National Chemicals Registers and Inventories: Benefits and Approaches to Development ABSTRACT

Total Page:16

File Type:pdf, Size:1020Kb

National Chemicals Registers and Inventories: Benefits and Approaches to Development ABSTRACT The WHO Regional Oce for Europe The World Health Organization (WHO) is a specialized agency of the United Nations created in 1948 with the primary responsibility for international health matters each with its own programme geared to the particular health conditions of the countries it serves. Member States Albania Andorra Armenia Austria Azerbaijan Belarus Belgium Bosnia and Herzegovina National chemicals Bulgaria Croatia Cyprus registers and inventories: Czechia Denmark Estonia Finland benefits and approaches France Georgia Germany to development Greece Hungary Iceland Ireland Israel Italy Kazakhstan Kyrgyzstan Latvia Lithuania Luxembourg Malta Monaco Montenegro Netherlands Norway Poland Portugal Republic of Moldova Romania Russian Federation San Marino Serbia Slovakia Slovenia Spain Sweden Switzerland Tajikistan The former Yugoslav Republic of Macedonia Turkey Turkmenistan Ukraine UN City, Marmorvej 51, DK-2100 Copenhagen Ø, Denmark United Kingdom Tel.: +45 45 33 70 00 Fax: +45 45 33 70 01 Uzbekistan E-mail: [email protected] Website: www.euro.who.int ACKNOWLEDGEMENT The project “Development of legislative and operational framework for collection and sharing of information on hazardous chemicals in Georgia “ (2015-2017) was funded by the German Federal Environment Ministry’s Advisory Assistance Programme for environmental protection in the countries of central and eastern Europe, the Caucasus and central Asia and other countries neighbouring the European Union. It was supervised by the German Environment Agency. The responsibility for the content of this publication lies with the authors. Edited by: Contributors: Mr Jonathan Krueger Ms Vera Barrantes Ms Szilvia Deim Ms Szilvia Deim Dr Irina Zastenskaya Mr Szymon Domagalski Dr Alojz Grabner Professor Khalidiya Khamidulina Mr Jonathan Krueger Mr Ulf Rick Dr Maristella Rubbiani Mr Alojz Zupanc Ms Monika Shrestha National chemicals registers and inventories: benefits and approaches to development ABSTRACT The aim of this publication is to describe approaches for setting up national chemicals registers and how they improve sound chemicals management. The requirements and recommendations of international organizations can direct discussions at national level on setting up a chemicals register and on the complementary roles of international and national activities. Examples of national registers and inventories, including information on how they were set up and their scope and maintenance, are also given for use by those planning such activities. The publication has been developed in the framework of the project “Development of legislative and operational framework for collection and sharing of information on hazardous chemicals in Georgia” executed by the WHO Regional Office for Europe (2015-2017). KEYWORDS HAZARDOUS SUBSTANCES - CLASSIFICATION DATABASES, CHEMICAL RISK ASSESSMENT TOXICOLOGY © World Health Organization 2018 All rights reserved. The Regional Office for Europe of the World Health Organization welcomes requests for permission to reproduce or translate its publications, in part or Address requests about publications of the WHO Regional in full. Office for Europe to: Publications The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health WHO Regional Office for Europe Organization concerning the legal status of any country, territory, city or area or of UN City, Marmorvej 51 its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted DK-2100 Copenhagen Ø, lines on maps represent approximate border lines for which there may not yet be full Denmark agreement. Alternatively, complete an online request form for The mention of specific companies or of certain manufacturers’ products does not documentation, health information, or for permission to imply that they are endorsed or recommended by the World Health Organization in quote or translate, on the Regional Office website preference to others of a similar nature that are not mentioned. Errors and omissions (http://www.euro.who.int/pubrequest). excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being ISBN number: 9789289052948 distributed without warranty of any kind, either express or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. The views expressed by authors, editors, or expert groups do not necessarily represent the Design and layout: 4PLUS4.dk decisions or the stated policy of the World Health Organization. Contents Abbreviations and acronyms ................................................................................................................................ iv Introduction ............................................................................................................................................................... 1 1. Types of information required on chemicals .......................................................................................... 2 1.1 Benefits of a chemicals register ..................................................................................................................................... 3 1.2 Information exchange for sound chemicals management ................................................................................ 3 1.3 Information for prioritizing chemicals of concern and assessing the risks they pose to human health and the environment ............................................................................................................................. 4 1.4 Information required by international and regional chemicals conventions and initiatives ........... 11 1.5 Information required for preparedness for and response to emergency situations ............................ 14 1.6 Responsibility of governments and industry to inform the public about chemical threats .............. 15 1.7 Information necessary to prevent illegal traffic ...................................................................................................... 16 2. Check-lists for setting-up a register of hazardous chemicals.......................................................... 18 3. Key European Union legislation related to chemicals management .............................................. 23 3.1 Directive 67/548/EEC on dangerous substances .................................................................................................. 23 3.2 Directive 99/45/EC on dangerous preparations ................................................................................................... 23 3.3 Directive 1907/2006/EC on registration, evaluation, authorization and restriction of chemicals (REACH) ........................................................................................................................................................... 24 3.4 Directive 1272/2008/EC on classification, labelling and packaging............................................................. 26 3.5 Directive 528/2012/EU on biocides .............................................................................................................................. 27 3.6 Guidance for collecting and sharing information in the European Union ................................................. 27 4. Chemical products registration in some countries in the European Union ................................. 29 4.1 Hungary ...................................................................................................................................................................................... 29 4.2 Italy ................................................................................................................................................................................................ 33 4.3 Poland .......................................................................................................................................................................................... 36 4.4 Slovenia ....................................................................................................................................................................................... 40 4.5 Sweden ........................................................................................................................................................................................ 45 5. Chemical products registration in a non-European Union country: Russian Federation ........ 49 5.1 Scope of the register ............................................................................................................................................................ 49 5.2 Institutional infrastructure and responsible bodies............................................................................................. 50 5.3 Types of information collected and structure of the database and the register .................................... 50 5.4 Submitting information ....................................................................................................................................................... 51 5.5 Access to the database, information sharing and confidentiality .................................................................
Recommended publications
  • Tremprime QD Low-Odor
    Version: 1.1 Revision Date: 10/12/2018 SAFETY DATA SHEET 1. Identification Material name: TREMPRIME Q.D. LOW ODOR Material: 022045 805 Recommended use and restriction on use Recommended use : Coatings Restrictions on use: Not known. Manufacturer/Importer/Supplier/Distributor Information Tremco Canadian Sealants 220 Wicksteed Ave Toronto ON M4H 1G7 CA Contact person : EH&S Department Telephone : 1-800-263-6046 Emergency telephone number : 1-800-424-9300 (US); 1-613-996-6666 (Canada) 2. Hazard(s) identification Hazard Classification Physical Hazards Flammable liquids Category 3 Health Hazards Acute toxicity (Inhalation - vapor) Category 4 Serious Eye Damage/Eye Irritation Category 2A Germ Cell Mutagenicity Category 1B Carcinogenicity Category 1B Unknown toxicity - Health Acute toxicity, oral 40.8 % Acute toxicity, dermal 43 % Acute toxicity, inhalation, vapor 97 % Acute toxicity, inhalation, dust 100 % or mist Label Elements Hazard Symbol : 1/14 800000060000 Version: 1.1 Revision Date: 10/12/2018 Signal Word: Danger Hazard Statement: Flammable liquid and vapor. Harmful if inhaled. Causes serious eye irritation. May cause genetic defects. May cause cancer. Precautionary Statements Prevention: Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Keep container tightly closed. Ground and bond container and receiving equipment. Use explosion-proof [electrical/ventilating/lighting/EF e:uipment. 5se non1sparking tools. Take action to prevent static discharges. Wear protective gloves/protective clothing/eye protection/face protection. Avoid breathing dust/fume/gas/mist/vapors/spray. 5se only outdoors or in a well1ventilated area. Wash thoroughly after handling. Obtain special instructions before use. Do not handle until all safety precautions have been read and understood.
    [Show full text]
  • Inventory Size (Ml Or G) 103220 Dimethyl Sulfate 77-78-1 500 Ml
    Inventory Bottle Size Number Name CAS# (mL or g) Room # Location 103220 Dimethyl sulfate 77-78-1 500 ml 3222 A-1 Benzonitrile 100-47-0 100ml 3222 A-1 Tin(IV)chloride 1.0 M in DCM 7676-78-8 100ml 3222 A-1 103713 Acetic Anhydride 108-24-7 500ml 3222 A2 103714 Sulfuric acid, fuming 9014-95-7 500g 3222 A2 103723 Phosphorus tribromide 7789-60-8 100g 3222 A2 103724 Trifluoroacetic acid 76-05-1 100g 3222 A2 101342 Succinyl chloride 543-20-4 3222 A2 100069 Chloroacetyl chloride 79-04-9 100ml 3222 A2 10002 Chloroacetyl chloride 79-04-9 100ml 3222 A2 101134 Acetyl chloride 75-36-5 500g 3222 A2 103721 Ethyl chlorooxoacetate 4755-77-5 100g 3222 A2 100423 Titanium(IV) chloride solution 7550-45-0 100ml 3222 A2 103877 Acetic Anhydride 108-24-7 1L 3222 A3 103874 Polyphosphoric acid 8017-16-1 1kg 3222 A3 103695 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103694 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103880 Methanesulfonic acid 75-75-2 500ml 3222 A3 103883 Oxalyl chloride 79-37-8 100ml 3222 A3 103889 Thiodiglycolic acid 123-93-3 500g 3222 A3 103888 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 103886 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 102969 sulfuric acid 7664-93-9 500 mL 2428 A7 102970 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102971 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102973 formic acid (88%) 64-18-6 500 mL 2428 A7 102974 hydrofloric acid (49%) 7664-39-3 500 mL 2428 A7 103320 Ammonium Hydroxide conc.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • OFR Staff Plan
    Staff Briefing Package Project Plan: Organohalogen Flame Retardant Chemicals Assessment July 1, 2020 CPSC Consumer Hotline and General Information: 1-800-638-CPSC (2772) CPSC's Web Site: http://www.cpsc.gov THIS DOCUMENT HAS NOT BEEN REVIEWED CLEARED FOR PUBLIC RELEASE OR ACCEPTED BY THE COMMISSION UNDER CPSA 6(b)(1) Acknowledgments The preparation, writing, and review of this report was supported by a team of staff. We acknowledge and thank team members for their significant contributions. Michael Babich, Ph.D., Directorate for Health Sciences Charles Bevington, M.P.H., Directorate for Health Sciences Xinrong Chen, Ph.D., D.A.B.T., Directorate for Health Sciences Eric Hooker, M.S., D.A.B.T., Directorate for Health Sciences Cynthia Gillham, M.S., Directorate for Economic Analysis John Gordon, Ph.D., Directorate for Health Sciences Kristina Hatlelid, Ph.D., M.P.H., Directorate for Health Sciences Barbara Little, Attorney, Office of the General Counsel Joanna Matheson, Ph.D., Directorate for Health Sciences ii THIS DOCUMENT HAS NOT BEEN REVIEWED CLEARED FOR PUBLIC RELEASE OR ACCEPTED BY THE COMMISSION UNDER CPSA 6(b)(1) Table of Contents Briefing Memo ............................................................................................................................... iv 1. Executive summary .............................................................................................................. 5 2. Introduction .........................................................................................................................
    [Show full text]
  • Structure-Based Discovery and Synthesis of Potential Transketolase Inhibitors
    Supplementary Materials Structure-Based Discovery and Synthesis of Potential Transketolase Inhibitors Jingqian Huo 1,†, Bin Zhao 2,†, Zhe Zhang 1, Jihong Xing 3, Jinlin Zhang 1,*, Jingao Dong 1,3,* and Zhijin Fan 2,4,* 1 College of Plant Protection, Agricultural University of Hebei, Baoding 071001, China; [email protected] (J.H.); [email protected] (Z.Z.) 2 State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; [email protected] 3 College of life science, Agricultural University of Hebei, Baoding 071000, China; [email protected] 4 Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China * Correspondence: [email protected] (J.Z.); [email protected] (J.D.); [email protected] (Z.F.) † These authors contributed equally to this work. Table of Contents Table S1. The docking affinity of the compounds with transketolase. Figure S1. The binding mode between the small molecules and transketolase. Figure S2. Molecular structure of compound 4b. The appearance, yields, melting points and spectral data of the synthesized compounds. Table S1. The docking affinity of the compounds with transketolase ZINC Affinity ZINC Affinity ZINC Affinity ZINC Affinity ZINC Affinity Compd. (kcal/mol) Compd. (kcal/mol) Compd. (kcal/mol) Compd. (kcal/mol) Compd. (kcal/mol) 12007063 -9.1 05776152 -8.7 12929396 -8.6 67603588 -8.5 41585313 -8.5 19961402 -9 72020240 -8.7 95353804 -8.6 72472311 -8.5 46127235 -8.5 12126699 -9 16283531 -8.7 95353805 -8.6 72472321 -8.5 49169766 -8.5 23186631 -8.8 08654961 -8.6 95381421 -8.6 72472332 -8.5 05175849 -8.5 12130512 -8.8 58191888 -8.6 12130884 -8.6 21941633 -8.5 19706239 -8.5 Molecules 2018, 23, 2116; doi:10.3390/molecules23092116 www.mdpi.com/journal/molecules Molecules 2018, 23, 2116 2 of 11 a b c d e f Figure S1.
    [Show full text]
  • Preparation Andspectral Studies of Cr(III), Fe(II) Chelates of Schiff Bases Derived from Benzidine and 2-Nitrobenzaldehyde
    IOSR Journal of Applied Chemistry (IOSR-JAC) e-ISSN: 2278-5736.Volume 13, Issue 3 Ser. II (March. 2020), PP 29-35 www.iosrjournals.org Preparation andSpectral Studies of Cr(III), Fe(II) Chelates of Schiff bases Derived from Benzidine and 2-Nitrobenzaldehyde Younis. O.Ben Amer*, Rehab. N. El-daghare, Halima F. Salem, Ahmed N. Hammouda,Rashd. M. El-Ferjani &Fatin M. Elmagbari Chemistry Department, Faculty of Science, Benghazi University, Benghazi, Libya Corresponding author: Younis. O.Ben Amer Abstract In this paper, we report the synthesis andcharacterisation of Bis(2-nitroBenzylidene)benzidine Schiff base was prepared by the reaction of benzidine and2-nitrobenzaldehyde 1:2 reaction. This ligand was used to form two chelates with Cr3+ and Fe2+ ions. The prepared compounds were analysed using elemental analysis, IR spectroscopy, 1H-NMR and mass spectroscopy. The obtained results confirmed the formation of proposed compounds,including the free ligand and the two chelates and were found in a good agreement with theoretical values. Keywords: Schiff base; complexes; spectroscopy; 2-Nitrobenzaldehyde. ----------------------------------------------------------------------------------------------------------------------------- ---------- Date of Submission: 09-03-2020 Date of Acceptance: 23-03-2020 ----------------------------------------------------------------------------------------------------------------------------- ---------- I. Introduction Many variously shaped polydentate chelating ligands have been prepared in the past and successfully
    [Show full text]
  • Dupont™ Tychem® 5000
    DuPont™ Tychem® 5000 C3525T TN DuPont™ Tychem® 5000 DuPont™ Tychem® 5000 Encapsulated Level B Suit. Flat Back, Front Entry. Standard Visor, 1 Layer: 20 mil PVC. Elastic Wrists. Double Storm Flap with Hook & Loop Closure. Airline Access. One Exhaust Vent. Taped Seams. Tan. Name Description Full Part Number C3525TTNxx0006yy (xx=size;yy=option code) Fabric/Materials Tychem® 5000 Design Encap. Level B, Flat Back, Front Entry Seam Taped Color Tan Quantity/Box 6 per case Sizes SM, MD, LG, XL, 2X, 3X, 4X Option Codes 00 September 23, 2021 DuPont™ Tychem® 5000 Page 1 of 21 FEATURES & PRODUCT DETAILS Tychem® 5000 fabric is composed of a multi-layer film barrier laminated to a durable 2.0 oz/yd2 polypropylene substrate. Tychem® 5000 fabric is strong and durable for rigorous activities and rugged situations involving liquid splash and provides barrier to a broad range of chemicals. Typical Applications: chemical handling, petro-chemical, hazardous materials/waste clean-up, fire departments, industrial hazmat teams, utilities, and domestic preparedness. Commonly used in domestic preparedness for situations where the potential to exposure to chemicals exist. September 23, 2021 DuPont™ Tychem® 5000 Page 2 of 21 Encapsulated design provides protection from liquid splash exposure for both the wearer and respiratory equipment Also provides coverage from overhead liquid splash (does not provide vapor protection) Taped seams provide strong chemical resistance against heavy liquid splashes. A sewn seam is covered with a strip of compatible chemical-resistant
    [Show full text]
  • Benzofuran Synthesis Through Iodocyclization Reactions: Recent Advances
    MOJ Bioorganic & Organic Chemistry Mini Review Open Access Benzofuran synthesis through iodocyclization reactions: recent advances Abstract Volume 1 Issue 7 - 2017 Recent advancements (2014-17) in the benzofuran synthesis through iodocyclization Saurabh Mehta have been summarized. The successful use of various iodinating agents, bases, additives Department of Applied Chemistry, Delhi Technological etc. make iodocyclization a versatile and efficient methodology. The methodology has University, India been applied for the synthesis of more complex benzofuran derivatives, and may open interesting avenues in the area of heterocyclic chemistry (Figure 1). Correspondence: Saurabh Mehta, Department of Applied O-LG Chemistry, Delhi Technological University, Bawana Road, Delhi, + O R1 I 1 2 110042 India, Tel +9188 0066 5868, R R Email [email protected], [email protected] R2 I Received: December 17, 2017 | Published: December 29, 2017 LG = H, Me or other Protecting group 1 R = H, Me, OMe, I, CO2Me, etc. R2 = H, aryl, alkyl, alkenyl, etc. Figure 1 Keywords: annulations, alkyne, benzofuran, iodocyclization, heterocycle Introduction derivatives were obtained in high yields (84%−100%) under mild conditions. The authors demonstrated that the choice of bis(2,4,6- Benzo[b]furan is a privileged heterocyclic scaffold. Several collidine)iodonium hexafluorophosphate [I(coll)2PF6] as the compounds containing this scaffold have interesting biological iodinating agent was necessary for the success of the reaction. Also, 1 activities, such as anti-cancer, anti-viral, anti-inflammatory, etc. Few the ethoxyethyl ether group acted as a protecting group as well as a 2 derivatives are even used as commercial drugs, such as Amiodarone, good leaving group.
    [Show full text]
  • Benzidine and Dyes Metabolized Cells
    Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Benzidine and Dyes Metabolized cells. It also caused many other types of genetic damage in various to Benzidine test systems, including yeast, cultured human and other mamma- lian cells, and rodents exposed in vivo. The damage included mitotic Introduction gene conversion (in yeast), micronucleus formation, DNA strand breaks, unscheduled DNA synthesis, cell transformation, chromo- Benzidine was first listed in theFirst Annual Report on Carcinogens somal aberrations, sister chromatid exchange, and aneuploidy (IARC (1980), and dyes metabolized to benzidine were first listed as a class 1987). Workers exposed to benzidine and or benzidine-based dyes in the Ninth Report on Carcinogens (2000). The profiles for benzidine had higher levels of chromosomal aberrations in their white bloods and dyes metabolized to benzidine, which are listed (separately) as cells than did unexposed workers (Choudhary 1996). known to be human carcinogens, follow this introduction. Properties Benzidine Benzidine is a biphenyl amine that exists at room temperature as a white to slightly reddish crystalline powder (ATSDR 2001). It is CAS No. 92-87-5 slightly soluble in cold water, more soluble in hot water, and read- ily soluble in less-polar solvents, such as diethyl ether and ethanol. Known to be a human carcinogen It darkens on exposure to air and light (Akron 2009). Physical and First listed in the First Annual Report on Carcinogens (1980) chemical properties of benzidine are listed in the following table. Also known as 4,4′-diaminobiphenyl Property Information Molecular weight 184.2a Specific gravity 1.250 at 20°C/4°Ca H2N NH2 Melting point 120°Ca Boiling point 401°Ca Log K 1.34a Carcinogenicity ow Water solubility 0.322 g/L at 25°Ca Benzidine is known to be a human carcinogen based on sufficient ev- Vapor pressure 8.98 × 10–7 mm Hg at 25°Cb idence of carcinogenicity from studies in humans.
    [Show full text]
  • Polybrominated Diphenyl Ethers (Pbdes)
    America’s Children and the Environment, Third Edition DRAFT Indicators Biomonitoring: Polybrominated diphenyl ethers (PBDEs) EPA is preparing the third edition of America’s Children and the Environment (ACE3), following the previous editions published in December 2000 and February 2003. ACE is EPA’s compilation of children’s environmental health indicators and related information, drawing on the best national data sources available for characterizing important aspects of the relationship between environmental contaminants and children’s health. ACE includes four sections: Environments and Contaminants, Biomonitoring, Health, and Special Features. EPA has prepared draft indicator documents for ACE3 representing 23 children's environmental health topics and presenting a total of 42 proposed children's environmental health indicators. This document presents the draft text, indicator, and documentation for the PBDEs topic in the Biomonitoring section. THIS INFORMATION IS DISTRIBUTED SOLELY FOR THE PURPOSE OF PRE- DISSEMINATION PEER REVIEW UNDER APPLICABLE INFORMATION QUALITY GUIDELINES. IT HAS NOT BEEN FORMALLY DISSEMINATED BY EPA. IT DOES NOT REPRESENT AND SHOULD NOT BE CONSTRUED TO REPRESENT ANY AGENCY DETERMINATION OR POLICY. For more information on America’s Children and the Environment, please visit www.epa.gov/ace. For instructions on how to submit comments on the draft ACE3 indicators, please visit www.epa.gov/ace/ace3drafts/. March 2011 DRAFT: DO NOT QUOTE OR CITE Biomonitoring: Polybrominated Diphenyl Ethers (PBDEs) 1 Polybrominated Diphenyl Ethers (PBDEs) 2 3 Polybrominated diphenyl ethers (PBDEs) are a group of brominated flame retardant chemicals 4 that have been incorporated into a variety of manufactured products, including foam cushioning 5 used in furniture and plastics used in televisions and computers.
    [Show full text]
  • Flame Retardants Used in Flexible Polyurethane Foam
    FLAME RETARDANTS USED IN FLEXIBLE POLYURETHANE FOAM: AN ALTERNATIVES ASSESSMENT UPDATE SECTIONS 1-6 August 2015 EPA Publication 744-R-15-002 Table of Contents 1 Introduction .......................................................................................................................... 1-1 1.1 The Furniture Flame Retardancy Partnership .............................................................. 1-1 1.2 Updating the 2005 Furniture Flame Retardancy Report .............................................. 1-1 1.3 Alternatives Assessment as a Risk Management Tool ................................................ 1-4 1.4 DfE Alternatives Assessment and the Toxic Substances Control Act ......................... 1-6 2 Hazard Evaluation Results for Flame Retardants Used in Flexible Polyurethane Foam ..... 2-1 2.1 Hazard Comparison Table ........................................................................................... 2-1 2.2 Hazard and Fate Results by Chemical Group .............................................................. 2-5 2.3 Hazard and Fate Results by Endpoint .......................................................................... 2-6 3 Flexible Polyurethane Foam Flame Retardants and Flammability Standards ..................... 3-1 3.1 Flexible Polyurethane Foam ........................................................................................ 3-1 3.2 Flame Retardant Classification and Exposure Considerations .................................... 3-1 3.3 Sources of Data for Identifying Foam Flame Retardants
    [Show full text]
  • Chapter 4: HAZARD COMMUNICATION
    Chapter 4: HAZARD COMMUNICATION The text of this chapter represents the agreement reached on a harmonised hazard communication system as part of the work on the GHS, with minor editorial changes. Additional explanatory text has been added in some sections in order to provide guidance for the reader on how to interpret the GHS agreed text. Where this is the case, the text is italicised and placed in a box to differentiate it from the agreed GHS text. OBJECTIVES AND SCOPE 1. One of the objective of the work on the GHS has been the development of a harmonised hazard communication system including labelling, safety data sheets and easily understandable symbols, based on the classification criteria developed by the focal points within the IOMC Co-ordinating Group for the Harmonisation of Chemical Classifications Systems, CG/HCCS. This work has been carried out under the auspices of the ILO, by the ILO Working Group on Hazard Communication. The specific Terms of Reference and Membership of the Working Group are provided in Annex 1. In addition the principles contained in the IOMC CG/HCCS Terms of Reference and the document “Description and Further Clarification of the Anticipated Application of the GHS (also referred to as “The Scope Document”) also applied to the work on harmonisation of hazard communication (see Chapter 2). Application of the Harmonised Hazard Communication System 2.The harmonised system for hazard communication includes the appropriate labelling tools to convey information about each of the hazard classes and categories in the GHS. The use of symbols, signal words or hazard statements other than those which have been assigned to each of the GHS hazard classes and categories would be contrary to harmonisation.
    [Show full text]