GB28: Carbonate Platform Facies and Faunas of the Middle and Upper Devonian Cedar Valley Group and Lime Creek Formation, Norther

Total Page:16

File Type:pdf, Size:1020Kb

GB28: Carbonate Platform Facies and Faunas of the Middle and Upper Devonian Cedar Valley Group and Lime Creek Formation, Norther CARBONATE PLATFORM FACIES AND FAUNAS OF THE MIDDLE AND UPPER DEVONIAN CEDAR VALLEY GROUP AND LIME CREEK FORMATION, NORTHERN IOWA Iowa Geological and Water Survey Guidebook Series No. 28 Iowa Department of Natural Resources Richard Leopold, Director October 2008 COVER Lithographic plate of Idlewild Member of Lithograph City Formation at Lewis Quarry, immediately south of Osage, Mitchell County, Iowa. Beds marked “X” are those determined by A. Hoen & Co. of Baltimore to be suitable for use in lithography. Reproduced from Plate VIII in Iowa Geological Survey Annual Report for 1902. Printed in-house on recycled paper. CARBONATE PLATFORM FACIES AND FAUNAS OF THE MIDDLE AND UPPER DEVONIAN CEDAR VALLEY GROUP AND LIME CREEK FORMATION, NORTHERN IOWA Iowa Geological and Water Survey Guidebook Series No. 28 Prepared for the 69th Annual Tri-State and Great Lakes Section – SEPM Fall Field Conference Co-hosted by the Department of Earth Science, University of Northern Iowa and the Iowa Geological and Water Survey Prepared and led by John R. Groves1, James C. Walters1 and Jed Day2 with contributions by Rodney Hubsher1, Carl W. Stock3, Brian J. Witzke4 and Bill J. Bunker4 1 Department of Earth Science, University of Northern Iowa, Cedar Falls, IA 50614-0335 2Department of Geography & Geology, Illinois State University, Normal, IL 61790-4100 3Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487-0338 4Iowa Geological and Water Survey, 109 Trowbridge Hall, Iowa City, IA 52242-1319 October 2008 Iowa Department of Natural Resources Richard Leopold, Director TABLE OF CONTENTS Overview of the Lithograph City Formation . 1 John R. Groves Quaternary geology of the fi eld trip area . 7 James C. Walters The Floyd karst area . 11 James C. Walters Overview of Middle and Upper Devonian Cedar Valley Group and Lime Creek Formation carbonate platform facies, faunas and event stratigraphy of northern Iowa . 15 Jed Day, Brian J. Witzke and Bill J. Bunker Stromatoporoid biostratigraphy of the Iowa Frasnian . 43 Carl W. Stock A brief description of lithography . 53 John R. Groves FIELD TRIP STOPS – SATURDAY . 57 John R. Groves and Rodney Hubsher Stop 1 – Osage Roadcut . 57 Stop 2 – Jones Quarry . 61 Stop 3 – Steere Quarry . 65 Stop 4 – Messerly Quarry . 71 FIELD TRIP STOPS – SUNDAY . 77 Jed Day Stop 5 – Fertile Quarry . 77 Stop 6 – Williams Quarry . 81 Stop 7 – Rockford Brick and Tile Quarry – Floyd County Fossil and Prairie Center and Park Preserve . 89 ACKNOWLEDGMENTS Organizers of the combined 69th Annual Tri-State and Great Lakes Section – EPM Fall Field Conference wish to thank BMC Aggregates, L. C., Croell Redi-Mix, Inc. and Greene Limestone Company (a division of Allied Construction Co., Inc.) for permission to visit their quarries. Financial sponsorship of the fi eld conference and associated activities was provided by BMC Aggregates L.C., the Black Hawk Gem and Mineral Society, the Cedar Valley Rock and Mineral Society, the Great Lakes Section – Society for Sedimentary Geology (GLS-SEPM) and the Central Section of the National Association of Geoscience Teachers (NAGT). We are especially grateful to Dr. Brian J. Witzke, geologist with the Iowa Geological and Water Survey, for information and illustrations used in this guidebook. Brian’s work on Middle and Upper Devonian rocks in northern Iowa is the basis for our modern understanding of those units. We further wish to thank Mr. Brian Gossman, geologist with the Iowa Department of Transportation, for information on rock units being mined at many quarries throughout north-central Iowa. The Iowa Geological and Water Survey’s editorial committee expertly handled the layout and worked with the Geological Society of Iowa to print this guidebook. Additional logistical suppport for the fi eld conference was provided by the Department of Earth Science at the University of Northern Iowa, the Department of Geography and Geology at Illinois State University and the Gamma Sigma Chapter of Sigma Gamma Epsilon at the University of Northern Iowa. OVERVIEW OF THE LITHOGRAPH CITY FORMATION John R. Groves Department of Earth Science, University of Northern Iowa, Cedar Falls, IA 50614-0335 LITHOSTRATIGRAPHY fossiliferous limestone southward in the north- ern Iowa outcrop belt where stromatoporoids are The Lithograph City Formation was named very abundant locally. Accordingly to Witzke et by Witzke et al. (1988) for the package of strata al. (1988), the Osage Springs Member in northern lying disconformably above the Coralville For- Iowa varies in thickness from 3.4 to 7.5 m and it mation and disconformably below the Shell Rock is similar in thickness and lithology to the under- Formation or Sweetland Creek Shale (Fig. 1). lying Iowa City Member of the Coralville Forma- The type section of the Lithograph City Forma- tion. It is distinguished from the latter on strati- tion was designated as the old quarry adjacent to graphic position and faunal criteria. It is overlain the abandoned town of Lithograph City in Floyd conformably throughout most of its distribution County, Iowa. A new quarry (Saturday Stop #2) by the Idlewild Member, although in northwest- is operating now immediately east of the old one. ern Black Hawk County (and presumably also in Prior to 1988 these strata were assigned by most neighboring parts of Bremer and Butler counties) workers to the Coralville Formation, but they do the Osage Springs and Idlewild members are sep- not correlate with any part of the Coralville in arated by the Thunder Woman Shale Member. its type area. Recognition of the distinctness of The type section of the Thunder Woman the Lithograph City interval occurred in connec- Shale Member was designated at Yokum Quarry tion with detailed studies of Devonian aquifers in northwestern Black Hawk County, approxi- in northern Iowa (Witzke and Bunker, 1984, mately 1.4 km east of Thunder Woman County 1985). Further information on the newly recog- Park (Witzke et al., 1988). Yokum Quarry has nized Lithograph City Formation was presented since been abandoned and the site is now known in Bunker et al. (1986) and Bunker, ed. (1995). as the Turkey Ridge Wildlife Area, managed by Inner shelf facies of the Lithograph City the Black Hawk County Conservation Board. A Formation in northern Iowa are subdivided into complete section of the Thunder Woman Shale the Osage Springs, Thunder Woman Shale and Member is exposed in the currently operating Idlewild members (ascending order). In east- Messerly Quarry (Saturday Stop #4) where the central and southeastern Iowa the same interval unit is 2.5 to 3 m thick. The Thunder Woman comprises distal inner shelf and middle shelf fa- Shale Member is light grey to buff, slightly dolo- cies subdivided into the State Quarry, Andalusia mitic, unfossiliferous, silty shale. It is much less and Buffalo Heights members (Fig. 1). Only the resistant than underlying and overlying carbon- inner shelf facies are considered here. ates of the Osage Springs and Idlewild members, The Osage Springs Member is the basal unit of but dolomitic intervals are relatively well indu- the Lithograph City Formation in northern Iowa rated. The surface distribution of the member is and neighboring Minnesota. At its type section a limited to the southern part of the northern Iowa few miles south of the town of Osage in Mitchell outcrop belt. It is present also in the subsurface County (Saturday Stop #1) it consists of dolo- of central Iowa, but to the north it grades later- mite and dolomitic limestone with calcite-fi lled ally into the Idlewild Member and to the south vugs. Fossils and ghost fabrics of precursor lime- it is erosionally truncated (Bunker et al., 1986; stone lithologies are detectable in certain layers. Witzke et al., 1988). The member becomes increasingly dominated by The Idlewild Member conformably overlies 1 Figure 1. Cross section of Cedar Valley Group strata from north-central Iowa (A) to extreme southeastern Iowa (B). Exposures of the Lithograph City Formation visited on this trip represent the inner shelf facies on left side of diagram. Figure prepared and provided by B. J. Witzke. the Osage Springs Member throughout most of ly, especially in northern areas, signifying a peri- northern Iowa. Locally it overlies or grades lat- tidal origin. In the southern part of the northern erally into the Thunder Woman Shale Member. Iowa outcrop belt the unit becomes more fossil- It grades laterally into fossiliferous carbonates of iferous and peritidal features become somewhat the Andalusia Member in southeastern Iowa. The less common. The unit ranges in thickness from type section of the Idlewild Member was desig- 16 to 24 m where it is overlain by the Shell Rock nated at Floyd Quarry in northern Floyd County, Formation (Witzke et al., 1988). Its thickness is approximately 2.3 km downstream on the Cedar appreciably less where truncated beneath Pleis- River from Idlewild State Park (Witzke et al., tocene glacial deposits, as at Saturday Stops 2, 1988). The Idlewild Member comprises a hetero- 3 and 4. geneous assortment of lithologies ranging from The contact between the Idelwild Member laminated lithographic limestone and dolomite and the overlying Shell Rock Formation exhibits to calcareous shale to variably fossiliferous lime- erosional relief locally. Lithologies of the basal stone. Mudcracks, birdseyes and fenestral fabrics, Mason City Member of the latter unit are vari- evaporite molds and intraclasts are present local- ably argillaceous, skeletal and dolomitic lime- 2 Member is entirely dolomite and sparsely fos- siliferous at its type section in Mitchell County, whereas in Black Hawk County it is highly fossil- iferous (biostromal, in part) and only partly dolo- mitic. Facies changes within the Idlewild Mem- ber are equally well developed. At its northern exposures the Idlewild comprises sparsely fossil- iferous, pelletal, intraclast- and birdseye-bearing, variably laminated, fi ne-grained limestones. To the south it is more coarsely bioclastic with only minor beds of sublithographic limestone.
Recommended publications
  • Stromatoporoids in the Devonian Carbonate Complex in Moravia (Czechoslovakia)
    ACT A POLONICA Vol. 25 No. 3-4 VLASTA ZUKALOVA STROMATOPOROIDS IN THE DEVONIAN CARBONATE COMPLEX IN MORAVIA (CZECHOSLOVAKIA) ZUKALOVA, v.: Stromatoporoids in the Devonian carbonate complex in Mo­ ravia (Czechoslovakia). Acta Palaeont. Polonica, 25, 3/4, 671-679, December 1981. Studies of the Paleozoic rocks in Moravia based on abundant drillings reveal the extent of the Devonian reefs (s.!.) beneath the Carpathia~ Flysh Belt and Neogene foredeeps. Reef limestones (rich mainly in stromatoporoids) are re­ stricted to the platform part of the sedimentary basin. A 'gradual transgression reached this area during the Givetian and Frasnian having its culmination in the Early Frasnian. Development of reef limestones in Moravia ceased at the Frasnian/Famennian boundary. Key W 0 r d s: Stromatoporoidea, stratigraphy, Devonian, Czechoslovakia. Vlasta Zukalova. Ostfedni Ostav Geo!ogicIQ/, 60200 Brno, Leitnerova 22, Cze­ choslovakia. Received: September 1979. The Paleozoic' sedimentary basin is bounded on the west by meta­ morphosed crystalline rocks. Paleozoic deposits are covered by the Carpa­ thian nappes and the Neogene foredeep fillings on the south and south­ east, while they extend into Polish territory on the north and northeast. The Silurian graptolite shales occurring near the village of Stinava are the most ancient sediments for which there is paleontological evidence in Moravia (Bollcek 1935). They give evidence of the earliest marine trans­ gression over Moravia. During Paleozoic time, deep sea conditions pre­ vailed in this area where mainly shales with subordinate limestone inter­ calations were deposited. The Lower Devonian (Siegenian) transgression took place over a re­ stricted area. Relics of fauna in the quartzites are known at the villages of Zlate Horyand Vrbno.
    [Show full text]
  • Characterization of Geothermal Reservoir Units in Northwestern
    PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 CHARACTERIZATION OF GEOTHERMAL RESERVOIR UNITS IN NORTHWESTERN ALBERTA BY 3D STRUCTURAL GEOLOGICAL MODELLING AND ROCK PROPERTY MAPPING BASED ON 2D SEISMIC AND WELL DATA Simon N. Weides1, Inga S. Moeck2, Douglas R. Schmitt2, Jacek A. Majorowicz2, Elahe P. Ardakani2 1 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 2 University of Alberta, 11322-89 Ave., Edmonton, AB, Canada e-mail: [email protected] the south-western part of the study area its temperature ABSTRACT is above 70 °C and the effective porosity is estimated with 10 % to 15 %. Foreland basins such as the Western Canada Sedimentary Basin (WCSB) host a variety of geoenergy Geothermal heat could play a role as energy source for resources. Often, the focus is on hydrocarbon resources district heating. In energy intensive in-situ oil sands but in times of discussions about climate change and extraction processes geothermal heat could be used for environmental aspects, additional green energy preheating of water for steam production. This would resources are under examination. This study explores lower the amount of natural gas used in oil sands Paleozoic formations in the north western WCSB with production and reduce climate gas emissions. regard to their usability as geothermal reservoirs. The study focuses on an area around Peace River in north – western Alberta. This research site covers an area of INTRODUCTION approx. 90 km * 70 km with a basin depth of 1.7 km to 2.4 km.
    [Show full text]
  • Classification
    Science Classification Pupil Workbook Year 5 Unit 5 Name: 2 3 Existing Knowledge: Why do we put living things into different groups and what are the groups that we can separate them into? You can think about the animals in the picture and all the others that you know. 4 Session 1: How do we classify animals with a backbone? Key Knowledge Key Vocabulary Animals known as vertebrates have a spinal column. Vertebrates Some vertebrates are warm-blooded meaning that they Species maintain a consistent body temperature. Some are cold- Habitat blooded, meaning they need to move around to warm up or cool down. Spinal column Vertebrates are split into five main groups known as Warm-blooded/Cold- mammals, amphibians, reptiles, birds and fish. blooded Task: Look at the picture here and think about the different groups that each animal is part of. How is each different to the others and which other animals share similar characteristics? Write your ideas here: __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ ____________________________________________________ ____________________________________________________ ____________________________________________________ ____________________________________________________ ____________________________________________________ 5 How do we classify animals with a backbone? Vertebrates are the most advanced organisms on Earth. The traits that make all of the animals in this group special are
    [Show full text]
  • Review of the Mineralogy of Calcifying Sponges
    Dickinson College Dickinson Scholar Faculty and Staff Publications By Year Faculty and Staff Publications 12-2013 Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges Abigail M. Smith Jade Berman Marcus M. Key, Jr. Dickinson College David J. Winter Follow this and additional works at: https://scholar.dickinson.edu/faculty_publications Part of the Paleontology Commons Recommended Citation Smith, Abigail M.; Berman, Jade; Key,, Marcus M. Jr.; and Winter, David J., "Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges" (2013). Dickinson College Faculty Publications. Paper 338. https://scholar.dickinson.edu/faculty_publications/338 This article is brought to you for free and open access by Dickinson Scholar. It has been accepted for inclusion by an authorized administrator. For more information, please contact [email protected]. © 2013. Licensed under the Creative Commons http://creativecommons.org/licenses/by- nc-nd/4.0/ Elsevier Editorial System(tm) for Palaeogeography, Palaeoclimatology, Palaeoecology Manuscript Draft Manuscript Number: PALAEO7348R1 Title: Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges Article Type: Research Paper Keywords: sponges; Porifera; ocean acidification; calcite; aragonite; skeletal biomineralogy Corresponding Author: Dr. Abigail M Smith, PhD Corresponding Author's Institution: University of Otago First Author: Abigail M Smith, PhD Order of Authors: Abigail M Smith, PhD; Jade Berman, PhD; Marcus M Key Jr, PhD; David J Winter, PhD Abstract: Most marine sponges precipitate silicate skeletal elements, and it has been predicted that they would be among the few "winners" in an acidifying, high-CO2 ocean.
    [Show full text]
  • Silurian Rugose Corals of the Central and Southwest Great Basin
    Silurian Rugose Corals of the Central and Southwest Great Basin GEOLOGICAL SURVEY PROFESSIONAL PAPER 777 Silurian Rugose Corals of the Central and Southwest Great Basin By CHARLES W. MERRIAM GEOLOGICAL SURVEY PROFESSIONAL PAPER 777 A stratigraphic-paleontologic investigation of rugose corals as aids in age detern2ination and correlation of Silurian rocks of the Great Basin with those of other regions UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600082 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402- Price $2.15 (paper cover) Stock Number 2401-00363 CONTENTS Page Page Abstract--------------------------------------------------------------------------- 1 Systematic and descriptive palaeontology-Continued Introduction -------------------------------------------------------------------- 1 Family Streptelasmatidae-Continued Purpose and scope of investigation-------------------------------­ 1 Dalmanophyllum ------------------------------------------------- 32 History of investigation ----------------------------------------------­ 1 Family Stauriidae ------------------------------------------------------- 32 Methods of study-------------------------------------------------------­ 2 Cyathoph y llo ides-------------------------------------------------- 32 Acknowledgments------------------------------------------------------- 4 Palaeophyllum
    [Show full text]
  • Contents List of Illustrations LETTER OF
    STATE OF MICHIGAN Plate IV. A. Horizontal and oblique lamination, Sylvania MICHIGAN GEOLOGICAL AND BIOLOGICAL SURVEY Sandstone......................................................................27 Plate IV. B. Stratification and lamination, in sand dune, Dune Publication 2. Geological Series 1. Park, Ind.........................................................................28 THE MONROE FORMATION OF SOUTHERN Plate V. Sand grains, enlarged 14½ times ............................31 MICHIGAN AND ADJOINING REGIONS Plate VI. Desert sand grains, enlarged 14½ times ................31 by Plate VII. Sylvania and St. Peter sand grains, enlarged 14½ A. W. Grabau and W. H. Sherzer times. .............................................................................32 PUBLISHED AS PART OF THE ANNUAL REPORT OF THE BOARD OF GEOLOGICAL AND BIOLOGICAL SURVEY FOR Figures 1909. Figure 1. Map showing distribution of Sylvania Sandstone. 25 LANSING, MICHIGAN WYNKOOP HALLENBECK CRAWFORD CO., STATE Figure 2. Cross bedding in Sylvania sandstone ....................27 PRINTERS Figure 3. Cross bedding on east wall of Toll’s Pit quarry ......28 1910 Figure 4. Cross bedding shown on south wall of Toll’s Pit quarry.............................................................................28 Contents Figure 5. Cross bedding on south wall of Toll’s Pit quarry in Sylvania sandstone. .......................................................28 Letter of Transmittal. ......................................................... 1 Figure 6. Cross bedding shown on south wall
    [Show full text]
  • Fullerton Arboretum Friday, April 22, 2016
    Department of Geological Sciences California State University, Fullerton Fullerton Arboretum Friday, April 22, 2016 The Department of Geological Sciences at California State University, Fullerton is an interdisciplinary education and research community whose members are active mentors and role-models. Our mission is to provide a student-centered educational and research experience that emphasizes critical thinking, communication, and scientific citizenship. ‘Research Day’ is an extension of this mission, where students are afforded the opportunity to share their research findings and scientific experiences with faculty, student peers, friends, family, and members of the professional geological community in an informal and supportive environment. Thank you for participating in this year’s event! 7th Annual Geology Research Day California State University, Fullerton ~ Department of Geological Sciences Fullerton Arboretum April 22, 2016 Abstract Volume Table of Contents Undergraduate Proposal Category EXAMINING THE GEOCHEMICAL RELATIONSHIPS BETWEEN THE TWENTYNINE PALMS AND QUEEN MOUNTAIN PLUTONS IN JOSHUA TREE NATIONAL PARK Student: Alexander Arita Faculty Advisor: Dr. Vali Memeti EXPLORING THE MOJAVE-SNOW LAKE FAULT HYPOTHESIS USING LASER- INDUCED BREAKDOWN SPECTROSCOPY Student: Eduardo Chavez Faculty Advisor: Dr. Vali Memeti INVESTIGATING SPATIAL AND TEMPORAL VARIATIONS IN SEDIMENTATION ON INTERTIDAL MUDFLATS Student: Dulce Cortez Faculty Advisor: Dr. Joseph Carlin A PALEOECOLOGY OF PLEISTOCENE OYSTER BEDS, SAN PEDRO, CALIFORNIA Student: Ditmar, Kutcher, Rue Faculty Advisor: Dr. Nicole Bonuso USING K-FELDSPAR MEGACRYSTS AS RECORDERS OF MAGMA PROCESSES IN THE TWENTYNINE PALMS PLUTON IN JOSHUA TREE NATIONAL PARK Student: Lizzeth Flores Urita Faculty Advisor: Dr. Vali Memeti ORGANIC AND INORGANIC CARBON ANALYSES OF SHALLOW SEDIMENTS AT OVERFLOW LAKE, SANTA BARBARA, CALIFORNIA. Student: Shayne Fontenot Faculty Advisor: Dr.
    [Show full text]
  • Albian Rudist Biostratigraphy (Bivalvia), Comanche Shelf to Shelf Margin, Texas
    Carnets Geol. 16 (21) Albian rudist biostratigraphy (Bivalvia), Comanche shelf to shelf margin, Texas Robert W. SCOTT 1, 2 2 Yulin WANG 2 Rachel HOJNACKI Yulin WANG 3 Xin LAI 4 Highlights • Barremian-Albian caprinids biostratigraphic zones are revised and integrated with ammonites and benthic foraminifers. • New caprinid rudist species are the key to revising long-held correlations of Albian strata on the Co- manche shelf, Texas. • On the San Marcos Arch, central Texas, the shallow shelf Person Formation is the upper unit of the Fredericksburg Group. • The Person underlies the basal Washita Group sequence boundary Al Sb Wa1 and the Georgetown Formation. Abstract: Rudists were widespread and locally abundant carbonate producers on the Early Cretaceous Comanche Shelf from Florida to Texas, and on Mexican atolls. As members of the Caribbean Biogeogra- phic Province, their early ancestors emigrated from the Mediterranean Province and subsequently evol- ved independently. Comanchean rudists formed biostromes and bioherms on the shelf interior and at the shelf margin. Carbonate stratigraphic units of the Comanche Shelf record rudist evolution during the Barremian through the Albian ages and an established zonal scheme is expanded. This study documents new Albian rudist occurrences from the Middle-Upper Albian Fredericksburg and Washita groups in Central and West Texas. Rudists in cores at and directly behind the shelf margin southeast of Austin and San Antonio, Texas, complement the rudist zonation that is integrated with ammonites and foraminifers. These new rudist data test long-held correlations of the Edwards Group with both the Fredericksburg and Washita groups based solely on lithologies. Rudist and foraminifer biostratigraphy indicate that the Edwards Group is coeval with the Fredericksburg not the Washita Group.
    [Show full text]
  • Lee-Riding-2018.Pdf
    Earth-Science Reviews 181 (2018) 98–121 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Marine oxygenation, lithistid sponges, and the early history of Paleozoic T skeletal reefs ⁎ Jeong-Hyun Leea, , Robert Ridingb a Department of Geology and Earth Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea b Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA ARTICLE INFO ABSTRACT Keywords: Microbial carbonates were major components of early Paleozoic reefs until coral-stromatoporoid-bryozoan reefs Cambrian appeared in the mid-Ordovician. Microbial reefs were augmented by archaeocyath sponges for ~15 Myr in the Reef gap early Cambrian, by lithistid sponges for the remaining ~25 Myr of the Cambrian, and then by lithistid, calathiid Dysoxia and pulchrilaminid sponges for the first ~25 Myr of the Ordovician. The factors responsible for mid–late Hypoxia Cambrian microbial-lithistid sponge reef dominance remain unclear. Although oxygen increase appears to have Lithistid sponge-microbial reef significantly contributed to the early Cambrian ‘Explosion’ of marine animal life, it was followed by a prolonged period dominated by ‘greenhouse’ conditions, as sea-level rose and CO2 increased. The mid–late Cambrian was unusually warm, and these elevated temperatures can be expected to have lowered oxygen solubility, and to have promoted widespread thermal stratification resulting in marine dysoxia and hypoxia. Greenhouse condi- tions would also have stimulated carbonate platform development, locally further limiting shallow-water cir- culation. Low marine oxygenation has been linked to episodic extinctions of phytoplankton, trilobites and other metazoans during the mid–late Cambrian.
    [Show full text]
  • The Earliest Bioturbators As Ecosystem Engineers
    Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 Engineering the Cambrian explosion: the earliest bioturbators as ecosystem engineers LIAM G. HERRINGSHAW1,2*, RICHARD H. T. CALLOW1,3 & DUNCAN MCILROY1 1Department of Earth Sciences, Memorial University of Newfoundland, Prince Philip Drive, St John’s, NL, A1B 3X5, Canada 2Geology, School of Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK 3Statoil ASA, Stavanger 4035, Norway *Correspondence: [email protected] Abstract: By applying modern biological criteria to trace fossil types and assessing burrow mor- phology, complexity, depth, potential burrow function and the likelihood of bioirrigation, we assign ecosystem engineering impact (EEI) values to the key ichnotaxa in the lowermost Cambrian (Fortunian). Surface traces such as Monomorphichnus have minimal impact on sediment properties and have very low EEI values; quasi-infaunal traces of organisms that were surficial modifiers or biodiffusors, such as Planolites, have moderate EEI values; and deeper infaunal, gallery biodiffu- sive or upward-conveying/downward-conveying traces, such as Teichichnus and Gyrolithes, have the highest EEI values. The key Cambrian ichnotaxon Treptichnus pedum has a moderate to high EEI value, depending on its functional interpretation. Most of the major functional groups of mod- ern bioturbators are found to have evolved during the earliest Cambrian, including burrow types that are highly likely to have been bioirrigated. In fine-grained (or microbially bound) sedimentary environments, trace-makers of bioirrigated burrows would have had a particularly significant impact, generating advective fluid flow within the sediment for the first time, in marked contrast with the otherwise diffusive porewater systems of the Proterozoic.
    [Show full text]
  • Six3 Demarcates the Anterior-Most Developing Brain Region In
    Steinmetz et al. EvoDevo 2010, 1:14 http://www.evodevojournal.com/content/1/1/14 RESEARCH Open Access Six3 demarcates the anterior-most developing brain region in bilaterian animals Patrick RH Steinmetz1,6†, Rolf Urbach2†, Nico Posnien3,7, Joakim Eriksson4,8, Roman P Kostyuchenko5, Carlo Brena4, Keren Guy1, Michael Akam4*, Gregor Bucher3*, Detlev Arendt1* Abstract Background: The heads of annelids (earthworms, polychaetes, and others) and arthropods (insects, myriapods, spiders, and others) and the arthropod-related onychophorans (velvet worms) show similar brain architecture and for this reason have long been considered homologous. However, this view is challenged by the ‘new phylogeny’ placing arthropods and annelids into distinct superphyla, Ecdysozoa and Lophotrochozoa, together with many other phyla lacking elaborate heads or brains. To compare the organisation of annelid and arthropod heads and brains at the molecular level, we investigated head regionalisation genes in various groups. Regionalisation genes subdivide developing animals into molecular regions and can be used to align head regions between remote animal phyla. Results: We find that in the marine annelid Platynereis dumerilii, expression of the homeobox gene six3 defines the apical region of the larval body, peripherally overlapping the equatorial otx+ expression. The six3+ and otx+ regions thus define the developing head in anterior-to-posterior sequence. In another annelid, the earthworm Pristina, as well as in the onychophoran Euperipatoides, the centipede Strigamia and the insects Tribolium and Drosophila,asix3/optix+ region likewise demarcates the tip of the developing animal, followed by a more posterior otx/otd+ region. Identification of six3+ head neuroectoderm in Drosophila reveals that this region gives rise to median neurosecretory brain parts, as is also the case in annelids.
    [Show full text]
  • Michigan Geologic Time Line List Michigan Rocks: Student No
    Michigan Geologic Time Line List Michigan Rocks: www.educ.msu.edu/michiganrocks Student No. Event Age Geologic Time Name Division 1. Modern Humans .01 (10,000 Holocene years) 2. Ice Age Begins; Glaciers 2 million years Pleistocene cover all of Michigan; Great ago Lakes carved out by Glaciers 3. First Humans 4.5 million Pliocene years ago 4. First Horses 40 million years Eocene ago 5. Last Dinosaurs 65 million years Cretaceous/Tertiary ago Boundary 6. First Flowering Plants 100 million Cretaceous years ago 7. First Birds 150 million Jurassic years ago 8. Redbeds (reddish 145 million Jurassic sandstones and shales) years ago deposited at the end of the Michigan Basin 9. First Mammals 215 million Triassic years ago 10. First Conifer Trees 230 million Triassic years ago 11. First Dinosaurs 240 million Triassic years ago 12. Last Trilobites 250 million Permian/Triassic years ago Boundary 13. Swampland in Lower 290 million Pennsylvanian Peninsula and eastern years ago Upper Peninsula, Michigan Basin. Peat deposits. Also oil and gas deposits 14. First Reptiles 300 million Pennsylvanian years ago 15. Gypsum and Limestone 320 million Mississippian deposited in shallow seas in years ago Lower Peninsula and eastern Upper Peninsula – Michigan Basin 16. First Sharks 350 million Devonian years ago Student No. Event Age Geologic Name Time Division 17. Hexagonaria coral deposits 360 million years Devonian (becomes MI state fossil aka ago Petosky Stone) in Michigan Basin 18. First Amphibians 370 million years Devonian ago 19. First Insects 400 million years Devonian ago 20. First Land Plants 420 million years Ordovician ago 21.
    [Show full text]