Application and System Design of Elastomer Based Optofluidic Lenses
Total Page:16
File Type:pdf, Size:1020Kb
Application and System Design of Elastomer Based Optofluidic Lenses Item Type text; Electronic Dissertation Authors Savidis, Nickolaos Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 02/10/2021 19:52:15 Link to Item http://hdl.handle.net/10150/255155 Application and System Design of Elastomer Based Optofluidic Lenses by Nickolaos Savidis _____________________ A Dissertation Submitted to the Faculty of the COLLEGE OF OPTICAL SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2012 Copyright © Nickolaos Savidis 2012 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation Prepared by Nickolaos Savidis Entitled Application and System Design of Elastomer Based Optofluidic Lenses And recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 10/11/2012 James Schwiegerling _______________________________________________________________________ Date: 10/11/2012 Nasser Peyghambarian _______________________________________________________________________ Date: 10/11/2012 Gholam Peyman 3 Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. ________________________________________________ Date: 10/11/2012 Dissertation Director: James Schwiegerling 4 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the copyright holder. SIGNED: Nickolaos Savidis 5 ACKNOWLEDGEMENTS I would like to thank my advisor, Prof. Jim Schwiegerling, Prof. Nasser Peyghambarian and Prof. Gholam Peyman for their guidance and support for this research, and the friendship and understanding they have shown through the progress of our research 6 DEDICATION To my family who have always offered support. 7 TABLE OF CONTENTS LIST OF FIGURES .......................................................................................................... 11 LIST OF TABLES ............................................................................................................ 16 ABSTRACT ...................................................................................................................... 17 1.0 INTRODUCTION ...................................................................................................... 19 1.1 History of Optofluidic Lenses ................................................................................... 19 1.2 Optofluidic Lenses ................................................................................................... 21 1.3 Surface Profile Control of Pressure Actuated Fluidic Lenses ................................. 22 1.3.1 Shell Surface Profile .............................................................................................. 23 1.3.2 Spherical Surface Profile ...................................................................................... 24 1.3.3 Cylindrical Surface Profile ................................................................................... 25 2.0 HUMAN VISUAL SYSTEM .................................................................................... 28 2.1 Eye’s Anatomy......................................................................................................... 28 2.2 Eye’s Optical Properties .......................................................................................... 29 2.4 Spatial Acuity........................................................................................................... 32 3.0 ABERRATIONS AND ABBERATION CORRECTION......................................... 34 3.1 Circularly Symmetric Optical Systems and the Wavefront ..................................... 34 3.1.1 Defocus Aberration .............................................................................................. 36 3.1.2 Chromatic Aberration .......................................................................................... 37 3.1.3 Astigmatism Aberration ....................................................................................... 39 3.1.4 Spherical Aberration ............................................................................................. 40 3.2 Asymmetric Optical Systems, Zernike Fitting, and Ocular Aberrations ................. 41 3.2.1 Zernike Polynomials ............................................................................................. 41 3.2.2 Zernike Fitting and Ocular Aberrations ................................................................ 42 3.2.3 Factors Causing Ocular Aberrations ..................................................................... 45 8 TABLE OF CONTENTS- Continued 3.2.4 Measuring Ocular Aberrations and Optical Measuring Devices ............................ 46 3.2.5 Light Source of Shack-Hartmann Wavefront Sensor ........................................... 49 3.2.6 Tradeoffs of the Shack-Hartmann Wavefront Sensor ........................................... 49 4.0 SPHERICAL FLUIDIC LENSES AND NON-MECHANICAL ZOOM ................. 52 4.1 Theory of Spherical Fluidic Lenses ......................................................................... 53 4.2 Fabrication of Elastomer Membrane ....................................................................... 55 4.3 Spherical Fluidic Lens One ...................................................................................... 56 4.4 Spherical Fluidic Lens Two ..................................................................................... 59 4.5 Zoom Lenses ............................................................................................................ 60 4.6 Theory: Variable Power Zoom System.................................................................... 61 4.7 Experiment: Zoom System Verification .................................................................. 64 4.8 Limitations of Fluidic Zoom System ....................................................................... 67 5.0 FLUIDIC ACHROMAT ............................................................................................ 69 5.1 Achromat One: Diffractive / Refractive Hybrid ...................................................... 70 5.1.2 Liquid Crystal Diffractive Lens ............................................................................ 72 5.1.3 Fluidic Refractive Lens ......................................................................................... 73 5.1.4 Test Methods and Results of the Hybrid Diffractive/Refractive Achromat ......... 75 5.2 Continuous Variable Achromat Fluidic Lens .......................................................... 89 5.2.1 Variable Focal Length Achromat Design ............................................................. 90 5.2.2 Testing Methods for Continuous Variable Focal Length Achromat .................... 93 6.0 WAVEFRONT CORRECTION OF THE FLUIDIC PHOROPTER AND FLUIDIC AUTO-PHOROPTER ..................................................................................... 101 6.1 Fluidic Phoropter ..................................................................................................... 104 6.1.1 Wavefront Analysis of Defocus and Astigmatism Lenses ................................... 104 6.1.2 Wavefront Analysis of Fluidic Phoropter ............................................................. 107 6.2 Wavefront Analysis of the Fluidic Auto-Phoropter ................................................. 111 9 TABLE OF CONTENTS- Continued 7.0 FLUIDIC AUTO-PHOROPTER PROTOTYPE ONE: SYSTEM DESIGN ............ 113 7.1 Design of Fluidic Auto-Phoropter Prototype One ................................................... 114 7.1.1 Fluidic Auto-Phoropter Prototype One: Light Path from Source to Fluidic Phoropter. ......................................................................................................................... 115 7.1.2 Fluidic Auto-Phoropter Prototype One: Light Path from Fluidic Phoropter through the Eye Model..................................................................................................... 118 7.1.2.1 Fluid Selection for Fluidic Phoropter ................................................................ 119 7.1.2.2 Test Results with Fluidic