3D Printing and the Implications on Intellectual Property from a Belgian-European Perspective

Total Page:16

File Type:pdf, Size:1020Kb

3D Printing and the Implications on Intellectual Property from a Belgian-European Perspective Faculty of Law, Ghent University Academic Year 2015-2016 3D Printing and the Implications on Intellectual Property from a Belgian-European Perspective Master’s dissertation Master of Laws Submitted by Deven Dobbelaere (student number 01006947) Promotor: Prof. Dr. Ben Depoorter Commissioner: Dr. Jef De Mot Dedication For my mother, who taught me to love knowledge. For my father, who taught me perseverance. i (DUTCH) SAMENVATTING 3D Printen kan de volgende grote ontwrichtende technologie worden. Recente ontwikkelingen hebben mogelijks de weg vrijgemaakt voor 3D Printen door consumenten en zou wel eens een golf van massamaatwerk in de huizen van mensen rondom de wereld met zich kunnen meebrengen. Er is een heel ecosysteem rond 3D printen ontstaan dat helpt bij het opbouwen van de wereld van 3D printen. Deze nieuwe wereld biedt vele kansen maar kan ook verstrekkende gevolgen hebben, vooral op het vlak van intellectuele eigendomsrechten. De 3D Printing beweging is onlosmakelijk verbonden met de effecten van digitalisering waarvan de gevolgen lijken op die waarmee de muziekindustrie een decennium gelegden geconfronteerd werd. De CAD-bestanden die de 3D-modellen bevatten kunnen online gedeeld worden, bewerkt en geprint op grote schaal. Ze kunnen echter ook aanleiding geven tot heel wat potentiële conflicten. De nadruk van deze masterproef ligt op het onderzoeken van deze opkomende conflicten tussen de intellectuele eigendomsrechtenhouders en de actoren in het 3D printen ecosysteem. De implicaties van 3D printen voor auteursech, tekening- en modellenrecht, octrooirecht en merkenrecht worden onderzocht vanuit een Belgisch-Europees perspectief. De combinatie van een Europees rechtskader en een specifiek nationaal systeem zorgt voor een diepgaande analyse van de mogelijke inbreuken en geeft ons inzicht in de tekortkomingen van de wetgeving en de reacties op deze opkomende conflicten. Tot slot worden de drie-dimensionale strategieën besproken voor de rechtenhouders die willen overleven in een wereld na de komst van de 3D-printtechnologie. Juridische en technische oplossingen worden besproken voor de 3D-ontwerpers en bedrijven die afhankelijk zijn van hun intellectuele eigendom, terwijl het duidelijk wordt dat de enige oplossing aanpassen is aan 3D printen. ii TABLE OF CONTENTS PREFACE .......................................................................................................................................................... VI LIST OF ABBREVIATIONS ......................................................................................................................... VII INTRODUCTION ............................................................................................................................................... 1 PART I. THE BRAVE NEW WORLD OF 3D PRINTING .......................................................................... 3 CHAPTER 1. 3D PRINTING: HYPE OR DISRUPTIVE TECHNOLOGY? ........................................................................... 4 §1. THE BRAVE NEW WORLD OF 3D PRINTING ............................................................................................. 4 §2. THE TECHNOLOGY ................................................................................................................................................. 5 I. Additive ManufaCturing (AM) and CAD Files ................................................................................................................................ 5 II. The Next Step: COnsumer 3D Printing ............................................................................................................................................ 7 §3. THE IMPORTANCE OF 3D PRINTING IN THE (NEAR) FUTURE ......................................................... 8 I. Figures and PrediCtiOns .......................................................................................................................................................................... 8 II. DOn’t Believe The Hype? .................................................................................................................................................................... 11 II. 1. The NOn-Believers ............................................................................................................................................................. 11 II. 2. More Than Hype ................................................................................................................................................................. 12 CHAPTER 2. THE 3D PRINTING ECOSYSTEM .............................................................................................................. 13 §1. ACTORS IN THE 3D PRINTING ECOSYSTEM ............................................................................................ 13 I. Printer and Material ManufaCturers .............................................................................................................................................. 14 II. Developers and Creators of CAD files .......................................................................................................................................... 15 III. Internet ServiCe PrOviders (ISP’s) ............................................................................................................................................... 15 III. 1. The File Sharers Or COntent PrOviders ................................................................................................................... 16 III.1.a. User-Generated COntent (UGC) ................................................................................................................................ 16 III. 2. The User-Generated COntent Websites Or HOst PrOviders ............................................................................ 17 III. 3. The Internet ACCess PrOviders ................................................................................................................................... 17 IV. 3D Printing ServiCes and End Users ............................................................................................................................................ 18 IV. 1. The 3D Printing ServiCe and Online Marketplace .............................................................................................. 18 IV. 2. The HOme User .................................................................................................................................................................. 18 PART II. 3D PRINTING AND INTELLECTUAL PROPERTY ................................................................ 19 CHAPTER 1. INTELLECTUAL PROPERTY ...................................................................................................................... 20 §1. THE EFFECTS OF DIGITIZATION ON INTELLECTUAL PROPERTY ................................................. 20 I. The MusiC Industry Analogy .............................................................................................................................................................. 20 CHAPTER 2. COPYRIGHT ................................................................................................................................................. 22 §1. 3D PRINTING IMPLICATIONS ON COPYRIGHT ....................................................................................... 22 I. A Belgian-EurOpean PerspeCtive ..................................................................................................................................................... 22 I. 1. The Current and future EurOpean COpyright system ........................................................................................... 22 I. 2. At a natiOnal level: The COpyright system in Belgium ......................................................................................... 23 §2. 3D PRINTING AND COPYRIGHT PROTECTION ....................................................................................... 24 II. COpyright PrOteCtiOn Of a CAD File ............................................................................................................................................... 25 II. 1. Digital Blueprint ................................................................................................................................................................ 25 II. 2. Software ................................................................................................................................................................................. 27 III. Copyright ProteCtion of a 3D Printed ObjeCt ........................................................................................................................... 29 §3. 3D PRINTING AND COPYRIGHT INFRINGEMENTS ............................................................................... 30 I. IntrOduCtiOn: ACtivities Of the 3D Printing ECOsystem ACtors ............................................................................................ 30 II. Creating a CAD mOdel ......................................................................................................................................................................... 31 II. 1. ReprOduCtiOn ....................................................................................................................................................................... 31 II.1.a. 3D SCanning and the Art & Allposters analogy ...................................................................................................
Recommended publications
  • Survey of 3D Digital Heritage Repositories and Platforms
    Virtual Archaeology Review, 11(23): 1-15, 2020 https://doi.org/10.4995/var.2020.13226 © UPV, SEAV, 2015 Received: March 4, 2020 Accepted: May 26, 2020 SURVEY OF 3D DIGITAL HERITAGE REPOSITORIES AND PLATFORMS ESTUDIO DE LOS REPOSITORIOS Y PLATAFORMAS DE PATRIMONIO DIGITAL EN 3D Erik Champion , Hafizur Rahaman * Faculty of Humanities, Curtin University, Bentley 6845, Australia. [email protected]; [email protected] Highlights: • A survey of relevant features from eight institutional and eleven commercial online 3D repositories in the scholarly field of 3D digital heritage. • Presents a critical review of their hosting services and 3D model viewer features. • Proposes six features to enhance services of 3D repositories to support the GLAM sector, heritage scholars and heritage communities. Abstract: Despite the increasing number of three-dimensional (3D) model portals and online repositories catering for digital heritage scholars, students and interested members of the general public, there are very few recent academic publications that offer a critical analysis when reviewing the relative potential of these portals and online repositories. Solid reviews of the features and functions they offer are insufficient; there is also a lack of explanations as to how these assets and their related functionality can further the digital heritage (and virtual heritage) field, and help in the preservation, maintenance, and promotion of real-world 3D heritage sites and assets. What features do they offer? How could their feature list better cater for the needs of the GLAM (galleries, libraries, archives and museums) sector? This article’s priority is to examine the useful features of 8 institutional and 11 commercial repositories designed specifically to host 3D digital models.
    [Show full text]
  • A Study on Business Ecosystem of 3D Printing Contents Distribution Platform : Using Service Value Network Analysis
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 15580-15591 © Research India Publications. http://www.ripublication.com A Study on Business Ecosystem of 3D Printing Contents Distribution Platform : Using Service Value Network Analysis Hyeog In Kwon 1, Seol Hee Kim2*, Jong-Seok Park3 and Moo Goong Hong3 1First Author, Professor, Chung-Ang University, Seoul, Korea. 2*Corresponding Author, Chung-Ang University, Seoul, Korea. 3Co-author, Chung-Ang University, Seoul, Korea. *Corresponding author ORCID 0000-0001-7179-8185 Abstract market showed a growth of 83.5% between the years 2014 and 2015, a significantly higher growth than the product-focused This study is a research on ecosystems focused on activating market, predicting the acceleration of the 3D printing industry the domestic 3D printing contents distribution platform and aims to promote the industry by suggesting service strategies would result in an amplified growth. Also, in international and an ideal ecosystem model for the platform. As the next markets, the service market show trends of increasing expansion, with service-focused markets more effective than generation growth power, 3D printing industry has low the product-focused markets in creating higher value added. In accessibility resulting from low demand and difficulties in such service-focused markets, 3D printing Contents market expansion due to its product-focused market. In order Distribution Platform will not only distribute its services but to solve these issues, high value service market expansion is necessary. 3D printing contents distribution platform is able to increase accessibility to consumers as a platform, a necessity in market expansion.
    [Show full text]
  • Deliverable Report
    Cost-effective and flexible 3D printed SOFC stacks for commercial applications - Cell3Ditor (FCH2 JU-RIA- Grant Agreement #700266) DELIVERABLE REPORT Grant Agreement 700266 number: Project Acronym: Cell3Ditor Cost-effective and flexible 3D printed SOFC stacks for Project title: commercial applications Start date of the project: 01/07/2016 Duration of the project: 42 months Del. no. D7.5 Deliverable name Dissemination and Exploitation summary WP no WP7 Lead beneficiary IREC Authors Aitor Hornés, Alex Morata, Albert Tarancón Type R (R/DEM/DEC/OTHER) Dissemin. level (PU/CO/CI) PU Delivery date from Annex 1 31 December 2018 Actual delivery date 19th June 2020 This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 700266. This Joint Undertaking receives support from the Comments European Union’s Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research. Deliverable summary The present deliverable is committed to show the results of the dissemination and exploitation actions that have taken place during the Cell3ditor project as well as the activities carried out in regard to the exploitation strategy. On one side, the document consists of a section containing the impact and evolution of the dissemination and communication channels and on the other side, the documents and activities pointing to the commercialization of the foreground generated within the project. This last section contains the recommendations of the consultancy services offered by SSERR, the business plan for a 3D printed SOFC stack and the 3D printer inks, and the latest news regarding the patents. Finally, the results of the final Life Cycle Analysis (LCA) are shown.
    [Show full text]
  • 3D Printing: Jewelry Basics
    3D PRINTING: JEWELRY BASICS 125 S. Prospect Avenue, Elmhurst, IL 60126 (630) 279-8696 ● elmhurstpubliclibrary.org Create, Make, and Build WHAT IS 3D PRINTING? What is 3D Printing? A 3D printer works essentially like a traditional printer except it prints in plastic (or other material) layers to make 3-dimensional designs. 3D printers can print in several different materials including plastic, metal, wood, ceramics, limestone and even chocolate. Elmhurst Public Library uses a MakerBot 5th Generation Replicator which uses a PLA filament: a corn-based plastic. 3D printing has been around since as early as the 1990’s but has exploded in popularity due to technology advances and lowered costs. Although many 3D printers themselves can cost thousands of dollars, the materials are relatively inexpensive after the initial purchase. Ours cost about $2, 900 each. Why 3D print? Many different types of people use 3D printers for different things. Several news stories have covered incredible 3D printing projects like parents creating prosthesis for their children or the development of 3D printed cars, but there are plenty of uses for everyone. Some reasons you may use a 3D printer include: Replacing a broken cabinet handle Making fun gifts Printing the case for a prototype electronic component And maybe most importantly learning to use 3D printing software is a valuable skill Where To Find 3D Jewelry Files to Download Shapeways - will custom print designs in different materials for you. (shapeways.com) Etsy - Lots of stunning options. (etsy.com/market/3d_printed_jewelry) Pinshape – mix of paid and free downloads. (pinshape.com) You Imagine – downloads are free.
    [Show full text]
  • Additive Manufacturing, Cloud-Based 3D Printing and Associated Services—Overview
    Journal of Manufacturing and Materials Processing Review Additive Manufacturing, Cloud-Based 3D Printing and Associated Services—Overview Felix W. Baumann 1,2,* and Dieter Roller 2 1 TWT GmbH Science & Innovation, Stuttgart 70565, Germany 2 Institute of Computer-aided Product Development, University of Stuttgart, Stuttgart 70569, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-711-215-777-1207 Received: 22 September 2017; Accepted: 13 October 2017; Published: 17 October 2017 Abstract: Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service-oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacements for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios, the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review, we provide an overview of CM, AM and relevant domains as well as presenting the historical development of scientific research in these fields, from 2002 to 2016. Part of this work is also a meta-review on the domain to further detail its development and structure. Keywords: additive manufacturing; cloud manufacturing; 3D printing service 1. Introduction Cloud Manufacturing (here CM, in other works also CMfg) as a concept is not new and has been executed in enterprises for many years [1], under different terms, e.g., Grid Manufacturing [2] or Agile Manufacturing [3]. The decision to have a globally distributed production process with many contractors or partners interconnected and related supply chains is a luxurious one.
    [Show full text]
  • 3D Printing Resource Guide
    3D Printing Resource Guide What is 3D Printing? 3D printing or additive manufacturing is a process of making three dimensional solid objects from a digital file. The creation of a 3D printed object is achieved using additive processes. In an additive process an object is created by laying down successive layers of material until the entire object is created. 3D printing starts with a digital file derived from computer aided design (CAD) software. Once a design is completed, it must then be exported as a standard tessellation language (STL) file, meaning the file is translated into triangulated surfaces and vertices. The STL file then has to be sliced into hundreds, sometimes thousands, of 2-D layers. This is performed using a software program called a Slicer. The Slicer then sends the job directly to the 3D Printer. A 3D printer then reads the 2-D layers as building blocks which it layers one atop the other, thus forming a three dimensional object. Credit: Penandplastic.com, Wikipedia.com, Pinshape.com, 3DPrinting.com Common 3D Printer Types Fused Deposition Modeling (FDM) 3D printers which use FDM Technology construct objects layer by layer from the very bottom up by heating and extruding thermoplastic filament. FDM printers are popular due to their speed and ease of use. FDM prints require little or no post-processing. FDM printers are limited in their ability to produce finely-detailed objects. Stereolithography Apparatus (SLA) 3D printers using SLA technology work by curing liquid resin with UV light. The light, emitted via laser or a projector, solidifies resin and builds objects layer by layer.
    [Show full text]
  • Major Update to Adobe Photoshop CC Brings 3D Printing to the Design World
    Press Contacts Marissa Lee Adobe Systems Incorporated 415-832-5378 [email protected] Reagan Crossley Edelman 650-762-2955 [email protected] FOR IMMEDIATE RELEASE Major Update to Adobe Photoshop CC Brings 3D Printing to the Design World First 2014 Creative Cloud Release Also Includes Amazing Perspective Warp Capability in Photoshop CC SAN JOSE, Calif., — January 16, 2014 — Adobe (Nasdaq:ADBE) today unveiled new 3D printing capabilities in Adobe® Photoshop® CC. By radically simplifying the 3D print process, Photoshop CC will become the go-to tool for anyone who wants to print a 3D model. Available immediately, as part of a major update to Adobe Creative Cloud™, the new 3D printing capabilities integrated in Photoshop CC enable Creative Cloud members to easily and reliably build, refine, preview, prepare and print 3D designs, setting the stage for explosive growth in the 3D printing market. The new 3D printing capabilities also help creatives to design in 3D from scratch or refine an existing 3D model and produce beautiful, print-ready 3D models using familiar Photoshop tools. Automated mesh repair and support structure generation ensure models will be produced reliably, while accurate previews allow creatives to submit print jobs with confidence. “The new 3D print capabilities in Photoshop CC take the guess work out of printing 3D models for everyone,” said Winston Hendrickson, vice president products, Creative Media Solutions, Adobe. “Before today there was a gap between the content produced by 3D modeling tools and what 3D printers need in order to deliver high quality results. Now, by simply clicking ‘Print’ in Photoshop CC, creatives can bring 3D designs to the physical world.” Photoshop CC Turbocharges Emerging 3D Print Ecosystem With today’s release of Photoshop CC, designs can be printed to a locally connected 3D printer or via built-in access to popular online 3D print services.
    [Show full text]
  • 3D Printing for Ecology and Evolution: a Hands-On Guide to Turn an Idea Into Reality
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 March 2020 doi:10.20944/preprints202003.0220.v1 3D printing for ecology and evolution: a hands-on guide to turn an idea into reality Nicolas Schtickzelle, Estelle Laurent, Thibaut Morel-Journel Université catholique de Louvain Earth and Life Institute &Biodiversity Research Centre Croix du Sud 4, L7.07.04 1348 Louvain-la-Neuve Belgium Corresponding author: Nicolas Schtickzelle [email protected] +3210472052 Key-words 3D printing, 3D scanning, customized ecological objects, methods, stereolithography, open-source lab Abstract 3D printing is described as the third industrial revolution: its impact is global in industry and progresses every day in society. It presents a huge potential for ecology and evolution, sciences with a long tradition of inventing and creating objects for research, education and outreach. Its general principle as an additive manufacturing technique is relatively easy to understand: objects are created by adding material layers on top of each other. Although this may seem very straightforward on paper, it is much harder in the real world. Specific knowledge is indeed needed to successfully turn an idea into a real object, because of technical choices and limitations at each step of the implementation. This article aims at helping scientists to jump in the 3D printing revolution, by offering a hands-on guide to current 3D printing technology. We first give a brief overview of uses of 3D printing in ecology and evolution, then review the whole process of object creation, split into three steps: (1) obtaining the digital 3D model of the object of interest, (2) choosing the 3D printing technology and material best adapted to the requirements of its intended use, (3) pre- and post- © 2020 by the author(s).
    [Show full text]
  • Press Contacts Frances Peng Adobe Systems Incorporated (852) 2916 2100 Ext
    Press Contacts Frances Peng Adobe Systems Incorporated (852) 2916 2100 Ext. 47604 [email protected] Damon Kwok/ Julia Wong Newell Public Relations 2117 5026 / 2117 5011 [email protected] / [email protected] FOR IMMEDIATE RELEASE Major Update to Adobe Photoshop CC Brings 3D Printing To The Design World First 2014 Creative Cloud Release Also Includes Amazing Perspective Warp Capability in Photoshop CC Hong Kong — Jan 17, 2014 — Adobe (Nasdaq:ADBE) today unveiled new 3D printing capabilities in Adobe® Photoshop® CC. By radically simplifying the 3D print process, Photoshop CC will become the go-to tool for anyone who wants to print a 3D model. Available immediately, as part of a major update to Adobe Creative Cloud™, the new 3D printing capabilities integrated in Photoshop CC enable Creative Cloud members to easily and reliably build, refine, preview, prepare and print 3D designs, setting the stage for explosive growth in the 3D printing market. The new 3D printing capabilities also help creatives to design in 3D from scratch or refine an existing 3D model and produce beautiful, print-ready 3D models using familiar Photoshop tools. Automated mesh repair and support structure generation ensure models will be produced reliably, while accurate previews allow creatives to submit print jobs with confidence. “The new 3D print capabilities in Photoshop CC take the guess work out of printing 3D models for everyone,” said Winston Hendrickson, vice president products, Creative Media Solutions, Adobe. “Before today there was a gap between the content produced by 3D modeling tools and what 3D printers need in order to deliver high quality results.
    [Show full text]
  • Curricula of 3DP Course
    TRAINING IN 3D PRINTING TO FOSTER EU INNOVATION & CREATIVITY Curricula of 3DP course www.3d-p.eu/ 2016-1-RO01-KA202-024578 1 This project has been funded with support from the European Commission. This courseware reflects the views only of the authors, and the National Agency and the Commission cannot be held responsible for any use which may be made of the information contained therein. Revision History Revision Date Author/Organisation Description V1.0 19/01/2017 Diana Popescu/UPB-CAMIS Draft of main content 23/02/2017 All partners Feedback received on preliminary draft during kick-off meeting V1.1 15/03/2017 Diana Popescu/UPB-CAMIS Compilation of content based on partners’ feedback V1.2 18/03/2017 Diana Popescu/UPB-CAMIS Review of report V1.3 30/03/2017 Catalin Amza/UPB-CAMIS Review of report 2 Contents 1.0 INTRODUCTION.................................................................................................................. 4 2.0 BEGINNERS CURRICULUM ............................................................................................... 5 3.0 INTERMEDIATE CURRICULUM ......................................................................................... 7 4.0 ADVANCED CURRICULUM ...............................................................................................10 3 1.0 INTRODUCTION Curricula for 3D Printing courses were organized so that to allow personalization depending on the type of trainee: - 3D-P Beginner user - a vocational student/trainer who is not knowledgeable on how to generate simple 3D virtual
    [Show full text]
  • Začínáme S 3D Tiskem Vyšlo Také V Tištěné Verzi
    Začínáme s 3D tiskem Vyšlo také v tištěné verzi Objednat můžete na www.computerpress.cz www.albatrosmedia.cz Liza Wallach Kloski, Nick Kloski Začínáme s 3D tiskem – e‑kniha Copyright © Albatros Media a. s., 2017 Všechna práva vyhrazena. Žádná část této publikace nesmí být rozšiřována bez písemného souhlasu majitelů práv. Obsah Předmluva 8 Úvod do 3D tisku 10 Princip 3D tisku 12 3D tisk není variantou 2D tisku 13 Očekávání při seznamování s 3D tiskem 14 Nemějte obavy! Proto jsme napsali tuto knihu 14 Obsah této knihy 15 ČÁST I APLIKACE 3D TISKU KAPITOLA 1 Jste připraveni na blížící se revoluci? 19 Výroba opisuje kruh 20 3D tisk 21 „Třetí průmyslová revoluce“ 21 Před průmyslovou revolucí 21 1. a 2. průmyslová revoluce 21 KAPITOLA 2 3D tisk a hnutí výrobců 23 Vliv hnutí výrobců 23 Kdo jsou výrobci? 23 Jak ekosystém 3D tisku pomáhá lidem, aby se stali výrobci 25 KAPITOLA 3 Uplatnění 3D tisku v současnosti 31 Rychlé prototypování nápadů, návrhů a vynálezů 31 Progresivní firmy aktivně nabízejí 3D tisk 33 Nebojte se. Nebude to dražší. Složitost je zadarmo 35 3 3D tisk umožňuje pokroky ve zdravotnictví 37 3D tisk vložek do bot 37 ČÁST II VOLBY HARDWARU A TISKU KAPITOLA 4 Seznámení s tiskárnami FDM 41 Stupně rozlišení 43 Rám/šasi 45 Tisková deska 47 Řízení lineárního pohybu 49 Extrudér 53 Vlákno 58 PLA polylaktid 58 ABS akrylonitrilbutadienstyren 58 TPE termoplastický elastomer 58 Pomocné materiály 58 Tipy k úspěšnému tisku s tiskárnami FDM 59 PET polyethylentereftalát 59 Nylon 59 Adheze tiskové desky 61 Nářezové programy 63 Nářezové programy mají
    [Show full text]
  • Supplementary Appendix: the History of the 3D Printing Industry The
    Supplementary Appendix: The History of the 3D Printing Industry The advent of 3D printing can be traced back to a Frenchmen in Paris in 1859 named François Willème who created photo sculptures of real people using similar techniques of that to the techniques used by 3D printing in today’s world (Norman, 2016: Walters and Thirkell, 2007). In 1892 J.E. Blanther, a manufacturer of contour relief maps, proposed a layering method to make a mold for topographical relief maps. The method involved impressing topographical contour lines on a number of wax plates that were stacked, cut and smoothed to form a three-dimensional surface that created a raised relief map. In 1972, Matsubara of Mitsubishi Motors suggested a topographical process that used photo-hardening materials to produce layered parts (Bourell et al, 2009). Until the late 1970s the alternative primary manufacturing idea - adding material – had received comparatively little attention (except in the electronics industry for chip manufacture, where it was, and still is, ubiquitous, if microscopic). According to Bradshaw et al (2010) the advent of 3D printing started with a joke written in 1974 and a patent granted in 1977. David Jones a writer by the pen name ‘Daedalus’ described 3D printing as joke in the New Scientist. He gave a descriptive yet imaginative technique that proposed creation of solid objects. Coincidently, in 1977 Wyn Kelly Swainson was granted a patent for the similar idea. However, the patent was filed way before Jones piece was published. It wasn’t until 1981 that Hideo Kodama of Nagoya Municipal Industrial Research Institute published the first account of a functional photopolymer rapid prototyping system (Kodama, 1981: Bourell et al, 2009: AV plastics).
    [Show full text]