -8 M NaOH? pH = 8 for a 10 -8 M acid??? pH = 6 for a 10 -8 M base??? We are adding an acid to water (at a pH of 7) and then saying that the solution becomes more basic? We neglected the dissociation of water! Summary: pH calculations of strong acids and strong bases 1. At relatively high [S.A] or [S.B.], i.e. ≥ 10 -6 M, pH is calculated from [S.A.] or [S.B.] 2. In very dilute [S.A] or [S.B.], i.e. ≤ 10 -8 M, dissociation of water is more important, so the pH is 7. 1 Question: How do we know if a given acid is strong or weak? Know the 6 S.A. and six S.B. by heart Weak Acids and Weak Bases Weak acids (HA) and weak bases (B) do not dissociate completely . An equilibrium exists between reactants and products The equilibrium lies to the left (Ka for a weak acid is < 1) => mostly HA or B in solution The dissociation (ionization) of a weak acid , HA , in water: Ka - + HA (aq) + H 2O(l) A (aq) + H 3O (aq) Weak acid Conj.
    [Show full text]
  • Detection and Characterization of Sorbitol Dehydrogenase from Apple Callus Tissue" 2 Received for Publication November 27, 1978 and in Revised Form February 28, 1979
    Plant Physiol. (1979) 64, 69-73 0032-0889/79/64/0069/05/$00.50/0 Detection and Characterization of Sorbitol Dehydrogenase from Apple Callus Tissue" 2 Received for publication November 27, 1978 and in revised form February 28, 1979 FAYEK B. NEGM AND WAYNE H. LOESCHER Department ofHorticulture and Landscape Architecture, Washington State University, Pullman, Washington 99164 Downloaded from https://academic.oup.com/plphys/article/64/1/69/6077558 by guest on 24 September 2021 ABSTRACT provided evidence for the presence of a polyol dehydrogenase (13). Data from labeling studies suggest that sorbitol is synthesized Sorbitol dehydrogenase (L-iditol:NAD' oxidoreductase, EC 1.1.1.14) in the leaf by way of fructose-6-P which is reduced to sorbitol-6- has been detected and characterzed from apple (Maims donestica cv. P and subsequently dephosphorylated (3, 20). Others, however, Granny Smith) mesocarp tissue cultures. The enzyme oxidized sorbitol, have reported the conversion of D-glucose to sorbitol in apple ( 11) xylitol, L-arabitol, ribitol, and L-threitol in the presence of NAD. NADP and plum leaves (1) when [1'CJglucose was used as a substrate. could not replace NAD. Mannitol was slightly oxidized (8% of sorbitol). Studies of breakdown of ['4Clsorbitol in fruit and other tissues Other polyols that did not serve as substrate were galactitoL myo-inositoL indicate that the polyol may be converted to a hexose (1), primarily D-arabitoL erythritol, and glycerol. The dehydrogenase oxidized NADH in fructose (9). the presence of n-fructose or L-sorbose. No detectable activity was ob- Chong and Taper (6) were able to grow apple callus tissue using served with D-tagatose.
    [Show full text]
  • National Chemicals Registers and Inventories: Benefits and Approaches to Development ABSTRACT
    The WHO Regional Oce for Europe The World Health Organization (WHO) is a specialized agency of the United Nations created in 1948 with the primary responsibility for international health matters each with its own programme geared to the particular health conditions of the countries it serves. Member States Albania Andorra Armenia Austria Azerbaijan Belarus Belgium Bosnia and Herzegovina National chemicals Bulgaria Croatia Cyprus registers and inventories: Czechia Denmark Estonia Finland benefits and approaches France Georgia Germany to development Greece Hungary Iceland Ireland Israel Italy Kazakhstan Kyrgyzstan Latvia Lithuania Luxembourg Malta Monaco Montenegro Netherlands Norway Poland Portugal Republic of Moldova Romania Russian Federation San Marino Serbia Slovakia Slovenia Spain Sweden Switzerland Tajikistan The former Yugoslav Republic of Macedonia Turkey Turkmenistan Ukraine UN City, Marmorvej 51, DK-2100 Copenhagen Ø, Denmark United Kingdom Tel.: +45 45 33 70 00 Fax: +45 45 33 70 01 Uzbekistan E-mail: [email protected] Website: www.euro.who.int ACKNOWLEDGEMENT The project “Development of legislative and operational framework for collection and sharing of information on hazardous chemicals in Georgia “ (2015-2017) was funded by the German Federal Environment Ministry’s Advisory Assistance Programme for environmental protection in the countries of central and eastern Europe, the Caucasus and central Asia and other countries neighbouring the European Union. It was supervised by the German Environment Agency. The responsibility
    [Show full text]
  • Acid Dissociation Constants and Related Thermodynamic Functions of Protonated 2,2-Bis(Hydroxymethyl)-2,2’,2”- Nitrilotriethanol (BIS-TRIS) from (278.15 to 328.15) K
    Journal of Biophysical Chemistry, 2014, 5, 118-124 Published Online August 2014 in SciRes. http://www.scirp.org/journal/jbpc http://dx.doi.org/10.4236/jbpc.2014.53013 Acid Dissociation Constants and Related Thermodynamic Functions of Protonated 2,2-Bis(Hydroxymethyl)-2,2’,2”- Nitrilotriethanol (BIS-TRIS) from (278.15 to 328.15) K Rabindra N. Roy, Lakshmi N. Roy, Katherine E. Hundley, John J. Dinga, Mathew R. Medcalf, Lucas S. Tebbe, Ryan R. Parmar, Jaime A. Veliz Hoffman Department of Chemistry, Drury University, Springfield, USA Email: [email protected] Received 14 May 2014; revised 12 June 2014; accepted 11 July 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Thermodynamic dissociation constants pKa of 2,2-bis(hydroxymethyl)-2,2’,2”-nitrilotriethanol have been determined at 12 temperatures from (278.15 to 328.15) K including the body temper- ature 310.15 K by the electromotive-force measurements (emf) of hydrogen-silver chloride cells without liquid junction of the type: Pt(s), H2(g), 101.325 kPa|BIS-TRIS (m) + BIS-TRIS·HCl (m)| AgCl(s), Ag(s), where m denotes molality. The pKa values for the dissociation process of BIS- + + TRIS·H + H2O = H3O + BIS-TRIS given as a function of T in Kelvin (K) by the equation pKa = 921.66 (K/T) + 14.0007 − 1.86197 ln(T/K). At 298.15 and 310.15 K, the values of pKa for BIS-TRIS were found to be 6.4828 ± 0.0005 and 6.2906 ± 0.0006 respectively.
    [Show full text]
  • SDS and Native Polyacrylamide Gel Electrophoresis of Proteins
    SDS and native polyacrylamide gel electrophoresis of proteins Supplies and Reagents Acrylamide solutions (see Table 1 and Table 2 for recipes) Premixed stock solutions are commercially available (e.g., Invitrogen) Ammonium persulfate stock solution (10% w/v) Dissolve 1 g ammonium persulfate in 10 mL of H2O and store at 4°C. Ammonium persulfate decays slowly in solution, so replace the stock solution every 2-3 weeks. Ammonium persulfate is used as a catalyst for the copolymerization of acrylamide and bisacrylamide gels. The polymerization reaction is driven by free radicals generated by an oxido- reduction reaction in which a diamine (e.g., TEMED) is used as the adjunct catalyst. Isobutanol (overlay for gels containing ~10% acrylamide) SDS (0.1%) (overlay for gels containing ~8% acrylamide) Protein standard molecular-weight markers (e.g., Invitrogen, or xxx) Protein samples to be resolved (e.g., purified protein or cell lysates) SDS stock solution (10% w/v, electrophoresis grade) for resolving and stacking gels Dissolve 10 g of SDS in 80 mL of H2O, and then add H2O to 100 mL. This stock solution is stable for 6 months at room temperature. 1× SDS gel-loading buffer 100 mM Tris-Cl (pH 6.8) 4% (w/v) SDS (sodium dodecyl sulfate; electrophoresis grade) 0.2% (w/v) bromophenol blue 20% (v/v) glycerol 200 mM DTT (dithiothreitol) Store the SDS gel-loading buffer without DTT at room temperature. Add DTT from a 1 M stock just before the buffer is used. 200 mM β-mercaptoethanol can be used instead of DTT. TEMED (electrophoresis grade) Tris-Cl (1.5 M, pH 8.8) and (1.0 M, pH 6.8) To prepare a 1 M solution, dissolve 121.1 g of Tris base in 800 mL of H2O.
    [Show full text]