Bespoke Photonic Devices Using Ultrafast Laser Driven Ion Migration in Glasses ⇑ T.T

Total Page:16

File Type:pdf, Size:1020Kb

Bespoke Photonic Devices Using Ultrafast Laser Driven Ion Migration in Glasses ⇑ T.T Progress in Materials Science 94 (2018) 68–113 Contents lists available at ScienceDirect Progress in Materials Science journal homepage: www.elsevier.com/locate/pmatsci Bespoke photonic devices using ultrafast laser driven ion migration in glasses ⇑ T.T. Fernandez a,1, M. Sakakura b,1, S.M. Eaton a, B. Sotillo a, , J. Siegel c, J. Solis c, Y. Shimotsuma d, K. Miura d a Istituto di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche (IFN-CNR), Milano, Italy b Optoelectronics Research Centre, University of Southampton, Southampton, United Kingdom c Laser Processing Group, Instituto de Optica, Consejo Superior de Investigaciones Científicas (IO,CSIC), Madrid, Spain d Department of Materials Chemistry, Kyoto University, Kyoto, Japan article info abstract Article history: This Review provides an exhaustive and detailed description of ion migration phenomena Received 16 August 2016 which occur inside transparent dielectric media due to the interaction with intense ultra- Accepted 20 December 2017 short pulses. The paper differentiates various processes underlying the ion migration influ- Available online 29 December 2017 enced by simultaneous heat accumulation and diffusion. The femtosecond laser induced temperature distribution, the major driving force of ions in dielectrics, is described in detail. Keywords: This discussion is based on three meticulous analysis methods including the thermal modi- Femtosecond laser micromachining fication of transparent dielectrics at various ambient temperatures, numerical simulations Ion-migration and comparison with direct observation of the light-matter interaction and micro-Raman Scanning electron microscope Glass spectroscopy. The ion migration phenomena studied have been triggered in four different Waveguides configurations: at low repetition and high repetition rates, and observations perpendicular Photonic devices and parallel to the laser irradiation direction. Inspired by this research, potential applications are highlighted including space-selective phase separation, a laser-based ion exchange fabrication method and optical micropipetting by tailoring the plasma profile. Ó 2018 Elsevier Ltd. All rights reserved. Contents 1. Introduction . ................................................................................ 70 2. Background. ................................................................................ 70 2.1. Femtosecond laser sources . ...................................................................... 70 2.2. Femtosecond laser microfabrication . ................................................... 71 2.2.1. Nonlinear absorption . ........................................................ 71 2.2.2. Relaxation and material modification . ........................................................ 72 2.3. Dielectric materials used for fabrication . ................................................... 74 2.4. Characterization techniques . ...................................................................... 74 3. Basic principle of heat accumulation and ion migration by fs laser irradiation. .......................... 75 3.1. Observation of thermal diffusion after single fs laser irradiation inside a glass . ................................ 77 3.1.1. Observation of thermal diffusion by a transient lens (TrL) method . .................. 77 ⇑ Corresponding author at: Istituto di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche(IFN-CNR), Milano, Italy (B. Sotillo). E-mail address: [email protected] (B. Sotillo). 1 Co-first authors. https://doi.org/10.1016/j.pmatsci.2017.12.002 0079-6425/Ó 2018 Elsevier Ltd. All rights reserved. T.T. Fernandez et al. / Progress in Materials Science 94 (2018) 68–113 69 Nomenclature Acronym Meaning AR Aspect Ratio Bi Bidirectional pumping BSE Back Scattered Electrons CCD Charge-Coupled Device CW Continuous-Wave DIC Differential Interference Contrast EBSD Electron Back Scattered Diffraction EDS, EDX Energy Dispersive X-ray Spectroscopy EELS Electron Energy Loss Spectroscopy EPMA Electron Probe Microanalysis FT Fourier Transform HAADF High Angle Annular Dark Field HRR High Repetition Rate ICCD Intensified Charge-Coupled Device IFT Iterative Fourier transform IG Internal Gain LCOS Liquid Crystal on Silicon LRR Low Repetition Rate NA Numerical Aperture OM Optical Microscope ORA Optimal Rotation Angle ppmw Parts Per Million Weight R Repetition rate RE Rare-Earth RIC Refractive Index Contrast SA Spherical Aberration SEM Scanning Electron Microscopy SLM Spatial Light Modulator STEM Scanning Transmission Electron Microscopy Tout Threshold Temperature TEM Transmission Electron Microscopy TL Thermal Lens TrL transient Lens ULE Ultra-Low Expansion Uni Unidirectional pumping WDS Wavelength Dispersive Spectroscopy m-PL Micro-Photoluminescence m-Raman Micro-Raman 3.1.2. Observation of thermal diffusion by micro Raman measurement. ............................ 79 3.2. Heat accumulation with a high repetition rate laser . .......................................... 80 3.2.1. Simulation of heat accumulation. ............................................... 80 3.2.2. Evaluation of the temperature distribution during high repetition rate laser irradiation . ......... 81 3.2.3. Mechanism of thermal modification inside glasses . ............................................... 84 3.2.4. Interpretation of different Tout by the viscoelastic model . ............................ 86 3.3. Absorptivity and photoexcitation mechanism............................................................. 87 3.4. Trends of ion migration observed perpendicular to the incident laser . ....................... 89 4. High repetition rate laser irradiation . ....................................................................... 91 4.1. Observation of ion migration with high repetition rate lasers . .......................................... 91 4.1.1. Ion migration in phosphate glass waveguides . ............................................... 94 4.1.2. Ion migration in tellurite glass waveguides . ............................................... 94 4.1.3. Dual regimes of ion migration .................................................................. 95 4.2. Controlling the directionality of ion migrations . .......................................... 97 5. Application of ion migration . ...................................................................... 100 5.1. Space-selective phase separation . ............................................................ 100 5.2. Replacing the ion exchange method . ............................................................ 101 5.3. Optical micropipette through plasma shaping . ......................................... 103 6. Modification of ion migration with multiple spot irradiation . ................................................... 103 6.1. Modification of ion migration. ............................................................ 103 70 T.T. Fernandez et al. / Progress in Materials Science 94 (2018) 68–113 6.2. Principle of a holographic laser irradiation . .................................................. 104 6.3. Modification of ion migration perpendicular to the laser propagation . ............................... 105 6.4. Modification of ion migration parallel to the laser propagation . ............................... 106 6.5. Possible applications of ion migration with multiple spot irradiation. ............................... 109 7. Conclusion . ............................................................................... 109 References . ............................................................................... 109 1. Introduction Studying the underlying physical mechanisms from its smallest possible dimension provides extraordinary precision and control for any experimental technique. One such method that has benefited from new physical insights is ultrafast laser waveguide writing in glasses. Here, femtosecond laser pulses are focused beneath the surface of glass, with light nonlinearly absorbed to yield a permanent and localized refractive index modification. By translating the sample relative to the laser, optical waveguides can be inscribed along 3D trajectories, enabling novel integrated optical devices ranging from UV [1] to Terahertz [2]. However, controlling the refractive index modification, which affects the quality of photonic circuits, is a challenge that has yet to be met by researchers. Since the pioneering work by Miura’s group in 1996, bulk modification of glasses by ultrafast laser irradiation has been studied extensively, with over two thousand papers citing the seminal paper [3]. Several mechanisms have been proposed to explain the ultrafast laser induced refractive index change, including heat accumulation [4,5], thermal quenching [6,7], structural modification [8], color center formation [9], shock wave propagation and nanograting formation [10]. All of these effects influence the resulting morphological change, but their prominence depends on the laser processing conditions and glass type. The crucial role of ion migration during femtosecond laser writing has been disregarded until only recently. The first ever report of ion migration was from Miura’s group while studying space selective crystallization in amorphous dielec- trics using a 800 nm, 130 fs, 200 kHz femtosecond laser [11]. The authors suggested that crystal nuclei are formed at points where the crystallization temperature is exceeded, due to atomic diffusion and the microstructure rearrangement. As described in this Review, ion migration
Recommended publications
  • Fabrication of Integrated Optofluidic Circuits in Chalcogenide Glass Using Femtosecond Laser Direct Writing
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2010 Fabrication Of Integrated Optofluidic Circuits In Chalcogenide Glass Using Femtosecond Laser Direct Writing Troy P. Anderson University of Central Florida Part of the Electromagnetics and Photonics Commons, and the Optics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Anderson, Troy P., "Fabrication Of Integrated Optofluidic Circuits In Chalcogenide Glass Using Femtosecond Laser Direct Writing" (2010). Electronic Theses and Dissertations, 2004-2019. 1518. https://stars.library.ucf.edu/etd/1518 FABRICATION OF INTEGRATED OPTOFLUIDIC CIRCUITS IN CHALCOGENIDE GLASS USING FEMTOSECOND LASER DIRECT WRITING by TROY P. ANDERSON B.S. University of Nebraska – Lincoln, 2004 M.S. University of Central Florida, 2007 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Optics at the University of Central Florida Orlando, Florida Spring Term 2010 Major Professor: Martin Richardson © 2010 Troy Anderson ii ABSTRACT Femtosecond laser direct writing (FLDW) is a versatile process that uses focused femtosecond pulses to modify the physical structure of a material, which can result in a shift of optical properties such as the linear and nonlinear refractive index. If the photon energy of the femtosecond pulses lies below the material bandgap, nonlinear absorption rather than linear absorption becomes the dominant mechanism of energy transfer to the material.
    [Show full text]
  • Elaboration and Optimization of Tellurite-Based Materials for Raman Gain Application Guillaume Guéry
    Elaboration and Optimization of Tellurite-based Materials for Raman Gain Application Guillaume Guéry To cite this version: Guillaume Guéry. Elaboration and Optimization of Tellurite-based Materials for Raman Gain Ap- plication. Other. Université Sciences et Technologies - Bordeaux I; Clemson University. Materials science and engineering, 2013. English. NNT : 2013BOR14808. tel-00868798 HAL Id: tel-00868798 https://tel.archives-ouvertes.fr/tel-00868798 Submitted on 2 Oct 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE PRÉSENTÉE A L’UNIVERSITÉ BORDEAUX 1 ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES Par Guillaume GUERY POUR OBTENIR LE GRADE DE DOCTEUR SPÉCIALITÉ : Physique et Chimie de la Matière Condensée Elaboration and Optimization of Tellurite-based Materials for Raman Gain Application Directeurs de recherche: M. Thierry CARDINAL, M. Vincent RODRIGUEZ, Mme Kathleen RICHARDSON Soutenue le: 28 Juin 2013 Devant la commission d’examen formée de: M. SIMON, Patrick Directeur de recherche – CEMHTI - CNRS Rapporteur M. MAGLIONE, Mario Directeur de recherche- ICMCB – CNRS Président Mme. RIVERO, Clara Chargée de recherche - Lockheed Examinateur M. SUNDARAM, S.K Professeur – Alfred University Examinateur Mme. RICHARDSON, Kathleen Professeur – University of Central Florida Examinateur M. RODRIGUEZ, Vincent Professeur - ISM - Université Bordeaux 1 Examinateur M.
    [Show full text]
  • The American Ceramic Society 25Th International Congress On
    The American Ceramic Society 25th International Congress on Glass (ICG 2019) ABSTRACT BOOK June 9–14, 2019 Boston, Massachusetts USA Introduction This volume contains abstracts for over 900 presentations during the 2019 Conference on International Commission on Glass Meeting (ICG 2019) in Boston, Massachusetts. The abstracts are reproduced as submitted by authors, a format that provides for longer, more detailed descriptions of papers. The American Ceramic Society accepts no responsibility for the content or quality of the abstract content. Abstracts are arranged by day, then by symposium and session title. An Author Index appears at the back of this book. The Meeting Guide contains locations of sessions with times, titles and authors of papers, but not presentation abstracts. How to Use the Abstract Book Refer to the Table of Contents to determine page numbers on which specific session abstracts begin. At the beginning of each session are headings that list session title, location and session chair. Starting times for presentations and paper numbers precede each paper title. The Author Index lists each author and the page number on which their abstract can be found. Copyright © 2019 The American Ceramic Society (www.ceramics.org). All rights reserved. MEETING REGULATIONS The American Ceramic Society is a nonprofit scientific organization that facilitates whether in print, electronic or other media, including The American Ceramic Society’s the exchange of knowledge meetings and publication of papers for future reference. website. By participating in the conference, you grant The American Ceramic Society The Society owns and retains full right to control its publications and its meetings.
    [Show full text]
  • Chapter 22 Reflection and Refraction of Light
    Chapter 22 Reflection and Refraction of Light Problem Solutions 22.1 The total distance the light travels is d2 Dcenter to R Earth R Moon center 2 3.84 108 6.38 10 6 1.76 10 6 m 7.52 10 8 m d 7.52 108 m Therefore, v 3.00 108 m s t 2.51 s 22.2 (a) The energy of a photon is sinc nair n prism 1.00 n prism , where Planck’ s constant is 1.00 8 sinc sin 45 and the speed of light in vacuum is c 3.00 10 m s . If nprism 1.00 1010 m , 6.63 1034 J s 3.00 10 8 m s E 1.99 1015 J 1.00 10-10 m 1 eV (b) E 1.99 1015 J 1.24 10 4 eV 1.602 10-19 J (c) and (d) For the X-rays to be more penetrating, the photons should be more energetic. Since the energy of a photon is directly proportional to the frequency and inversely proportional to the wavelength, the wavelength should decrease , which is the same as saying the frequency should increase . 1 eV 22.3 (a) E hf 6.63 1034 J s 5.00 10 17 Hz 2.07 10 3 eV 1.60 1019 J 355 356 CHAPTER 22 34 8 hc 6.63 10 J s 3.00 10 m s 1 nm (b) E hf 6.63 1019 J 3.00 1029 nm 10 m 1 eV E 6.63 1019 J 4.14 eV 1.60 1019 J c 3.00 108 m s 22.4 (a) 5.50 107 m 0 f 5.45 1014 Hz (b) From Table 22.1 the index of refraction for benzene is n 1.501.
    [Show full text]
  • Spectroscopic Properties of Erbium-Doped Oxyfluoride Phospho-Tellurite Glass and Transparent Glass-Ceramic Containing Baf2 Nanoc
    materials Article Spectroscopic Properties of Erbium-Doped Oxyfluoride Phospho-Tellurite Glass and Transparent Glass-Ceramic Containing BaF2 Nanocrystals Magdalena Lesniak 1,* , Jacek Zmojda 2, Marcin Kochanowicz 2 , Piotr Miluski 2 , Agata Baranowska 3 , Gabriela Mach 1, Marta Kuwik 4, Joanna Pisarska 4, Wojciech A. Pisarski 4 and Dominik Dorosz 1 1 Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Av. Mickiewicza 30, 30059 Krakow, Poland; [email protected] (G.M.); [email protected] (D.D.) 2 Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska Street 45D, 15351 Bialystok, Poland; [email protected] (J.Z.); [email protected] (M.K.); [email protected] (P.M.) 3 Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska Street 45C, 15351 Bialystok, Poland; [email protected] 4 Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland; [email protected] (M.K.); [email protected] (J.P.); [email protected] (W.A.P.) * Correspondence: [email protected] Received: 21 August 2019; Accepted: 17 October 2019; Published: 20 October 2019 Abstract: The ErF3-doped oxyfluoride phospho-tellurite glasses in the (40-x) TeO2-10P2O5-45 (BaF2-ZnF2) -5Na2O-xErF3 system (where x = 0.25, 0.50, 0.75, 1.00, and 1.25 mol%) have been prepared by the conventional melt-quenching method. The effect of erbium trifluoride addition on thermal, structure, and spectroscopic properties of oxyfluoride phospho-tellurite precursor glass was studied by differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR), and Raman spectroscopy as well as emission measurements, respectively.
    [Show full text]
  • Fabrication of Integrated Optofluidic Circuits in Chalcogenide Glass Using Femtosecond Laser Direct Writing
    FABRICATION OF INTEGRATED OPTOFLUIDIC CIRCUITS IN CHALCOGENIDE GLASS USING FEMTOSECOND LASER DIRECT WRITING by TROY P. ANDERSON B.S. University of Nebraska – Lincoln, 2004 M.S. University of Central Florida, 2007 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Optics at the University of Central Florida Orlando, Florida Spring Term 2010 Major Professor: Martin Richardson © 2010 Troy Anderson ii ABSTRACT Femtosecond laser direct writing (FLDW) is a versatile process that uses focused femtosecond pulses to modify the physical structure of a material, which can result in a shift of optical properties such as the linear and nonlinear refractive index. If the photon energy of the femtosecond pulses lies below the material bandgap, nonlinear absorption rather than linear absorption becomes the dominant mechanism of energy transfer to the material. In this manner, a focused femtosecond pulse train can be used to fabricate functional features such as optical waveguides, diffractive optical elements, or micro-fluidic elements within the volume of a transparent medium. In this dissertation, the utility of femtosecond laser processing as a fabrication technique of optical and micro-fluidic elements in chalcogenide glasses is explored. The photo-induced modifications of optical and chemical parameters of new germanium-based Chalcogenide glasses in both bulk and thin-film form are characterized for the first time and the impact of material composition and laser fabrication parameters are discussed. The glasses are found to display an increase in volume, a decrease of the linear optical refractive index, and an increase of the nonlinear refractive index when exposed to femtosecond laser pulses.
    [Show full text]
  • Technical Glasses
    Technical Glasses Physical and Technical Properties 2 SCHOTT is an international technology group with 130 years of ex­ perience in the areas of specialty glasses and materials and advanced technologies. With our high­quality products and intelligent solutions, we contribute to our customers’ success and make SCHOTT part of everyone’s life. For 130 years, SCHOTT has been shaping the future of glass technol­ ogy. The Otto Schott Research Center in Mainz is one of the world’s leading glass research institutions. With our development center in Duryea, Pennsylvania (USA), and technical support centers in Asia, North America and Europe, we are present in close proximity to our customers around the globe. 3 Foreword Apart from its application in optics, glass as a technical ma­ SCHOTT Technical Glasses offers pertinent information in terial has exerted a formative influence on the development concise form. It contains general information for the deter­ of important technological fields such as chemistry, pharma­ mination and evaluation of important glass properties and ceutics, automotive, optics, optoelectronics and information also informs about specific chemical and physical character­ technology. Traditional areas of technical application for istics and possible applications of the commercial technical glass, such as laboratory apparatuses, flat panel displays and glasses produced by SCHOTT. With this brochure, we hope light sources with their various requirements on chemical­ to assist scientists, engineers, and designers in making the physical properties, have led to the development of a great appropriate choice and make optimum use of SCHOTT variety of special glass types. Through new fields of appli­ products. cation, particularly in optoelectronics, this variety of glass types and their modes of application have been continually Users should keep in mind that the curves or sets of curves enhanced, and new forming processes have been devel­ shown in the diagrams are not based on precision measure­ oped.
    [Show full text]
  • Crystallization Kinetics of Chalcogenide Glasses
    2 Crystallization Kinetics of Chalcogenide Glasses Abhay Kumar Singh Department of Physics, Banaras Hindu University, Varanasi, India 1. Introduction 1.1 Background of chalcogenides Chalcogenide glasses are disordered non crystalline materials which have pronounced tendency their atoms to link together to form link chain. Chalcogenide glasses can be obtained by mixing the chalcogen elements, viz, S, Se and Te with elements of the periodic table such as Ga, In, Si, Ge, Sn, As, Sb and Bi, Ag, Cd, Zn etc. In these glasses, short-range inter-atomic forces are predominantly covalent: strong in magnitude and highly directional, whereas weak van der Waals' forces contribute significantly to the medium-range order. The atomic bonding structure is, in general more rigid than that of organic polymers and more flexible than that of oxide glasses. Accordingly, the glass-transition temperatures and elastic properties lay in between those of these materials. Some metallic element containing chalcogenide glasses behave as (super) ionic conductors. These glasses also behave as semiconductors or, more strictly, they are a kind of amorphous semi-conductors with band gap energies of 1±3eV (Fritzsche, 1971). Commonly, chalcogenide glasses have much lower mechanical strength and thermal stability as compared to existing oxide glasses, but they have higher thermal expansion, refractive index, larger range of infrared transparency and higher order of optical non-linearity. It is difficult to define with accuracy when mankind first fabricated its own glass but sources demonstrate that it discovered 10,000 years back in time. It is also difficult to point in time, when the field of chalcogenide glasses started.
    [Show full text]
  • Transparent Glasses and Glass-Ceramics in the Ternary
    Transparent glasses and glass-ceramics in the ternary system TeO2-Nb2O5-PbF2 Juliana Santos Barbosa, Gislene Batista, Sylvain Danto, Evelyne Fargin, Thierry Cardinal, Gael Poirier, Fabia Castro Cassanjes To cite this version: Juliana Santos Barbosa, Gislene Batista, Sylvain Danto, Evelyne Fargin, Thierry Cardinal, et al.. Transparent glasses and glass-ceramics in the ternary system TeO2-Nb2O5-PbF2. Materials, MDPI, 2021, 14 (2), 317 (15 p.). 10.3390/ma14020317. hal-03134515 HAL Id: hal-03134515 https://hal.archives-ouvertes.fr/hal-03134515 Submitted on 8 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. materials Article Transparent Glasses and Glass-Ceramics in the Ternary System TeO2-Nb2O5-PbF2 Juliana Santos Barbosa 1, Gislene Batista 1 , Sylvain Danto 2, Evelyne Fargin 2, Thierry Cardinal 2, Gael Poirier 1,* and Fabia Castro Cassanjes 1 1 Institute of Science and Technology, Federal University of Alfenas, Campus Poços de Caldas, MG CEP, Poços de Caldas 37715-400, Brazil; [email protected] (J.S.B.); [email protected] (G.B.); [email protected] (F.C.C.) 2 Institut de Chimie de la Matière Condensée de Bordeaux—ICMCB, Université de Bordeaux, 87 Avenue du Dr.
    [Show full text]
  • Design and Fabrication of Nonconventional Optical Components by Precision Glass Molding
    Design and Fabrication of Nonconventional Optical Components by Precision Glass Molding DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Peng He Graduate Program in Industrial and Systems Engineering The Ohio State University 2014 Dissertation Committee: Dr. Allen Y. Yi, Advisor Dr. Jose M. Castro Dr. L. James Lee Copyright by Peng He 2014 Abstract Precision glass molding is a net-shaping process to fabricate glass optics by replicating optical features from precision molds to glass at elevated temperature. The advantages of precision glass molding over traditional glass lens fabrication methods make it especially suitable for the production of optical components with complicated geometries, such as aspherical lenses, diffractive hybrid lenses, microlens arrays, etc. Despite of these advantages, a number of problems must be solved before this process can be used in industrial applications. The primary goal of this research is to determine the feasibility and performance of nonconventional optical components formed by precision glass molding. This research aimed to investigate glass molding by combing experiments and finite element method (FEM) based numerical simulations. The first step was to develop an integrated compensation solution for both surface deviation and refractive index drop of glass optics. An FEM simulation based on Tool-Narayanaswamy-Moynihan (TNM) model was applied to predict index drop of the molded optical glass. The predicted index value was then used to compensate for the optical design of the lens. Using commercially available general purpose software, ABAQUS, the entire process of glass molding was simulated to calculate the surface deviation from the adjusted lens geometry, which was applied to final mold shape modification.
    [Show full text]
  • A Study of Tellurite Glasses for Electro-Optic Optical Fibre Devices
    A Study of Tellurite Glasses for Electro-optic Optical Fibre Devices by Sean Manning Supervisors: Prof. Tanya M. Monro Prof. Jesper Munch A thesis submitted in fulfilment of the degree of Doctor of Philosophy in the Faculty of Science School of Chemistry & Physics November 2011 Declaration of Authorship I, Sean Manning, declare that this thesis titled, ‘A Study of Tellurite Glasses for Electro- optic Optical Fibre Devices’ and the work presented in it are my own. I confirm that: This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Sean Manning and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time. Signed: Date: iii iv List of Publications 1. Manning, Sean; Ebendorff-Heidepriem, Heike; Heike Monro, Tanya Mary.
    [Show full text]
  • High-Precision Micro-Machining of Glass for Mass-Personalization and Submitted in Partial Fulfillment of the Requirements for the Degree Of
    High-precision micro-machining of glass for mass-personalization Lucas Abia Hof A Thesis In the Department of Mechanical, Industrial and Aerospace Engineering Presented in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy (Mechanical Engineering) at Concordia University Montreal, Québec, Canada June 2018 © Lucas Abia Hof, 2018 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Lucas Abia Hof Entitled: High-precision micro-machining of glass for mass-personalization and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: ______________________________________ Chair Dr. K. Schmitt ______________________________________ External Examiner Dr. P. Koshy ______________________________________ External to Program Dr. M. Nokken ______________________________________ Examiner Dr. C. Moreau ______________________________________ Examiner Dr. R. Sedaghati ______________________________________ Thesis Supervisor Dr. R. Wüthrich Approved by: ___________________________________________________ Dr. A. Dolatabadi, Graduate Program Director August 14, 2018 __________________________________________________ Dr. A. Asif, Dean Faculty of Engineering and Computer Science Abstract High-precision micro-machining of glass for mass- personalization Lucas Abia Hof,
    [Show full text]