Basic Principles of Animal Form and Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How the Skin Thickness and Thermal Contact Resistance Influence
micromachines Article How the Skin Thickness and Thermal Contact Resistance Influence Thermal Tactile Perception Congyan Chen * and Shichen Ding School of Automation, Southeast University, Nanjing 210096, China; [email protected] * Correspondence: [email protected]; Tel.: +86-138-1588-0379 Received: 25 December 2018; Accepted: 24 January 2019; Published: 25 January 2019 Abstract: A few experimental studies on thermal tactile perception have shown the influence of the thermal contact resistance which relates to contact surface roughness and pressure. In this paper, the theoretical influence of the skin thickness and the thermal contact resistance is studied on the thermal model describing the temperature evolution in skin and materials when they come in contact. The thermal theoretical profile for reproducing a thermal cue for given contact thermal resistance is also presented. Compared to existing models of thermal simulation, the method proposed here has the advantage that the parameters of skin structure and thermal contact resistance in target temperature profiles can be adjusted in thermal perception simulation according to different skin features or surface roughness if necessary. The experimental results of surface roughness recognition were also presented. Keywords: thermal tactile perception; surface roughness; skin thickness; thermal perception reproduction 1. Introduction Thermal perception is a rich, emotive, and entirely silent information source. For example, when our hands touch objects, thermal perceptions can provide information about their thermal characteristics, and help us recognize materials [1]. More, it could be used as an alternative mobile feedback channel when required, as it is silent for quiet environments, especially in electromagnetic interference case where monitors or headsets cannot work normally. -
Support and Movement
UNIT Support and II Movement The Integumentary System 6 Bone Tissues and the Skeletal System 7 Articulations 8 9 The Muscular System © Mopic/Shutterstock 9781284057874_CH06_105_127.indd 105 23/12/14 4:07 PM 9781284057874_CH06_105_127.indd 106 23/12/14 4:07 PM CHAPTER © drxy/iStockphoto.com 6 OUTLINE Integumentary System ■ Overview ■ Skin Epidermis OBJECTIVES Dermis ■ Accessory Structures After studying this chapter, readers should be able to Nails 1. Explain the structure of the dermis and epidermis. Hairs 2. Describe the normal and pathological colors skin can have. 3. List the functions of the skin. Glands in the Skin 4. Describe the structure of nails. ■ Functions of the 5. Discuss the various kinds of glands in the skin and the secretions of each. Integumentary System 6. Explain how the sweat glands play a major role in regulating body temperature. ■ Response of the Integument 7. Describe the three most common forms of skin cancer. to Injuries and Wounds 8. Describe the location and function of sebaceous and ceruminous glands. 9. Explain the anatomic parts of a hair. ■ Effects of Aging on the 10. Describe the effects of aging on the integumentary system. Integumentary System ■ Skin Cancer ■ Burns ■ Summary ■ Key Terms ■ Learning Goals ■ Critical Thinking Questions ■ Review Questions ■ Essay Questions 107 9781284057874_CH06_105_127.indd 107 23/12/14 4:07 PM depending on which part of the body it covers. The two main Overview layers of skin are the epidermis and dermis. The epidermis, The integumentary system, which consists of the skin the outer layer, is made up of keratinized stratified squa- (cutaneous membrane) and accessory structures, accounts mous epithelium (FIGURE 6-1). -
Development and Structure of the Excretory System the Nephron
Biology 224 Human Anatomy and Physiology II Week 7; Lecture 1; Monday Dr. Stuart S. Sumida Development and Structure of the Excretory System The Nephron DEVELOPMENT AND STRUCTURE OF EXCRETORY SYSTEM EXCRETORY SYSTEM REVIEW • Kidneys derived from INTERMEDIATE MESODERM. • Kidney starts out as a SEGMENTAL STRUCTURE. • Bladder, as part of embryonic gut tube: lining derived from endoderm. • Note, this is EXCRETION, NOT “ELIMINATION.” EARLY KIDNEY DEVELOPMENT • There is a segment of intermediate mesoderm for every body segment. • Earliest kidney appears in the cervical region of the body! (About week 3.) Called the PRONEPHROS. • Develop very close to the gonads. (They battle it out for the nearby ducts.) THE PRONEPHROS • The early anteriorly developed kidney parts. • Has NO EXCRETORY FUNCTION. • Functions to INDUCE DEVELOPMENT of middle segments of intermediate meosderm into the MESONEPHROS. THE MESONEPHROS • Some think it is the functioning embryonic kidney. Some think is has no excretory function. • WE DO KNOW that the duct that attaches to it (THE MESONEPHRIC DUCT) is very important in INDUCING DEVELOPMENT OF THE CAUDAL KIDNEY SEGMENTS (the METANEPHROS). Mesonephric Duct reaches all the way to end of gut tube (cloaca). We need to... • Attach the ducts to the hindend kidney (the metanephros). • Split the bladder away from the gut tube. After the mesonephric duct attaches to cloaca, the embryonic URETER grows from caudal to cranial to attach to mass of metanephric kidney. A septum, the URORECTAL SEPTUM, grows between the more dorsal part of the gut tube and the more ventral part that will become the bladder. Note that attached to the bladder are right and left ueters, the allantois (an extraembryonic membrane). -
Thermal Imaging & Body Temperature
Thermal Imaging & Body Temperature Thermal Imaging is the process to create an image using Infrared Radiation. Most things emit some form of Infrared Radiation, including humans and animals. Infrared Radiation is directly affected by temperature, e.g. the higher Thermal the temperature the more Infrared Radiation is Imaging emitted, and the inverse is also true. Explained Using a Microbolometer, a thermal camera is capable of generating a Thermal Image by applying a colour palette to the different intensities of Infrared Radiation. Body Temperature refers to the temperature of the body’s core where your internal organs and bodily systems function at an optimal level. Body Temperature tends to maintain a constant temperature and is not as easily affected by variables from the environment such as Body temperature, relative humidity, wind velocity, Temperature and radiation. Explained Normal Body Temperature tends to be 36.5– 37.5 °C (97.7–99.5 °F). Skin temperature refers to the temperature of the body skin which is the largest organ in the human body. Skin Temperature can vary between 33.5 and 36.9 C (92.3 and 98.4F) Skin Temperature tends to be affected by environmental factors more easily than body temperature as it is the Skin outermost area of the body. Temperature When reading skin temperature it is important to take in Explained environmental variables such as temperature, relative humidity, wind velocity, and radiation. In outdoor environments it is important to consider solar loading, as this also has an impact on temperature readings. Skin Offset (Correction) The software settings used to estimate this difference is called skin offset. -
The Contribution of Nasal Countercurrent Heat Exchange to Water Balance in the Northern Elephant Seal, Mirounga Angustirostris
J. exp. Biol. 113, 447-454 (1984) 447 Printed in Great Britain © The Company of Biologists Limited 1984 THE CONTRIBUTION OF NASAL COUNTERCURRENT HEAT EXCHANGE TO WATER BALANCE IN THE NORTHERN ELEPHANT SEAL, MIROUNGA ANGUSTIROSTRIS BY ANTHONY C. HUNTLEY, DANIEL P. COSTA Long Marine Laboratory, Center for Marine Studies, University of California, Santa Cruz, U.SA. AND ROBERT D. RUBIN Department of Life Sciences, Santa Rosa Junior College, Santa Rosa, California, U.SA Accepted 29 May 1984 SUMMARY 1. Elephant seals fast completely from food and water for 1-3 months during terrestrial breeding. Temporal countercurrent heat exchange in the nasal passage reduces expired air temperature (Te) below body temperature (Tb)- 2. At a mean ambient temperature of 13'7°C, Te is 20*9 °C. This results in the recovery of 71-5 % of the water added to inspired air. 3. The amount of cooling of the expired air (Tb~Te) and the percentage of water recovery varies inversely with ambient temperature. 4. Total nasal surface area available for heat and water exchange, located in the highly convoluted nasal turbinates, is estimated to be 720 cm2 in weaned pups and 3140 cm2 in an adult male. 5. Nasal temporal countercurrent heat exchange reduces total water loss sufficiently to allow maintenance of water balance using metabolic water production alone. INTRODUCTION Northern elephant seals, Mirounga angustirostis (Gill), are exceptional among pin- nipeds in the duration of their terrestrial breeding fast. During this time, they volun- tarily forgo both food and water while remaining active on the rookery. The length of these fasts varies with age, sex and social status. -
(Somniosus Pacificus) Predation on Steller Sea Lions (Eumetopias
297 Abstract—Temperature data re- In cold blood: evidence of Pacific sleeper shark ceived post mortem in 2008–13 from 15 of 36 juvenile Steller sea (Somniosus pacificus) predation on Steller sea lions (Eumetopias jubatus) that lions (Eumetopias jubatus) in the Gulf of Alaska had been surgically implanted in 2005–11 with dual life history 1,2 transmitters (LHX tags) indicat- Markus Horning (contact author) ed that all 15 animals died by Jo-Ann E. Mellish3,4 predation. In 3 of those 15 cases, at least 1 of the 2 LHX tags was Email address for contact author: [email protected] ingested by a cold-blooded pred- ator, and those tags recorded, 1 Department of Fisheries and Wildlife and 3 Alaska Sea Life Center immediately after the sea lion’s Marine Mammal Institute P.O. Box 1329 death, temperatures that cor- College of Agricultural Sciences Seward, Alaska 99664 responded to deepwater values. Oregon State University 4 School of Fisheries and Ocean Sciences 2030 SE Marine Science Drive These tags were regurgitated or University of Alaska Fairbanks Newport, Oregon 97365 passed 5–11 days later by preda- P.O. Box 757220 2 tors. Once they sensed light and Coastal Oregon Marine Experiment Station Fairbanks, Alaska 99755-7220 Oregon State University air, the tags commenced trans- 2030 SE Marine Science Drive missions as they floated at the Newport, Oregon 97365 ocean surface, reporting tem- peratures that corresponded to regional sea-surface estimates. The circumstances related to the tag in a fourth case were ambig- The western distinct population seg- mercial fisheries (National Research uous. -
TIDA-00824 Human Skin Temperature Sensing for Wearable Applications Reference Design
TIDA-00824 Human Skin Temperature Sensing for Wearable Applications Reference Design Abstract This TI Design report will show how to use the LMT70 temperature sensor to measure human skin temperature in a wearable device such as a smart watch or a fitness tracker (not as a diagnostic or therapeutic use). The wearable design covers both electrical and mechanical design to optimize performance of the LMT70 sensor’s ability to accurately measure skin temperature. Test data such as accuracy and thermal response is also discussed in this document. Document History Version Date Author Notes 1.0 September 2015 Michael Wong First Release TIDA-00824 Contents 1. OBJECTIVE ......................................................................................................................................................... 3 2. WEARABLE DESIGN .......................................................................................................................................... 3 2.1. ELECTRICAL DESIGN ........................................................................................................................................ 3 2.1.1. SIGNAL PATH...................................................................................................................................................... 3 2.1.2. MAIN PCB ............................................................................................................................................................ 4 2.1.3. REMOTE PCB..................................................................................................................................................... -
Determinants and Consequences of Interspeciwc Body Size Variation in Tetraphyllidean Tapeworms
Oecologia (2009) 161:759–769 DOI 10.1007/s00442-009-1410-1 COMMUNITY ECOLOGY - ORIGINAL PAPER Determinants and consequences of interspeciWc body size variation in tetraphyllidean tapeworms Haseeb Sajjad Randhawa · Robert Poulin Received: 3 December 2008 / Accepted: 20 June 2009 / Published online: 10 July 2009 © Springer-Verlag 2009 Abstract Tetraphyllidean cestodes are cosmopolitan, are relatively important variables in models explaining remarkably host speciWc, and form the most speciose and interspeciWc variations in tetraphyllidean tapeworm length. diverse group of helminths infecting elasmobranchs In addition, a negative relationship between tetraphyllidean (sharks, skates and rays). They show substantial interspe- body size and intensity of infection was apparent. These ciWc variation in a variety of morphological traits, including results suggest that space constraints and ambient tempera- body size. Tetraphyllideans represent therefore, an ideal ture, via their eVects on metabolism and growth, determine group in which to examine the relationship between para- adult tetraphyllidean cestode size. Consequently, a trade-oV site body size and abundance. The individual and combined between size and numbers is possibly imposed by external eVects of host size, environmental temperature, host habi- forces inXuencing host size, hence limiting physical space tat, host environment, host physiology, and host type (all or other resources available to the parasites. likely correlates of parasite body size) on parasite length were assessed using general linear model analyses using Keywords Tetraphyllidea · Abundance · Body size · data from 515 tetraphyllidean cestode species (182 species Depth · Latitude were included in analyses). The relationships between tetra- phyllidean cestode length and intensity and abundance of infection were assessed using simple linear regression anal- Introduction yses. -
Modeling and Exploiting Microbial Temperature Response
processes Review Modeling and Exploiting Microbial Temperature Response Philipp Noll, Lars Lilge, Rudolf Hausmann and Marius Henkel * Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; [email protected] (P.N.); [email protected] (L.L.); [email protected] (R.H.) * Correspondence: [email protected] Received: 15 December 2019; Accepted: 14 January 2020; Published: 17 January 2020 Abstract: Temperature is an important parameter in bioprocesses, influencing the structure and functionality of almost every biomolecule, as well as affecting metabolic reaction rates. In industrial biotechnology, the temperature is usually tightly controlled at an optimum value. Smart variation of the temperature to optimize the performance of a bioprocess brings about multiple complex and interconnected metabolic changes and is so far only rarely applied. Mathematical descriptions and models facilitate a reduction in complexity, as well as an understanding, of these interconnections. Starting in the 19th century with the “primal” temperature model of Svante Arrhenius, a variety of models have evolved over time to describe growth and enzymatic reaction rates as functions of temperature. Data-driven empirical approaches, as well as complex mechanistic models based on thermodynamic knowledge of biomolecular behavior at different temperatures, have been developed. Even though underlying biological mechanisms and mathematical models have been well-described, temperature as a control variable is only scarcely applied in bioprocess engineering, and as a conclusion, an exploitation strategy merging both in context has not yet been established. In this review, the most important models for physiological, biochemical, and physical properties governed by temperature are presented and discussed, along with application perspectives. -
Renal Physiology Background
RENAL PHYSIOLOGY Florida State University Advanced Topics in Biomedical Mathematics MAP5932, Spring 2007 03/16/07 Brinda Pamulapati Goal 1 Background of the kidney 2 Glomerulus 3 Mathematical model of Glomerulus 4 Co-current and counter- current mechanism 5 Mathematical model of the co-current and counter-current mechanism Kidney Kidney and Nephron picture Glomerulus and Bowman's Capsule Mathematical model of the glomerular filter There are 3 pressures that effect the rate of glomerular filtration: 1 the pressure inside the glomerular capillaries that promote filteration(p1) 2 the pressure inside the Bowman's capsule that opposes filtration(p2) 3 the colloidal osmotic pressure of the plasma proteins inside the capillaries that opposes filteration(pi) Schematic diagram of the glomerular filtration(one dimentional) q2 Qi q1 Qe x=0 x=L Mathematical model of the glomerular filter(cont.) dq 1 = K (P " P + ! ) dx f 2 1 c P1 ,P2 = hydrostatic pressure ! c = osmotic pressure of the suspended protei ns and formed elements of the blood K f = capillary filteration rate where osmotic pressure is ! c = RTc Conservation Equation ciQi = cq1 ! c ciQi = q1 ( from osmosis RTc) RT ! c = ! c = RTciQi / q1 Qi ! c = ! i (where ! i = RTci ) q1 Mathematical Model of the Glomerulus dq1 = K (P " P + ! ) ................(20.1) dx f 2 1 c Qi ! c = ! i .......................................................(20.4) qi # Q $ e %! Q & Q ' " e +! ln & i ' =1% K L i f ..............(20.5) Qi & 1%! ' !Qi & ' ( ) Qe =efflux through the efferent arterioles L=length of the filter !=" i /(P1 # P2) Cocurrent and Countercurrent Mechanism What is Cocurrent and Countercurrent Mechanism Why Study about it ? The human kidney use countercurrent exchange to remove water from urine so the body can retain water that was used to move the nitrogenous waste products. -
Mod. 3 Vital Signs
Mod. 3 Vital Signs 1. What is most important to assess during secondary assessment? a. Airway b. Pulse c. Respiration d. Chief complaint 2. The first set of vital sign measurements obtained are often referred to as which of the following? a. Baseline vital signs b. Normal vital signs c. Standard vital signs d. None of the above 3. A patient with a pulse rate of 120 beats per minute is considered which of the following? a. Dyscardic b. Normocardic c. Tachycardic d. Bradycardic 4. Where do baseline vital signs fit into the sequence of patient assessment? a. Ongoing assessment b. At primary assessment c. At secondary assessment d. At the patient's side 5. In a conscious adult patient, which of the following pulses should be assessed initially? a. Brachial b. Radial c. Carotid d. Pedal 6. You are assessing a 55-year-old male complaining of chest pain and have determined that his radial pulse is barely palpable. You also determine that there were 20 pulsations over a span of 30 seconds. Based on this, how would you report this patient's pulse? a. Pulse 20, weak, and regular b. Pulse 20 and weak c. Pulse 40 and weak d. Pulse 40, weak, and irregular 7. Which of the following are the vital signs that need to be recorded? a. Pulse, respiration, skin color, skin temperature and condition b. Pulse, respiration, skin color, skin temperature and condition, pupils, blood pressure, and bowel sounds c. Pulse, respiration, skin color, skin temperature and condition, pupils, and blood pressure d. Pulse, respiration, skin color, skin temperature, pupils, and blood pressure 8. -
L8-Urine Conc. [PDF]
The loop of Henle is referred to as countercurrent multiplier and vasa recta as countercurrent exchange systems in concentrating and diluting urine. Explain what happens to osmolarity of tubular fluid in the various segments of the loop of Henle when concentrated urine is being produced. Explain the factors that determine the ability of loop of Henle to make a concentrated medullary gradient. Differentiate between water diuresis and osmotic diuresis. Appreciate clinical correlates of diabetes mellitus and diabetes insipidus. Fluid intake The total body water Antidiuretic hormone is controled by : Renal excretion of water Hyperosmolar medullary Changes in the osmolarity of tubular fluid : interstitium 1 2 3 Low osmolarity The osmolarity High osmolarity because of active decrease as it goes up because of the transport of Na+ and because of the reabsorbation of water co-transport of K+ and reabsorption of NaCl Cl- 4 5 Low osmolarity because of High osmolarity because of reabsorption of NaCl , also reabsorption of water in reabsorption of water in present of ADH , present of ADH reabsorption of urea Mechanisms responsible for creation of hyperosmolar medulla: Active Co- Facilitated diffusion transport : transport : diffusion : of : Na+ ions out of the Only of small thick portion of the K+ , Cl- and other amounts of water ascending limb of ions out of the thick from the medullary the loop of henle portion of the Of urea from the tubules into the into the medullary ascending limb of inner medullary medullary interstitium the loop of henle collecting