Types of Inflorescence (Floral Structure)

Total Page:16

File Type:pdf, Size:1020Kb

Types of Inflorescence (Floral Structure) Types of Inflorescence (Floral structure) Spike - an elongate, unbranched, indeterminate inflorescence with sessile flowers. Spikelet - a small spike, characteristic of grasses and sedges. Raceme - an elongate, unbranched, indeterminate inflorescence with pedicelled flowers. Panicle - a branched raceme. Corymb - a flat-topped raceme with elongate pedicels reaching the same level. Compound Corymb - a branched corymb. Umbel - a flat-topped or rounded inflorescence with the pedicels originating from a common point. Umbels can be determinate or indeterminate. Compound Umbel - a branched umbel, with primary rays arising from a common point, and secondary umbels arising from the tip of the primary rays. Capitulum (or head) - a dense vertically compressed inflorescence with sessile flowers on a receptacle and subtended by an involucre of phyllaries, characteristic of the Asteraceae. Heads can be determinate or indeterminate. Thyrse - a many-flowered inflorescence with an indeterminate central axis and many opposite, lateral dichasia; a mixed inflorescence, with determinate and indeterminate shoots. Courtesy of The Northern Ontario Plant Database website http://www.northernontarioflora.ca/inflorescence_types.cfm Types of Inflorescence (Floral structure) Simple Cyme or Dichasium - a determinate inflorescence with 2 dichotomous lateral branches and pedicles of equal length. Compound Dichasium - a branched dichasium Compound Cyme - a determinate thyrse. Helicoid Cyme(or bostryx) - a determinate cyme in which the branches develop only on 1 side, due to the abortion of opposing paired bud, the inflorescence thus appearing simple. Cincinnus - a tight, modified helicoid cyme in which the pedicels are very short. Scorpioid Cyme(or rhipidium) - a zig-zag determinate cyme with branches developing alternately on opposite sides of the rachis, due to abortion of opposing paired bud. Courtesy of The Northern Ontario Plant Database website http://www.northernontarioflora.ca/inflorescence_types.cfm .
Recommended publications
  • Inflorescences
    Inflorescences - Floral Displays Inflorescences - Floral Displays A shift from widely The vast majority of flowering plants spaced single flowers to an inflorescence required possess flowers in clusters called an condensation of shoots inflorescence. and the loss of the intervening leaves. These clusters facilitate pollination via a prominent visual display and more The simplest efficient pollen uptake and deposition. inflorescence type would thus be indeterminate with the oldest flowers at the base and the younger flowers progressively closer to the apical meristem of the shoot. = a raceme Raceme (Prunus or cherry) One modification of the basic raceme is to make it compound The panicle is essentially compound a series of attached racemes with the oldest racemes at the base and the youngest at the apex of the inflorescence. Panicle (Zigadenus or white camass) Raceme Panicle 1 A second modification of the basic raceme is to lose its pedicels The spike is usually associated with congested reduced flowers and often, but not always, with wind Pedicel loss pollination. wind pollinated Spike (Plantago or plantain) Raceme Spike A third modification of the basic raceme is to lose its internodes The spike is usually associated with congested reduced flowers and often, animal pollinated but not always, with wind Internode loss pollination. Umbel Spike (Combretum - Brent’s plants) Raceme 2 The umbel characterizes specific families (carrot and The umbel is found scattered in many other families ginseng families for example). as well. These families typically show a compound umbel - smaller umbellets on a larger umbel. Umbel Umbel (Cicuta or water hemlock) (Zizia or golden alexander) (Eriogonum or false buckwheat - family Polygonaceae) - Ben’s plants A fourth modification of the basic raceme is for the stem axis to form a head The head or capitulum characterizes specific families - most notably the Compositae or Asteraceae.
    [Show full text]
  • The Inheritance of Apospory in <Emphasis Type="Italic">
    THE INHER,ITANCE OF APOSPOR,¥ IN SCOLOPENDRI UM V ULGARE BY I. ANDEI~SSON-KOTT0 A~D A. E. C4AIICDNEI% Joh~t Innes Horticultu~'al Institution, Me,rton, Londo'Jb (With Plates VI-XII and Two Folders) TIt~ literature on apomixis and apospory is very extensive. Morpho- logical and taxonomic studies, and lately cytological and genetical work, have brought to light various important facts which have not only made possible extensive conclusions but have given rise to speculations in various directions. Among the more general questions which have arisen are those relating to the cause of apomixis and apospory, the relation of polyploidy to apomixis, the relation of polymorphism of plant genera to apomixis and apospory, or generally the part played by apomixis in evolution and species formation, and the alternation of generations. It is impossible here to go into the extensive literature on the subject, it will only be necessary to refer to the recent handbooks by l%osenberg (1930) and Schnarf (1929). It may be mentioned that, in addition to speculations on hybridism in itself as the cause of apomixis, whether on cytological (Winge, 1917) or comparative (Ernst, 1918) grounds, more definite views were expressed on t]zis subject by I~osenberg (1917), Whlkler (1920) and more especially by Hohngren (1919), and by l%osen- berg in his later work (1930); these authors were conscious of the possi- bility of a genetic factor for tendency to apomixis, and have expressed themselves to this effect. More recently Schnarf (1929) expresses himself in the following way: "Die Anlage zur kpomixis diirfte in vielen Fgllen schon vet der Kreuzung vorhanden gewesen sein, and diese dr'trite eher eine ausl6sende als eine unmittelbar hervorrufende gewesen sein." (J-ustafsson (1932) is more definite and considers in more detail the possibilities of the origin of new forms and of apomi~s as a dominant or recessive character in triploid Yfaraxaca and Ar&ie,ra~ia.
    [Show full text]
  • Reproductive Ecology of Heracleum Mantegazzianum
    4 Reproductive Ecology of Heracleum mantegazzianum IRENA PERGLOVÁ,1 JAN PERGL1 AND PETR PYS˘EK1,2 1Institute of Botany of the Academy of Sciences of the Czech Republic, Pru˚honice, Czech Republic; 2Charles University, Praha, Czech Republic Botanical creature stirs, seeking revenge (Genesis, 1971) Introduction Reproduction is the most important event in a plant’s life cycle (Crawley, 1997). This is especially true for monocarpic plants, which reproduce only once in their lifetime, as is the case of Heracleum mantegazzianum Sommier & Levier. This species reproduces only by seed; reproduction by vegetative means has never been observed. As in other Apiaceae, H. mantegazzianum has unspecialized flowers, which are promiscuously pollinated by unspecialized pollinators. Many small, closely spaced flowers with exposed nectar make each insect visitor to the inflorescence a potential and probable pollinator (Bell, 1971). A list of insect taxa sampled on H. mantegazzianum (Grace and Nelson, 1981) shows that Coleoptera, Diptera, Hemiptera and Hymenoptera are the most frequent visitors. Heracleum mantegazzianum has an andromonoecious sex habit, as has almost half of British Apiaceae (Lovett-Doust and Lovett-Doust, 1982); together with perfect (hermaphrodite) flowers, umbels bear a variable propor- tion of male (staminate) flowers. The species is considered to be self-compati- ble, which is a typical feature of Apiaceae (Bell, 1971), and protandrous (Grace and Nelson, 1981; Perglová et al., 2006). Protandry is a temporal sep- aration of male and female flowering phases, when stigmas become receptive after the dehiscence of anthers. It is common in umbellifers. Where dichogamy is known, 40% of umbellifers are usually protandrous, compared to only about 11% of all dicotyledons (Lovett-Doust and Lovett-Doust, 1982).
    [Show full text]
  • Invasive Weeds of the Appalachian Region
    $10 $10 PB1785 PB1785 Invasive Weeds Invasive Weeds of the of the Appalachian Appalachian Region Region i TABLE OF CONTENTS Acknowledgments……………………………………...i How to use this guide…………………………………ii IPM decision aid………………………………………..1 Invasive weeds Grasses …………………………………………..5 Broadleaves…………………………………….18 Vines………………………………………………35 Shrubs/trees……………………………………48 Parasitic plants………………………………..70 Herbicide chart………………………………………….72 Bibliography……………………………………………..73 Index………………………………………………………..76 AUTHORS Rebecca M. Koepke-Hill, Extension Assistant, The University of Tennessee Gregory R. Armel, Assistant Professor, Extension Specialist for Invasive Weeds, The University of Tennessee Robert J. Richardson, Assistant Professor and Extension Weed Specialist, North Caro- lina State University G. Neil Rhodes, Jr., Professor and Extension Weed Specialist, The University of Ten- nessee ACKNOWLEDGEMENTS The authors would like to thank all the individuals and organizations who have contributed their time, advice, financial support, and photos to the crea- tion of this guide. We would like to specifically thank the USDA, CSREES, and The Southern Region IPM Center for their extensive support of this pro- ject. COVER PHOTO CREDITS ii 1. Wavyleaf basketgrass - Geoffery Mason 2. Bamboo - Shawn Askew 3. Giant hogweed - Antonio DiTommaso 4. Japanese barberry - Leslie Merhoff 5. Mimosa - Becky Koepke-Hill 6. Periwinkle - Dan Tenaglia 7. Porcelainberry - Randy Prostak 8. Cogongrass - James Miller 9. Kudzu - Shawn Askew Photo credit note: Numbers in parenthesis following photo captions refer to the num- bered photographer list on the back cover. HOW TO USE THIS GUIDE Tabs: Blank tabs can be found at the top of each page. These can be custom- ized with pen or marker to best suit your method of organization. Examples: Infestation present On bordering land No concern Uncontrolled Treatment initiated Controlled Large infestation Medium infestation Small infestation Control Methods: Each mechanical control method is represented by an icon.
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • Prairie Plant Profiles
    Prairie Plant Profiles Freedom Trail Park Westfield, IN 1 Table of Contents The Importance of Prairies…………………………………………………… 3 Grasses and Sedges……………………………………………………….......... 4-9 Andropogon gerardii (Big Bluestem)…………………………………………………………. 4 Bouteloua curtipendula (Side-Oats Grama)…………………………………………………… 4 Carex bicknellii (Prairie Oval Sedge)…………………………………………………………. 5 Carex brevior (Plains Oval Sedge)……………………………………………………………. 5 Danthonia spicata (Poverty Oat Grass)……………………………………………………….. 6 Elymus canadensis (Canada Wild Rye)…………………………………….............................. 6 Elymus villosus (Silky Wild Rye)……………………………………………………………… 7 Elymus virginicus (Virginia Wild Rye)………………………………………........................... 7 Panicum virgatum (Switchgrass)……………………………………………………………… 8 Schizachyrium scoparium (Little Bluestem)…………………………………………............... 8 Sorghastrum nutans (Indian Grass)……………………………………...….............................. 9 Forbs……………………………………………………………………..……... 10-25 Asclepias incarnata (Swamp Milkweed)………………………………………………………. 10 Aster azureus (Sky Blue Aster)…………………………………………….….......................... 10 Aster laevis (Smooth Aster)………………………………………………….………………… 11 Aster novae-angliae (New England Aster)…………………………………..………………… 11 Baptisia leucantha (White False Indigo)………………………………………………………. 12 Coreopsis palmata (Prairie Coreopsis)………………………………………………………… 12 Coreopsis tripteris (Tall Coreopsis)…………………………………...………………………. 13 Echinacea pallida (Pale Purple Coneflower)……………………………….............................. 13 Echinacea purpurea (Purple Coneflower)…………………………………….........................
    [Show full text]
  • Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017
    Broadleaf Woodoats (Chasmanthium latifolia) Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017 1 Introduction This 5 hour workshop is an introduction to the identification of grasses using hands- on dissection of diverse species found within the Texas middle Gulf Coast region (although most have a distribution well into the state and beyond). By the allotted time period the student should have acquired enough knowledge to identify most grass species in Texas to at least the genus level. For the sake of brevity grass physiology and reproduction will not be discussed. Materials provided: Dried specimens of grass species for each student to dissect Jewelry loupe 30x pocket glass magnifier Battery-powered, flexible USB light Dissecting tweezer and needle Rigid white paper background Handout: - Grass Plant Morphology - Types of Grass Inflorescences - Taxonomic description and habitat of each dissected species. - Key to all grass species of Texas - References - Glossary Itinerary (subject to change) 0900: Introduction and house keeping 0905: Structure of the course 0910: Identification and use of grass dissection tools 0915- 1145: Basic structure of the grass Identification terms Dissection of grass samples 1145 – 1230: Lunch 1230 - 1345: Field trip of area and collection by each student of one fresh grass species to identify back in the classroom. 1345 - 1400: Conclusion and discussion 2 Grass Structure spikelet pedicel inflorescence rachis culm collar internode ------ leaf blade leaf sheath node crown fibrous roots 3 Grass shoot. The above ground structure of the grass. Root. The below ground portion of the main axis of the grass, without leaves, nodes or internodes, and absorbing water and nutrients from the soil.
    [Show full text]
  • Ornamental Garden Plants of the Guianas Pt. 2
    Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so.
    [Show full text]
  • Medicago Sativa L.)
    ACTA BIOLOGICA CRACOVIENSIA Series Botanica 53/1: 96–101, 2011 DOI: 10.2478/v10182-011-0013-4 CYTOEMBRYOLOGICAL ANALYSIS OF CAUSES FOR POOR SEED SET IN ALFALFA (MEDICAGO SATIVA L.) RAFAŁ MÓL1, DOROTA WEIGT2*, AND ZBIGNIEW BRODA2 1Department of General Botany, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland 2Department of Genetics and Plant Breeding, Poznan University of Life Sciences, Wojska Polskiego 71 C, 61-625 Poznań, Poland Received February 3, 2011; revision accepted April 21, 2011 Poor seed set is a limiting factor in alfalfa breeding, as it slows the selection response. One strategy used to over- come this problem is to search for mutations of inflorescence morphology. Long-peduncle (lp), branched-raceme (br) and top-flowering (tf) inflorescence mutations increase the number of flowers per inflorescence, but they do not improve seed set per flower. Here we assessed pollen tube growth in styles of those inflorescence mutants and we observed embryo and endosperm development in seeds 1 to 16 days after pollination (DAP). The num- ber of pollen tubes penetrating the style and the ovary was similar in all tested mutants and in the reference cul- tivar Radius. At 2 DAP, fertilized ovules were 2.7–3.9 times less numerous in certain inflorescence mutants than in the short-raceme cv. Radius. Ovule degeneration progressed at 2–4 DAP in all analyzed plants. Most ovules were not properly developed in the control cultivar (62%), nor in the forms with mutated inflorescence mor- phology (69–86%). The number of seeds per pod was lowest in the tf form despite its having the highest num- ber of ovules per ovary.
    [Show full text]
  • Tucson Cactus and Succulent Society Guide to Common Cactus and Succulents of Tucson
    Tucson Cactus and Succulent Society Guide to Common Cactus and Succulents of Tucson http://www.tucsoncactus.org/c-s_database/index.html Item ID: 1 Item ID: 2 Family: Cactaceae Family: Cactaceae Genus: Ferocactus Genus: Echinocactus Species: wislizenii Species: grusonii Common Name: Fishhook Barrel Common Name: Golden Barrel Habitat: Various soil types from 1,000 Cactus to 6,000 feet elevation from grasslands Habitat: Located on rolling hills to rocky mountainous areas. and cliffs. Range: Arizona, southwestern New Range: Limited to small areas in Mexico, limited extremes of western Queretaro, Mexico. The popula- Texas, Sonora, northwest Chihuahua tion had become very low in num- and northern Sinaloa, Mexico bers over the years but is just Care: An extremely easy plant to grow now beginning to increase due to in and around the Tucson area. It re- protective laws and the fact that Photo Courtesy of Vonn Watkins quires little attention or special care as this plant is now in mass cultiva- ©1999 it is perfectly at home in almost any tion all over the world. garden setting. It is very tolerant of ex- Photo Courtesy of American Desert Care: The Golden Barrel has slow- Description treme heat as well as cold. Cold hardi- Plants ly become one of the most pur- This popular barrel cactus is noted ness tolerance is at around 10 degrees chased plants for home landscape for the beautiful golden yellow farenheit. Description in Tucson. It is an easy plant to spines that thickly surround the Propagation: Propagation of this cac- This plant is most recognized by the grow and takes no special care.
    [Show full text]
  • Inflorescence Architecture and Floral Morphology of Aratitiyopea Lopezii (Xyridaceae) Lisa M
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 17 2007 Inflorescence Architecture and Floral Morphology of Aratitiyopea lopezii (Xyridaceae) Lisa M. Campbell New York Botanical Garden, Bronx Dennis Wm. Stevenson New York Botanical Garden, Bronx Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Campbell, Lisa M. and Stevenson, Dennis Wm. (2007) "Inflorescence Architecture and Floral Morphology of Aratitiyopea lopezii (Xyridaceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 17. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/17 Aliso 23, pp. 227–233 ᭧ 2007, Rancho Santa Ana Botanic Garden INFLORESCENCE ARCHITECTURE AND FLORAL MORPHOLOGY OF ARATITIYOPEA LOPEZII (XYRIDACEAE) LISA M. CAMPBELL1, 2 AND DENNIS WM.STEVENSON1 1The New York Botanical Garden, Bronx, New York 10458, USA 2Corresponding author ([email protected]) ABSTRACT Aratitiyopea lopezii is a robust perennial species of Xyridaceae from seasonally saturated, mid- to high-elevation, sandstone and granite sites in northern South America. The species lacks the scapose inflorescence characteristic of Xyridaceae and, having the gestalt of a rhizomatous bromeliad, it is seemingly aberrant in the family. However, closer examination confirms features consistent with the family and the previously noted morphological similarities to Orectanthe. Details of inflorescence structure and floral morphology are presented and compared to other genera of Xyridaceae. Key words: Aratitiyopea, Bromeliaceae, gynoecium appendage, inflorescence, Navia, nectary, Orec- tanthe, osmophore, pollen, Xyridaceae. INTRODUCTION florescence, and the few exceptions to this growth form (i.e., some Abolboda species, Achlyphila, and Aratitiyopea) have Aratitiyopea (Xyridaceae) is a monospecific genus of her- not been critically evaluated.
    [Show full text]
  • The Schoenus Spikelet: a Rhipidium? a Floral Ontogenetic Answer
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 15 2007 The choS enus Spikelet: a Rhipidium? A Floral Ontogenetic Answer Alexander Vrijdaghs Katholieke Universiteit, Leuven, Belgium Paul Goetghebeur Ghent University, Ghent, Belgium Erik Smets Katholieke Universiteit, Leuven, Belgium Pieter Caris Katholieke Universiteit, Leuven, Belgium Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Ecology and Evolutionary Biology Commons, and the Plant Sciences Commons Recommended Citation Vrijdaghs, Alexander; Goetghebeur, Paul; Smets, Erik; and Caris, Pieter (2007) "The choeS nus Spikelet: a Rhipidium? A Floral Ontogenetic Answer," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 15. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/15 Aliso 23, pp. 204–209 ᭧ 2007, Rancho Santa Ana Botanic Garden THE SCHOENUS SPIKELET: A RHIPIDIUM? A FLORAL ONTOGENETIC ANSWER ALEXANDER VRIJDAGHS,1,3 PAUL GOETGHEBEUR,2 ERIK SMETS,1 AND PIETER CARIS1 1Laboratory of Plant Systematics, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; 2Research Group Spermatophytes, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium 3Corresponding author ([email protected]) ABSTRACT The inflorescence unit of Schoenus nigricans and S. ferrugineus consists of a zigzag axis and distichously arranged bracts, each of which may or may not subtend a bisexual flower. Each flower seems to terminate a lateral axis. These features have led to a controversy about the nature of the inflorescence unit, particularly whether it is monopodial or sympodial. It was often seen as a pseu- dospikelet composed of a succession of lateral axes, each subtended by the prophyll of the previous axis, as in a rhipidium.
    [Show full text]