13. Hawai`I Creeper, Oreomystis Mana

Total Page:16

File Type:pdf, Size:1020Kb

13. Hawai`I Creeper, Oreomystis Mana 13. Hawai`i Creeper, Oreomystis mana DESCRIPTION AND TAXONOMY The Hawai`i creeper is a small Hawaiian honeycreeper (family Fringillidae, subfamily Drepanidinae) 10.8 to 13.0 centimeters (4.3 to 5.1 inches) in length and 13.7 grams (0.48 ounces) average weight (Lepson and Woodworth 2001). It is predominantly olive green on the back and dull Adult Hawai`i creeper foraging on `ōhi`a greenish-buff below, with a white chin trunk. Photo © Jack Jeffrey. and throat. The brownish-white bill is almost straight, the iris is dark hazel, and the legs and feet are dark brown. Immatures are paler below, with less contrast between the throat and breast, and they usually have a prominent yellowish-white superciliary line. Field identification is complicated by its similarities in appearance and behavior with the Hawai`i `amakihi (Hemignathus virens), Hawai`i `ākepa (Loxops coccineus coccineus), and Japanese white-eye (Zosterops japonicus) (Scott et al. 1979). At the time of European discovery, each of the six main Hawaiian Islands harbored a small, straight-billed, simple-tongued, insectivorous bird. The Hawai`i creeper was first described as Himatione mana by Wilson (1891a). Subsequent nomenclature has been problematic (reviewed in Pratt 1992b, 2001), and the species has variously been considered a full species (Perkins 1903), a subspecies of Paroreomyza bairdi (Bryan and Greenway 1944) and a subspecies of Loxops maculata (Amadon 1950). It is currently classified as Oreomystis mana (American Ornithologists’ Union 1998) following Pratt (1979, 1992b), but recent evidence (Olson and James 1995, Fleischer et al. 2001) supports its inclusion as a full species in the genus Loxops. LIFE HISTORY Hawai`i creepers defend a small, 10 to 20 meter (33 to 66 feet) radius area immediately surrounding the nest, and forage over a 4 to 7 hectare (9.9 to 17.3 acre) home range during the breeding season (Ralph and Fancy 1994a, Revised Recovery Plan for Hawaiian Forest Birds 2-108 VanderWerf 1998b). Females do all or most of the nest building and incubate, brood, and feed the chicks; males assist by feeding the female both on and off the nest and by feeding the young (Sakai and Johanos 1983; VanderWerf 1998b; J. Nelson, U. S. Geological Survey, unpubl. data). During the nonbreeding season, pairs range over a wider area of about 11 hectares (27.2 acres) and join other forest birds in mixed-species flocks (VanderWerf 1998b). The Hawai`i creeper generally feeds on insects, spiders, and invertebrates that are gleaned from the trunks and branches of mature trees (Scott et al. 1986). During the breeding season in Hakalau Forest National Wildlife Refuge, Hawai`i creepers foraged at a mean height of 13 meters (43 feet). Most foraging maneuvers were gleans (59 percent) or hangs (24 percent); they also probed, pecked, flaked, pried, and pulled substrates to obtain prey (n = 579 maneuvers, 35 individuals; U.S. Geological Survey, unpubl. data). Foraging took place primarily on the branches (63.7 percent of maneuvers), trunks (13.3 percent) and foliage (12.4 percent) of live `ōhi`a (Metrosideros polymorpha) and koa (Acacia koa) trees; the remainder of maneuvers were in subcanopy trees (specifically, `ōlapa [Cheirodendron trigynum]), dead trees, or epiphytes (n = 579 maneuvers; U.S. Geological Survey, unpubl. data). Beetle larvae make up a large part of its diet (Amadon 1950, Conant 1981a), but no detailed information on prey taken is available. Nests of Hawai`i creepers have been found from January to August (Sakai and Ralph 1980, Scott et al. 1980, Sakai and Johanos 1983, VanderWerf 1998b, Woodworth et al. 2001), but peak breeding occurs from February to May, and molt occurs from May to August (Ralph and Fancy 1994a, Woodworth et al. 2001). A small proportion (less than 5 percent) of individuals may overlap breeding and molting activities (Ralph and Fancy 1994a, Woodworth et al. 2001). A total of 78 nests of this species have been documented (Sakai and Ralph 1980, Scott et al. 1980, Sakai and Johanos 1983, VanderWerf 1998b, Woodworth et al. 2001). Based on 61 nests found at Hakalau Forest National Wildlife Refuge from 1994 to 1999, Hawai`i creepers generally build cup nests at mid-canopy at about 13 meters (43 feet) in height (range 2.8 to 24 meters [9 to 79 feet]) and about 1.5 meters (5 feet) from the main bole of the tree (range 0 to 4.8 meters [0 to 16 feet]). Most (86 percent) are open cup nests but a few (14 percent) are cavity or pseudo-cavity nests. Clutch size is usually two eggs, nest building Revised Recovery Plan for Hawaiian Forest Birds 2-109 requires 11 to 19 days, incubation 13 to 17 days, and the nestling period is 18 days (Sakai and Johanos 1983, VanderWerf 1998b, Woodworth et al. 2001). Approximately one-third of recorded nesting attempts have been abandoned before egg-laying commenced (33 percent, n = 6, VanderWerf 1998b; 27.9 percent, n = 61, Woodworth et al. 2001). At Hakalau Forest National Wildlife Refuge from 1994 to 1999, daily survival rates of active creeper nests were 0.950 ± 0.011 (standard error), and an average of 1.7 chicks fledged from successful nests (Woodworth et al. 2001). Only a fraction of known-fate nesting attempts are successful (11 percent, n = 9, Sakai and Johanos 1983; 50 percent, n = 6, VanderWerf 1998b; 20.4 percent, n = 49, Woodworth et al. 2001). The relatively high rate of nest failure across studies is alarming, especially given the relatively inaccessible locations where these birds nest. Further study is needed to elucidate the causes of these failures. Data from marked pairs suggest that Hawai`i creepers readily re-nest after failure, and two pairs have been recorded re-nesting after fledging young earlier in the season (U.S. Geological Survey, unpubl. data). Parent Hawai`i creepers feed fledglings for at least 3 weeks post-fledging, but within 1 month of leaving the nest young are foraging independently for food (although still following parents; VanderWerf 1998b, Woodworth et al. 2001). Hawai`i creepers have relatively high annual adult survival of about 73 to 88 percent (Ralph and Fancy 1994a, Woodworth et al. 2001), and juvenile survival of about 33 percent (Woodworth et al. 2001). The high survival rate of Hawai`i creepers in Hakalau in part may reflect the rarity of disease in this high- elevation refugium, above the level of mosquito populations. In general, the reproductive potential of the Hawai`i creeper appears to be low due to its small clutch size, relatively long developmental period, and limited breeding season. This low reproductive potential is exacerbated by the high rate of nesting failures, possibly due to the introduction of mammalian nest predators. High adult and juvenile survival rates may compensate to some extent for low annual productivity, but if disease were to reach the upper elevation rain forests, it could have devastating effects. More detailed demographic data are needed to assess the implications for population persistence of the Hawai`i creeper. Revised Recovery Plan for Hawaiian Forest Birds 2-110 Hawai`i creepers are non-migratory, but during the nonbreeding season they range more widely; the average nonbreeding home range size of 10 Hawai`i creepers was 11.9 ± 7.7 hectares (29.4 ± 19.0 acres) (range 4.3 to 27.1 hectares [10.6 to 66.9 acres]), and individual banded birds have been observed in different locations 1 to 4 kilometers (0.62 to 2.48 miles) apart (VanderWerf 1998b). Snetsinger (1995) observed a Hawai`i creeper in māmane (Sophora chrysophylla) forest 7 kilometers (4.35 miles) from the nearest known population. HABITAT DESCRIPTION Hawai`i creepers are most common in mesic and wet forests above 1,500 meters (5,000 feet) elevation (Scott et al. 1986). The species prefers relatively undisturbed koa/`ōhi`a forests (Sakai and Johanos 1983), and the highest densities occur in areas least modified by logging and grazing (Scott et al. 1986). The largest population (see Range and Status below) exists on the windward slope of Mauna Kea in the vicinity of Hakalau Forest National Wildlife Refuge. Annual rainfall at Hakalau averages 2,500 millimeters (98 inches), and the forest canopy is dominated by `ōhi`a and koa. The subcanopy is composed of `ōlapa, pūkiawe (Styphelia tameiameiae), `ōhelo (Vaccinium calycinum), `ākala (Rubus hawaiiensis), kolea (Myrsine sandwicensis), kāwa`u (Ilex anomala), and Cibotium tree ferns (U.S. Geological Survey, unpubl. data). Hawai`i creepers also have been observed occasionally in māmane forest at higher elevations, and may have been more widespread in this habitat historically (Figure 16; Snetsinger 1995). Hawai`i creeper, along with `akiapōlā`au (Hemignathus munroi) and Hawai`i `ākepa, show a decreasing population density gradient from south to north across three sites in Hakalau Forest National Wildlife Refuge (2.18 ± 0.50 birds per hectare in the south at Pua `Ākala, compared with 0.57 ± 0.23 birds per hectare in the north at Maulua). The causes for the density gradient are not completely understood, but cavity availability was lower in the Pedro area than at Pua `Ākala (Hart 2001), food availability was one-third lower at Maulua than at Pua `Ākala (Fretz 2002), and prevalence of pox virus was higher at Maulua than at Pua `Ākala (VanderWerf 2001a), all of which may partially explain the lower population density to the north. Feral pig sign was negatively correlated with Hawai`i creeper density across the three sites. The frequency of disease epizootics in different sections of the refuge should be investigated. Revised Recovery Plan for Hawaiian Forest Birds 2-111 Revised Recovery Plan for Hawaiian Forest Birds 2-112 HISTORICAL AND CURRENT RANGE AND STATUS In the 1890s, Hawai`i creepers were found in `ōhi`a and `ōhi`a/koa forests throughout the island of Hawai`i, usually above 1,070 meters (3,600 feet) elevation (Perkins 1903).
Recommended publications
  • Convergent Evolution of 'Creepers' in the Hawaiian Honeycreeper
    ARTICLE IN PRESS Biol. Lett. 1. INTRODUCTION doi:10.1098/rsbl.2008.0589 Adaptive radiation is a fascinating evolutionary pro- 1 cess that has generated much biodiversity. Although 65 2 Evolutionary biology several mechanisms may be responsible for such 66 3 diversification, the ‘ecological theory’ holds that it is 67 4 the outcome of divergent natural selection between 68 5 Convergent evolution of environments (Schluter 2000). Whether adaptive 69 6 radiations result chiefly from such ecological speciation, 70 7 ‘creepers’ in the Hawaiian however, remains unclear (Schluter 2001). Convergent 71 8 evolution is often considered powerful evidence for the 72 9 honeycreeper radiation role of adaptive forces in the speciation process 73 (Futuyma 1998), and thus documenting cases where it 10 Dawn M. Reding1,2,*, Jeffrey T. Foster1,3, 74 has occurred is important in understanding the link 11 Helen F. James4, H. Douglas Pratt5 75 12 between natural selection and adaptive radiation. 76 and Robert C. Fleischer1 13 The more than 50 species of Hawaiian honeycree- 77 1 14 Center for Conservation and Evolutionary Genetics, National pers (subfamily Drepanidinae) are a spectacular 78 Zoological Park and National Museum of Natural History, 15 Smithsonian Institution, Washington, DC 20008, USA example of adaptive radiation and an interesting 79 16 2Department of Zoology, University of Hawaii, Honolulu, system to test for convergence, which has been 80 17 HI 96822, USA suspected among the nuthatch-like ‘creeper’ eco- 81 3Center for Microbial Genetics & Genomics,
    [Show full text]
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • Mt. Tabor Park Breeding Bird Survey Results 2009
    The Mount Tabor Invasive Plant Control and Revegetation Project and its affects on birds INTRODUCTION In order to reestablish a healthier native forest environment and improve the health of the watershed, a multi-year project is underway at Mt. Tabor Park to remove invasive plants. Actual removal of non-native species, the planting of native species, and other tasks began in September 2010. So as to monitor how these changes would affect the native bird species on Mt. Tabor, breeding bird and area search surveys were begun in 2009. BES created the protocol for the point counts. Herrera Environmental Consultants, Inc. set up 24 avian point count stations and conducted the initial year of surveys. Station 10 was later deemed unsuitable and data was not collected at this location. During years two and three Audubon Society of Portland conducted the surveys (2010 and 2011). Due to the large number of point count stations that had to be surveyed between dawn and midmorning, each survey was conducted over a two-day span. Full surveys were conducted three times per year during the breeding season (May 15-June 31). The following results were based on birds recorded within 50 meters of each Point Count Station. The BES Watershed Revegetation group designated 14 different units to be treated. Revegetation Unit Map: BES 3.14.12 Page 1 Point Count Station Location Map: The above map was created by Herrera and shows where the point count stations are located. Point Count Stations are fairly evenly dispersed around Mt. Tabor in a variety of habitats.
    [Show full text]
  • Downloadable Data Collection
    Smetzer et al. Movement Ecology (2021) 9:36 https://doi.org/10.1186/s40462-021-00275-5 RESEARCH Open Access Individual and seasonal variation in the movement behavior of two tropical nectarivorous birds Jennifer R. Smetzer1* , Kristina L. Paxton1 and Eben H. Paxton2 Abstract Background: Movement of animals directly affects individual fitness, yet fine spatial and temporal resolution movement behavior has been studied in relatively few small species, particularly in the tropics. Nectarivorous Hawaiian honeycreepers are believed to be highly mobile throughout the year, but their fine-scale movement patterns remain unknown. The movement behavior of these crucial pollinators has important implications for forest ecology, and for mortality from avian malaria (Plasmodium relictum), an introduced disease that does not occur in high-elevation forests where Hawaiian honeycreepers primarily breed. Methods: We used an automated radio telemetry network to track the movement of two Hawaiian honeycreeper species, the ʻapapane (Himatione sanguinea) and ʻiʻiwi (Drepanis coccinea). We collected high temporal and spatial resolution data across the annual cycle. We identified movement strategies using a multivariate analysis of movement metrics and assessed seasonal changes in movement behavior. Results: Both species exhibited multiple movement strategies including sedentary, central place foraging, commuting, and nomadism , and these movement strategies occurred simultaneously across the population. We observed a high degree of intraspecific variability at the individual and population level. The timing of the movement strategies corresponded well with regional bloom patterns of ‘ōhi‘a(Metrosideros polymorpha) the primary nectar source for the focal species. Birds made long-distance flights, including multi-day forays outside the tracking array, but exhibited a high degree of fidelity to a core use area, even in the non-breeding period.
    [Show full text]
  • L O U I S I a N A
    L O U I S I A N A SPARROWS L O U I S I A N A SPARROWS Written by Bill Fontenot and Richard DeMay Photography by Greg Lavaty and Richard DeMay Designed and Illustrated by Diane K. Baker What is a Sparrow? Generally, sparrows are characterized as New World sparrows belong to the bird small, gray or brown-streaked, conical-billed family Emberizidae. Here in North America, birds that live on or near the ground. The sparrows are divided into 13 genera, which also cryptic blend of gray, white, black, and brown includes the towhees (genus Pipilo), longspurs hues which comprise a typical sparrow’s color (genus Calcarius), juncos (genus Junco), and pattern is the result of tens of thousands of Lark Bunting (genus Calamospiza) – all of sparrow generations living in grassland and which are technically sparrows. Emberizidae is brushland habitats. The triangular or cone- a large family, containing well over 300 species shaped bills inherent to most all sparrow species are perfectly adapted for a life of granivory – of crushing and husking seeds. “Of Louisiana’s 33 recorded sparrows, Sparrows possess well-developed claws on their toes, the evolutionary result of so much time spent on the ground, scratching for seeds only seven species breed here...” through leaf litter and other duff. Additionally, worldwide, 50 of which occur in the United most species incorporate a substantial amount States on a regular basis, and 33 of which have of insect, spider, snail, and other invertebrate been recorded for Louisiana. food items into their diets, especially during Of Louisiana’s 33 recorded sparrows, Opposite page: Bachman Sparrow the spring and summer months.
    [Show full text]
  • Phylogeography of Finches and Sparrows
    In: Animal Genetics ISBN: 978-1-60741-844-3 Editor: Leopold J. Rechi © 2009 Nova Science Publishers, Inc. Chapter 1 PHYLOGEOGRAPHY OF FINCHES AND SPARROWS Antonio Arnaiz-Villena*, Pablo Gomez-Prieto and Valentin Ruiz-del-Valle Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain. ABSTRACT Fringillidae finches form a subfamily of songbirds (Passeriformes), which are presently distributed around the world. This subfamily includes canaries, goldfinches, greenfinches, rosefinches, and grosbeaks, among others. Molecular phylogenies obtained with mitochondrial DNA sequences show that these groups of finches are put together, but with some polytomies that have apparently evolved or radiated in parallel. The time of appearance on Earth of all studied groups is suggested to start after Middle Miocene Epoch, around 10 million years ago. Greenfinches (genus Carduelis) may have originated at Eurasian desert margins coming from Rhodopechys obsoleta (dessert finch) or an extinct pale plumage ancestor; it later acquired green plumage suitable for the greenfinch ecological niche, i.e.: woods. Multicolored Eurasian goldfinch (Carduelis carduelis) has a genetic extant ancestor, the green-feathered Carduelis citrinella (citril finch); this was thought to be a canary on phonotypical bases, but it is now included within goldfinches by our molecular genetics phylograms. Speciation events between citril finch and Eurasian goldfinch are related with the Mediterranean Messinian salinity crisis (5 million years ago). Linurgus olivaceus (oriole finch) is presently thriving in Equatorial Africa and was included in a separate genus (Linurgus) by itself on phenotypical bases. Our phylograms demonstrate that it is and old canary. Proposed genus Acanthis does not exist. Twite and linnet form a separate radiation from redpolls.
    [Show full text]
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • Dacninae Species Tree, Part I
    Dacninae I: Nemosiini, Conirostrini, & Diglossini Hooded Tanager, Nemosia pileata Cherry-throated Tanager, Nemosia rourei Nemosiini Blue-backed Tanager, Cyanicterus cyanicterus White-capped Tanager, Sericossypha albocristata Scarlet-throated Tanager, Sericossypha loricata Bicolored Conebill, Conirostrum bicolor Pearly-breasted Conebill, Conirostrum margaritae Chestnut-vented Conebill, Conirostrum speciosum Conirostrini White-eared Conebill, Conirostrum leucogenys Capped Conebill, Conirostrum albifrons Giant Conebill, Conirostrum binghami Blue-backed Conebill, Conirostrum sitticolor White-browed Conebill, Conirostrum ferrugineiventre Tamarugo Conebill, Conirostrum tamarugense Rufous-browed Conebill, Conirostrum rufum Cinereous Conebill, Conirostrum cinereum Stripe-tailed Yellow-Finch, Pseudochloris citrina Gray-hooded Sierra Finch, Phrygilus gayi Patagonian Sierra Finch, Phrygilus patagonicus Peruvian Sierra Finch, Phrygilus punensis Black-hooded Sierra Finch, Phrygilus atriceps Gough Finch, Rowettia goughensis White-bridled Finch, Melanodera melanodera Yellow-bridled Finch, Melanodera xanthogramma Inaccessible Island Finch, Nesospiza acunhae Nightingale Island Finch, Nesospiza questi Wilkins’s Finch, Nesospiza wilkinsi Saffron Finch, Sicalis flaveola Grassland Yellow-Finch, Sicalis luteola Orange-fronted Yellow-Finch, Sicalis columbiana Sulphur-throated Finch, Sicalis taczanowskii Bright-rumped Yellow-Finch, Sicalis uropigyalis Citron-headed Yellow-Finch, Sicalis luteocephala Patagonian Yellow-Finch, Sicalis lebruni Greenish Yellow-Finch,
    [Show full text]
  • Synonymies for Indigenous Hawaiian Bird Taxa
    Part 2 - Drepaninines Click here for Part 1 - Non-Drepaninines The Birds of the Hawaiian Islands: Occurrence, History, Distribution, and Status Version 2 - 1 January 2017 Robert L. Pyle and Peter Pyle Synonymies for Indigenous Hawaiian Bird Taxa Intensive ornithological surveying by active collectors during the latter 1890s led to several classic publications at the turn of the century, each covering nearly all species and island forms of native Hawaiian birds (Wilson and Evans 1899, Rothschild (1900),schild 1900, Bryan 1901a, Henshaw (1902a), 1902a, Perkins (1903),1903). The related but diverse scientific names appearing in these publications comprised the basis for scientific nomenclature for the next half century, but in many cases were modified by later authors using modern techniques to reach a current nomenclature provided in the American Ornithologists’ Union (AOU) Check-List, and followed (for the most part) at this site. A few current AOU names are still controversial, and more changes will come in the future. Synonymies reflecting the history of taxonomic nomenclature are listed below for all endemic birds in the Hawaiian Islands. The heading for each taxon represents that used in this book, reflecting the name used by the AOU (1998), as changed in subsequent AOU Supplements, or, in a few cases, as modified here based on more recent work or on differing opinions on taxonomic ranking. Previously recognized names are listed and citations included for classic publications on taxonomy of Hawaiian birds, as well as significant papers that influenced the species nomenclature. We thank Storrs Olson for sharing with us his summarization on the taxonomy and naming of indigenous Hawaiian birds.
    [Show full text]
  • The Relationships of the Hawaiian Honeycreepers (Drepaninini) As Indicated by Dna-Dna Hybridization
    THE RELATIONSHIPS OF THE HAWAIIAN HONEYCREEPERS (DREPANININI) AS INDICATED BY DNA-DNA HYBRIDIZATION CH^RrES G. SIBLEY AND Jo• E. AHLQUIST Departmentof Biologyand PeabodyMuseum of Natural History, Yale University, New Haven, Connecticut 06511 USA ABSTRACT.--Twenty-twospecies of Hawaiian honeycreepers(Fringillidae: Carduelinae: Drepaninini) are known. Their relationshipsto other groups of passefineswere examined by comparing the single-copyDNA sequencesof the Apapane (Himationesanguinea) with those of 5 speciesof carduelinefinches, 1 speciesof Fringilla, 15 speciesof New World nine- primaried oscines(Cardinalini, Emberizini, Thraupini, Parulini, Icterini), and members of 6 other families of oscines(Turdidae, Monarchidae, Dicaeidae, Sylviidae, Vireonidae, Cor- vidae). The DNA-DNA hybridization data support other evidence indicating that the Hawaiian honeycreepersshared a more recent common ancestorwith the cardue!ine finches than with any of the other groupsstudied and indicate that this divergenceoccurred in the mid-Miocene, 15-20 million yr ago. The colonizationof the Hawaiian Islandsby the ancestralspecies that radiated to produce the Hawaiian honeycreeperscould have occurredat any time between 20 and 5 million yr ago. Becausethe honeycreeperscaptured so many ecologicalniches, however, it seemslikely that their ancestor was the first passefine to become established in the islands and that it arrived there at the time of, or soon after, its separationfrom the carduelinelineage. If so, this colonist arrived before the present islands from Hawaii to French Frigate Shoal were formed by the volcanic"hot-spot" now under the island of Hawaii. Therefore,the ancestral drepaninine may have colonizedone or more of the older Hawaiian Islandsand/or Emperor Seamounts,which also were formed over the "hot-spot" and which reachedtheir present positions as the result of tectonic crustal movement.
    [Show full text]
  • 25 Using Community Group Monitoring Data to Measure The
    25 Using Community Group Monitoring Data To Measure The Effectiveness Of Restoration Actions For Australia's Woodland Birds Michelle Gibson1, Jessica Walsh1,2, Nicki Taws5, Martine Maron1 1Centre for Biodiversity and Conservation Science, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Brisbane, 4072, Queensland, Australia, 2School of Biological Sciences, Monash University, Clayton, Melbourne, 3800, Victoria, Australia, 3Greening Australia, Aranda, Canberra, 2614 Australian Capital Territory, Australia, 4BirdLife Australia, Carlton, Melbourne, 3053, Victoria, Australia, 5Greening Australia, PO Box 538 Jamison Centre, Macquarie, Australian Capital Territory 2614, Australia Before conservation actions are implemented, they should be evaluated for their effectiveness to ensure the best possible outcomes. However, many conservation actions are not implemented under an experimental framework, making it difficult to measure their effectiveness. Ecological monitoring datasets provide useful opportunities for measuring the effect of conservation actions and a baseline upon which adaptive management can be built. We measure the effect of conservation actions on Australian woodland ecosystems using two community group-led bird monitoring datasets. Australia’s temperate woodlands have been largely cleared for agricultural production and their bird communities are in decline. To reverse these declines, a suite of conservation actions has been implemented by government and non- government agencies, and private landholders. We analysed the response of total woodland bird abundance, species richness, and community condition, to two widely-used actions — grazing exclusion and replanting. We recorded 139 species from 134 sites and 1,389 surveys over a 20-year period. Grazing exclusion and replanting combined had strong positive effects on all three bird community metrics over time relative to control sites, where no actions had occurred.
    [Show full text]
  • Adaptive Radiation
    ADAPTIVE RADIATION Rosemary G. Gillespie,* Francis G. Howarth,† and George K. Roderick* *University of California, Berkeley and †Bishop Museum I. History of the Concept ecological release Expansion of habitat, or ecological II. Nonadaptive Radiations environment, often resulting from release of species III. Factors Underlying Adaptive Radiation from competition. IV. Are Certain Taxa More Likely to Undergo Adap- founder effect Random genetic sampling in which tive Radiation Than Others? only a few ‘‘founders’’ derived from a large popula- V. How Does Adaptive Radiation Get Started? tion initiate a new population. Since these founders VI. The Processes of Adaptive Radiation: Case carry only a small fraction of the parental popula- Studies tion’s genetic variability, radically different gene VII. The Future frequencies can become established in the new colony. key innovation A trait that increases the efficiency with GLOSSARY which a resource is used and can thus allow entry into a new ecological zone. adaptive shift A change in the nature of a trait (mor- natural selection The differential survival and/or re- phology, ecology, or behavior) that enhances sur- production of classes of entities that differ in one or vival and/or reproduction in an ecological environ- more hereditary characteristics. ment different from that originally occupied. sexual selection Selection that acts directly on mating allopatric speciation The process of genetic divergence success through direct competition between mem- between geographically separated populations lead- bers of one sex for mates or through choices made ing to distinct species. between the two sexes or through a combination of character displacement Divergence in a morphological both modes.
    [Show full text]