Lijst Vanwater
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variations on a Theme
HENRY JOUTSIJOKI Variations on a Theme The Classification of Benthic Macroinvertebrates ACADEMIC DISSERTATION To be presented, with the permission of the board of the School of Information Sciences of the University of Tampere, for public discussion in the Auditorium Pinni B 1100, Kanslerinrinne 1, Tampere, on November 9th, 2012, at 12 o’clock. UNIVERSITY OF TAMPERE ACADEMIC DISSERTATION University of Tampere School of Information Sciences Finland Copyright ©2012 Tampere University Press and the author Distribution Tel. +358 40 190 9800 Bookshop TAJU [email protected] P.O. Box 617 www.uta.fi/taju 33014 University of Tampere http://granum.uta.fi Finland Cover design by Mikko Reinikka Acta Universitatis Tamperensis 1777 Acta Electronica Universitatis Tamperensis 1251 ISBN 978-951-44-8952-5 (print) ISBN 978-951-44-8953-2 (pdf) ISSN-L 1455-1616 ISSN 1456-954X ISSN 1455-1616 http://acta.uta.fi Tampereen Yliopistopaino Oy – Juvenes Print Tampere 2012 Abstract This thesis focused on the classification of benthic macroinvertebrates by us- ing machine learning methods. Special emphasis was placed on multi-class extensions of Support Vector Machines (SVMs). Benthic macroinvertebrates are used in biomonitoring due to their properties to react to changes in water quality. The use of benthic macroinvertebrates in biomonitoring requires a large number of collected samples. Traditionally benthic macroinvertebrates are separated and identified manually one by one from samples collected by biologists. This, however, is a time-consuming and expensive approach. By the automation of the identification process time and money would be saved and more extensive biomonitoring would be possible. The aim of the thesis was to examine what classification method would be the most appro- priate for automated benthic macroinvertebrate classification. -
A Review of the Hemiptera of Great Britain: the Aquatic and Semi-Aquatic Bugs
Natural England Commissioned Report NECR188 A review of the Hemiptera of Great Britain: The Aquatic and Semi-aquatic Bugs Dipsocoromorpha, Gerromorpha, Leptopodomorpha & Nepomorpha Species Status No.24 First published 20 November 2015 www.gov.uk/natural -england Foreword Natural England commission a range of reports from external contractors to provide evidence and advice to assist us in delivering our duties. The views in this report are those of the authors and do not necessarily represent those of Natural England. Background Making good decisions to conserve species should primarily be based upon an objective process of determining the degree of threat to the survival of a species. The recognised international approach to undertaking this is by assigning the species to one of the IUCN threat categories. This report was commissioned to update the national status of aquatic and semi-aquatic bugs using IUCN methodology for assessing threat. It covers all species of aquatic and semi-aquatic bugs (Heteroptera) in Great Britain, identifying those that are rare and/or under threat as well as non-threatened and non-native species. Reviews for other invertebrate groups will follow. Natural England Project Manager - Jon Webb, [email protected] Contractor - A.A. Cook (author) Keywords - invertebrates, red list, IUCN, status reviews, Heteroptera, aquatic bugs, shore bugs, IUCN threat categories, GB rarity status Further information This report can be downloaded from the Natural England website: www.gov.uk/government/organisations/natural-england. For information on Natural England publications contact the Natural England Enquiry Service on 0845 600 3078 or e-mail [email protected]. -
Survey of Ponds at Gallows Bridge Farm Nature Reserve, Buckinghamshire
A survey of ponds at Gallows Bridge Farm Nature Reserve, Buckinghamshire A report for the Freshwater Habitats Trust Martin Hammond Ecology [email protected] September 2016 1. Introduction Gallows Bridge Farm forms part of the Upper Ray Meadows complex owned by the Berkshire, Buckinghamshire and Oxfordshire Wildlife Trust (BBOWT). Six ponds were surveyed on 19th and 20th September 2016. A range of relict stream channels and foot drains were dry at the time of the survey, as were three small ponds in the southern meadows (Ponds 16 to 18, around SP 664 198). Tetchwick Brook, a small tributary of the River Ray, was sampled briefly at three locations to provide additional records. Each pond was surveyed as per the PSYM methodology (Environment Agency, 2002), i.e. three minutes netting time divided equally between each of the meso-habitats present plus one minute examining the water surface and submerged debris. Where it was considered that additional sampling effort was warranted, additional netting was carried out but the taxa thus found were recorded separately. As far as possible, all material was identified to species level and raw data have been provided in spreadsheet format. 2. The ponds surveyed Pond Field: Main Pond (SP 669 199) The Pond Field contains around 30 ponds created by Freshwater Habitats Trust. The Main Pond is the permanent pond nearest the car park. It is a shallow, clay-bedded pond with patchy Broad-leaved Pondweed Potamogeton natans and stoneworts Chara spp., with low emergent vegetation around its banks. Nine-spined Sticklebacks are present. A total of 45 species were recorded (40 in the PSYM sample), notably including the Nationally Scarce reed-beetle Donacia thalassina. -
Organism-Substrate Relationships in Lowland Streams
H.H.Tolkamp Hature Conservation Department, Agricultural University, Wageningen Organism-substrate relationships in lowland streams IpudooI Centre for Agricultural Publishing and Documentation Wageningen - 1980 ,y* <3 "3! Communication NatureConservatio n Department211 . ISBN9 022 0075 96 Theautho r graduatedo n6 Februar y 1981a sDocto r ind e Landbouwwetenschappen atth eAgricultura l University,Wageningen ,th eNetherlands ,o na thesi swit h thesam etitl ean dcontents . ^)Centr e forAgricultura l Publishing andDocumentation ,1980 . Nopar to fthi sboo kma yb ereproduce do rpublishe d inan y form,b yprint , photoprint,microfil mo ran yothe rmean swithou twritte n permission fromth e publishers. Abstract Tolkamp, H.H. (1980)Organism-substrat e relationships inlowlan d streams.Agric . Res.Rep . (Versl.landbouwk .Onderz. )907 ,ISB N9 022 007S 96 , (xi)+ 21 1p. ,8 0 tables,4 3 figs.,31 9refs. ,Eng .an dDutc hsummaries , 14appendices . Also:Doctora l thesis,Wageningen . Afiel d and laboratory studyo n themicrodistributio n ofbotto m dwellingmacro - invertebrates toinvestigat eth erol eo fth estrea msubstrat e inth edevelopmen t andpreservatio no fth emacroinvertebrat ecommunitie s innatural ,undisturbe d low land streams isdescribed .Fiel ddat ao nbotto m substratesan d faunawer ecollecte d between 1975an d 1978fro mtw oDutc hlowlan d streams.Substrate swer e characterized by thenatur ean dth eamoun to forgani c detritus and theminera l particlesizes :i n a fieldclassificatio no n thebasi so fth evisuall y dominantparticl e sizes;i na grain-size classificationo nth ebasi so fexac t particle-size analysis inth elabora tory.Substrat epreferenc e for8 4macroinvertebrat especie swa sdemonstrate d using the Indexo fRepresentation . Substrate-selection experimentswer econducte d ina laborator y stream forthre e Trichopteraspecie s (Mioropterna sequax, Chaetopteryx villosa and Seriaostoma per sonation) andon eEphemeropter aspecie s (Ephemera daniea). -
Het News Issue 3
Issue 3 Spring 2004 Het News nd 2 Series Newsletter of the Heteroptera Recording Schemes Editorial: There is a Dutch flavour to this issue which we hope will be of interest. After all, The Netherlands is not very far as the bug flies and with a following wind there could easily be immigrants reaching our shores at any time. We have also introduced an Archive section, for historical articles, to appear when space allows. As always we are very grateful to all the providers of material for this issue and, for the next issue, look forward to hearing about your 2004 (& 2003) exploits, exciting finds, regional news, innovative gadgets etc. Sheila Brooke 18 Park Hill Toddington Dunstable Beds LU5 6AW [email protected] Bernard Nau 15 Park Hill Toddington Dunstable Beds LU5 6AW [email protected] Contents Editorial .................................................................... 1 Forthcoming & recent events ................................. 7 Dutch Bug Atlas....................................................... 1 Checklist of British water bugs .............................. 8 Recent changes in the Dutch Heteroptera............. 2 The Lygus situation............................................... 11 Uncommon Heteroptera from S. England ............. 5 Web Focus.............................................................. 12 News from the Regions ........................................... 6 From the Archives ................................................. 12 Gadget corner – Bug Mailer..................................... -
The Freshwater Bugs (Hemiptera: Heteroptera) of Cheshire
The freshwater bugs (Hemiptera: Heteroptera) of Cheshire Jonathan Guest Germany. The late Dr. Alan Savage School of Life Sciences, Keele University, STS 5BG. Dr. Ian Wallace Entomology Section, Liverpool Museum, William Brown St., Liverpool, L3 8EN.* ______________________________ *address for correspondence_____________________ Introduction Cheshire is predominantly a lowland county. It has a very large number of ponds, internationally important habitats in the form of meres and mosses, intriguing inland saline waters associated with the salt industry and two major estuaries. Upland water bodies are restricted to the far east of the county. Eleven families of British Heteroptera are grouped as aquatic bugs with 64 species in 23 genera; Cheshire is both well-recorded and well-represented with 10 families, and 48 species in 21 genera. By stark contrast, the record coverage maps in Huxley (2003) show clearly that Lancashire, away from the coast, and especially south Lancashire, is very poorly recorded. Water bugs are very familiar freshwater insects, with most species being easy to catch in a pond-net; a few are best sought by pressing marginal vegetation underwater, and one lives amongst Sphagnum moss. They can be preserved in isopropyl alcohol, or a 70% ethyl alcohol solution - the traditional medium used by freshwater biologists, or pinned, or even carded - but important identification features are found on the underside in several genera. Identification is straightforward and satisfying using Savage (1989) for adults; for immatures of the large family Corixidae see Savage (1999) and for young pondskaters there is Brinkhurst (1959). Information sources Britten (1930) provided the first check-list for Cheshire water bugs, which was updated by Massee (1955) and Judd (1990). -
Modeling Food Webs: Exploring Unexplained Structure Using Latent Traits
vol. 176, no. 2 the american naturalist august 2010 ൴ Modeling Food Webs: Exploring Unexplained Structure Using Latent Traits Rudolf Philippe Rohr,1,* Heike Scherer,2 Patrik Kehrli,1,† Christian Mazza,3 and Louis-Fe´lix Bersier1 1. Unit of Ecology and Evolution, University of Fribourg, Chemin du Muse´e 10, 1700 Fribourg, Switzerland; 2. Department of Mathematics, University of Geneva, 2–4 rue du Lie`vre, 1211 Geneva, Switzerland; 3. Department of Mathematics, University of Fribourg, Chemin du Muse´e 23, 1700 Fribourg, Switzerland Submitted November 2, 2009; Accepted April 8, 2010; Electronically published June 11, 2010 Online enhancements: appendix, zip file. gihara et al. 1989; Cohen et al. 1990; Bersier et al. 2002), abstract: Several stochastic models have tried to capture the ar- which were typically regressed with regard to food-web chitecture of food webs. This approach is interesting, but it is limited by the fact that different assumptions can yield similar results. To size as measured by number of species. Stochastic and overcome this limitation, we develop a purely statistical approach. probabilistic models of food-web architecture were pro- Body size in terms of an optimal ratio between prey and predator posed to account for the observed relationships (Cohen is used as explanatory variable. In 12 observed food webs, this model and Newman 1985; Williams and Martinez 2000; Drossel predicts, on average, 20% of interactions. To analyze the unexplained et al. 2001; Cattin et al. 2004; Rossberg et al. 2006; Allesina part, we introduce a latent term: each species is described by two et al. 2008; Petchey et al. -
Notes on the Hemiptera, Coleoptera, Diptera and Other Invertebrates of the Burren, Co
Notes on the Hemiptera, Coleoptera, Diptera and Other Invertebrates of the Burren, Co. Clare and Inishmore, Aran Islands Author(s): I. Lansbury Source: Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science, Vol. 64 (1964 - 1966), pp. 89-115 Published by: Royal Irish Academy Stable URL: http://www.jstor.org/stable/20494883 . Accessed: 08/08/2013 20:45 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Royal Irish Academy is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science. http://www.jstor.org This content downloaded from 140.203.12.206 on Thu, 8 Aug 2013 20:45:21 PM All use subject to JSTOR Terms and Conditions L 89 ] 7. NOTES ON THE HEMIPTERA, COLEOPTERA, DIPTERA AND OTHER TNVERTEBRATES OF THE BURREN, CO. CLARE AND INISHMORE, ARAN ISLANDS. BY I. LANSBURY Hope Department of Entomology, University Museum, Oxford (Communicated by A. Farrington, M.R.I.A.) [Received 9 MARCH Read 8 JUNE, 1964 Published 22 MARcH, 1965] ABSTRACT Habitats are described and the species of aquatic and semi-aquatic Heteroptera recorded from them are discussed. -
Gerromorpha, Nepomorpha) of Germany Based on DNA Barcodes
From water striders to water bugs: the molecular diversity of aquatic Heteroptera (Gerromorpha, Nepomorpha) of Germany based on DNA barcodes Nadine Havemann1,2, Martin M. Gossner3, Lars Hendrich4, Je`roˆme Morinie`re5, Rolf Niedringhaus6, Peter Scha¨fer7 and Michael J. Raupach1,2 1 Fakulta¨t V, Institut fu¨r Biologie und Umweltwissenschaften (IBU), Carl von Ossietzky Universita¨t Oldenburg, Oldenburg, Lower Saxony, Germany 2 German Centre of Marine Biodiversity, Senckenberg Nature Research Society, Wilhelmshaven, Lower Saxony, Germany 3 Forest Entomology, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland 4 Sektion Insecta varia, SNSB-Bavarian State Collection of Zoology, Munich, Bavaria, Germany 5 Taxonomic coordinator—German Barcode of Life (GBOL), SNSB-Bavarian State Collection of Zoology, Munich, Bavaria, Germany 6 Department of Biology, Earth and Environmental Sciences, Carl von Ossietzky Universita¨t Oldenburg, Oldenburg, Lower Saxony, Germany 7 B.U.G.S. (Biologische Umwelt-Gutachten Scha¨fer), Telgte, North-Rhine Westphalia, Germany ABSTRACT With about 5,000 species worldwide, the Heteroptera or true bugs are the most diverse taxon among the hemimetabolous insects in aquatic and semi-aquatic ecosystems. Species may be found in almost every freshwater environment and have very specific habitat requirements, making them excellent bioindicator organisms for water quality. However, a correct determination by morphology is challenging in many species groups due to high morphological variability and polymorphisms within, but low variability between species. Furthermore, it is very difficult or even Submitted 7 December 2017 impossible to identify the immature life stages or females of some species, e.g., of the Accepted 14 March 2018 corixid genus Sigara. -
Development of a Novel Invertebrate Indexing Tool for the Determination of Salinity in Aquatic Inland Drainage Channels
DEVELOPMENT OF A NOVEL INVERTEBRATE INDEXING TOOL FOR THE DETERMINATION OF SALINITY IN AQUATIC INLAND DRAINAGE CHANNELS Alexander G. G. Pickwell A thesis submitted in partial fulfilment of the requirements of the University of Lincoln for the degree of Master of Philosophy in Biology This research programme was carried out in collaboration with the Environment Agency August 2012 Page i Certificate of Originality This is to certify that I am responsible for the work submitted in this thesis, that the original work is my own, except as specified in the acknowledgements and in references, and that neither the thesis nor the original work contained therein has been previously submitted to any institution for the award of a degree. Signature: Name: Alexander G. G. Pickwell Date: 31st August 2012 Page i Abstract Salinisation of freshwater habitats is an issue with global implications that can have serious detrimental effects on the environment resulting in an overall loss in biodiversity. Whilst increases in salinity can occur naturally, such anthropogenic actions as the disposal of industrial and urban effluents and the disturbance of natural hydrological cycles can also result in the salinisation of freshwater habitats. The Water Framework Directive (WFD) requires Member States to restore all freshwater habitats to “good ecological status” and to prevent any further deterioration. Macro-invertebrates are widely used as indicators of river condition for a wide range of reasons and have been designated a key biological element in the assessment of aquatic habitats by the WFD. A review of the available literature, however, found no macro- invertebrate-based biotic indices have been developed for the detection and determination of salinity increases in freshwater habitats that are suitable for application in the United Kingdom for the purposes of the WFD. -
Natural and Anthropogenic Variations in a Channelized Water Course in Centre of Portugal
257 Natural and anthropogenic variations in a channelized water course in Centre of Portugal Pedro M. Silva-Santos1, Simone V. Oliveira2, Rui M. V. Cortes2, António C. Albuquerque3 1 Lab. Ecologia Aplicada (LEA), Universidade de Tras-os-Montes e Alto Douro, Quinta de Prados, 5000- 911, Vila Real, Portugal. Email: [email protected] 2 Departamento Florestal, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-102, Vila Real, Portugal. Email: [email protected] , [email protected] 3 Departamento Engenharia Florestal, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017, Lisboa, Portugal. Email: [email protected] ABSTRACT The present study took place in the Mondego River, located in the Centre of Portugal. The lower sector of the river (Lower Mondego) is largely man-made due to regularization and rectification of the channel. The objective was to assess the impacts on the aquatic communities (fishes and benthic invertebrates). Fauna inventories were performed in June and September of 2000 and 2001, toge- ther with habitat characterization. Three sampling sites were selected in this segment and compared to a reference site located ups- tream. It is concluded that the presence of structures such as submerged weirs and riprap, promoted the diversity, due to the physical complexity, which they introduced into the system. The dramatic flood peaks that occurred in the winter of 2000/01 also caused substantial changes in the fluvial dynamics and in the habitats: the large amount of suspended solids transported resulted in a river- bed of unstable fine materials, and in a subsequent biological impoverishment. However, both communities displayed a high resi- lience to these changes; the inter-annual differences being obscured by the seasonal ones on macroinvertebrate communities. -
Further Development of River Invertebrate Classification Tool
Final Report Project WFD100 Further Development of River Invertebrate Classification Tool September/2010 © SNIFFER 2010 All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of SNIFFER. The views expressed in this document are not necessarily those of SNIFFER. Its members, servants or agents accept no liability whatsoever for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained herein. Dissemination status Unrestricted Project funders Environment Agency Northern Ireland Environment Agency Scottish Environment Protection Agency Whilst this document is considered to represent the best available scientific information and expert opinion available at the stage of completion of the report, it does not necessarily represent the final or policy positions of the project funders. Research contractor This document was produced by the Centre for Ecology & Hydrology (main contractor) and the Freshwater Biological Association (sub-contractor): John Davy-Bowker*, Sean Arnott‡, Rebecca Close†, Mike Dobson†, Michael Dunbar‡, Gabriela Jofre*, Diana Morton*, John Murphy∆, William Wareham‡, Stephanie Smith* & Vanya Gordon* *The Freshwater Biological Association, River Laboratory, East Stoke, Wareham, Dorset, BH20 6BB, United Kingdom †The Freshwater Biological Association, The Ferry Landing, Far Sawrey, Ambleside, Cumbria, LA22