Major Discussions and Tabular Citations Are Noted in Bold Type

Total Page:16

File Type:pdf, Size:1020Kb

Major Discussions and Tabular Citations Are Noted in Bold Type Index Major discussions and tabular citations are noted in bold type. A acetyl enzyme 75-76 exchange reactions 75 Aasa, R. 41,42,58 kinetics 75 Abbott, S.l. 97 mechanism 75-76 Abdullah, M. 111 Acetyl-CoA carboxylase 220 Abeles, R.H. 9,24,28,34,54,55, 79, Acetyl-CoA synthetase 208-209,220 80, 151, 177, 178, 181, 185, 189, acetyl adenylate 208-209 190, 201 acetyl enzyme 208-209 Abramovitz, A.S. 77 exchange reaction 208 - 209 Abramson, R. 112 inversion of configuration on Acetaldehyde 177 -179 phosphorus 209 hydration 172 mechanism 208 - 209 Acetate Co A-transferase 108 triple-displacement reaction 209 Acetate kinase 92-96, 108 Acetylesterase 147 exchange reactions 93 N-Acetylglucosamine 89-90 kinetics 94 Acetylglucosamine phosphomutase mechanism 95 108 mercuric ion, effects on 94, 96 f3-N- Acetylglucosaminidase 147 noncontiguous binding of Acetylium ion 18 substrates 94-96 N-Acetylneuraminate lyase 182 nuc1eosidediphosphate kinase Acetyl phosphate 92-96, 202, 217 activity 93-94 Acid phosphatase 120-121, 147 phosphoenzyme 92-96 phosphoenzyme 120 steric inversion on phosphorus 92 Acid protease from Rhizopus surface walk 96 chinensis 149 triple displacement 92, 95 Aconitase 182 Acetoacetate decarboxylase 17, Aconitate ~-isomerase 200 157 -158, 182 Acrosin 148 exchange reactions 157 -158 Actinidin 148 mechanism 157 Activation of water 114, 119, 130-131, Schiff base intermediates 157 145-146,173,177 Acetoacetate, decarboxylation, [Acyl-carrier protein] nonenzymic 17 acetyltransferase 106 Acetoacetyl-CoA 75, 104-106, [Acy I-carrier -protein] 166-167 malonyltransferase 76-77, 106 Acetolactate synthase 182 malonyl enzyme 76-77 Acetyl adenylate 203 Acyl-CoA dehydrogenase 49 Acetylcholinesterase 147 Acyl-CoA hydrolase 147 Acetyl-CoA 17,74,75,76, 166, 167, Adachi, K., 56 168-170, 208, 209, 214 Adair, Jr., W.L. 195 Acetyl-CoA acetoacetate Adams, C.A. 112 Co A-transferase 108 Adams, E. 184, 200 Acetyl-CoA acetyltransferase 75 -76, Adams, R.W. 152 106 Adenine 80-82 238 Index Adenine phosphoribosyltransferase 10, retention of steric configuration of 80-83, 89, 107 phosphorus 119 mechanism 82 transferase activity 117 phosphoribosyl enzyme 81-82 Alkane-l-monooxygenase 51 steric inversion on carbon 10, 80-83 2-(5-n-alkyl)furoic acid, p-nitrophenyl surface walk 10 esters 134 triple displacement 82-83 Allen, S.H.G. 33 Adenosine deaminase 149 Allison, AJ. 222 Adenosylhomocysteinase 148 Allothreonine 64 Adenylic acid 80-81 Alston, T.A. 54 Adenylysulfate reductase 18-29, SO Alworth, W.L. 174 sulfite-enzyme adduct 29 Ambrose-Griffin, M.C. 6, 110 Aerts, G.M. 151 w-Amidase 149 Ahmad, F. 65 Amidophosphoribosyltransferase 107 Airas, R.K. 153 Amine oxidase (FAD) SO Akashi, K. 221 Amine oxidase (PLP) SO Akeson, A. 34 0-Amino-acid dehydrogenase SO Akhtar, M. 110 o-Amino-acid oxidase 23-27, SO f3- Alanine 207 - 208 o-alanine, as substrate 23, 27 Alanine aminotransferase 107 D-f3-chloralanine, elimination of D-Alanine aminotransferase 108 HCI 24-25 D-Alanine carboxypeptidase 148 cyanide ion, as inhibitor 24-25 Alanine racemase 186-188, 199 nitroethane, as substrate 24-25 mechanism 186-188 reconstituted with 5-deaza Schiff base intermediate 186-188 FAD 26-27 suicide substrates 188 shielded proton 25 Albers, R.W. 144, 146 L-Amino-acid oxidase 49 Alberts, A.W. 110 Aminoacylase 149 Albery, W.J. 39, 196 p-Aminobenzoate synthase 182 Albizati, L 153 Aminobutyrate aminotransferase 108 Alcohol dehydrogenase 33-38,49 Aminolevulinate dehydratase 182 catalytic use of NAD 33-34 8-Aminolevulinate synthase 106 coordination of substrates with zinc 35 4-Aminovalerate 159-160 trans-4-N,N-dimethylaminocinnam- AMP deaminase 149 aldehyde, as substrate 35 a-Amylase 147 dimutase activity 34 Amylo-l,6-glucosidase 148 mechanism 36-38 Amylosucrase 106 p-nitroso-N,N-dimethylaniline, as Anan, F.K. 55 substrate 35-36 Andani, Z. 152 Aldehyde oxidase 32, 49 Anderson, B.M. 127 Alden, R.A. 152 Anderson, C.M. 20,90 Aldrich, F.L. 132 Anderson, J.R. 2 Aldridge, W.N. 118 Anderson, L. 99, 150 Aleman, V. 54 Anderson, P.M. 112,222 Alexander, D.R. 144 Anderson, W.F. 88 Alger, J.R. 119 Andreasson, L.E. 41,42 Alkaline phosphatase, 117-120,147 A4-Androstene-3, 17-dione 196 activated water 119 AS- Androstene-3, 17 -dione 196 mechanism 119 Anfinsen, C.B. 11,94 orthophosphate-oxygen exchange 118 Angelides, KJ. 6, 126, 137 phosphoenzyme 117 -120 Angelis, C.T. 35 Index 239 Anke, H. 208 Asparaginase 149 Ankel, E. 111 Asparagine synthetase 220 Ankel, H. 111,195 Aspartate aminotransferase 84-86, 107 Anraku, Y. 219 kinetics 84 Anthony, R.S., VII 92,93 mechanism 84-85 Anthranilate synthase 182 a-methylaspartate, as substrate 84-85 Anthropomorphism in enzymic phosphopyridoxamine-enzyme 84 - 85 catalysis 13 -15 Schiff base intermediates 85-86 Antonini, E. 41, 54, 153 Aspartate ~-decarboxylase 182 Antonov, V.K. 138 D-Aspartate oxidase 49 Anwar, R.A. 111 Aspartate-semialdehyde Aparicio, P.J. 56 dehydrogenase 49 Apitz-Castro, R. 128 Aspergillus alkaline proteinase 148 Applebaum, J. 176 Aster, S.D. 183 Applebury, M. L. 119 Atkinson, R.F. 151 Appleby, C.A. 52 ATPase 144-147, 149 Arabinose isomerase 199 activation of water 145-146 L-Arabinose isomerase, 199 calcium-magnesium -dependent Araiso, T. 57 146-147 L-Arginine 69 electrogenic 147 Arginine decarboxylase 182 exchange reactions 146 Arginine 2-monooxygenase 51 inversion of configuration of Arginine racemase 199 phosphorus 147 Argument from analogy 91-92, 144, mechanism 145 223-224 phosphoenzyme 144-147 Arigoni, D. 178, 201 sodium -potassium- Arion, W.J. 121 dependent 144-146 Armitage,I.M. 119, 173,214 ATP citrase lyase 92,168-170,182 Arnold, W.J. 81 acetyl enzyme 169-170 Amon, D.1. 58 citryl enzyme 169-170 Arnone, A. 85 exchange reaction 169 Aromatic L-amino-acid mixed anhydride intermediate 170 decarboxylase 182 phosphoenzyme 169 -170 Aronson, J.N. 153 Au, A. M.J. 35 Arthrobacter serine proteinase 148 Augustinsson, K.B. 150 Arvidsson, L. 97 Aull, J.L. 150 Aryl acyl amidase 149 Avaeva, S.M. 143 Arylamine acetyltransferase 18, 74-75, Averill, B.A. 28, 59 106 Avigad, G. 110, 164 acetylenzyme 18, 74-75 Avron, M. 112 exchange reactions 74 Awad, W.M. 150 kinetics 74-75 Axcell, B.C. 57 Arylsulfatase 123-124, 147 Axeirod, B. 120, 151 kinetics 124 Axeisson, K. 46 sulfonyl enzyme 123-124 Ayling, J.E. 86 transferase activity 124 Asada, K. 56 Asano, A. 53 B Ascorbate oxidase 42, 51 Ashman, L.K. 215 Babior, B.M. 185, 201 AskelOf, P. 46 Babu, U.M. 188 240 Index Baumann, F. 151 Bachovchin, W.W. 178 Bayliss, R.S. 138 Bacitracin synthetase 220 Beachum, III, L.M. 53 Biickstrom, D. 58 Beaty, N.B. 30 Bacon, J.S.D. 110 Beaucamp, K. 156 Bacterialluciferase 49 Becker, M.A. 185 Baggott, J .E. 135 Beeler, T. 112 Bagirov, E.M. 112 Begard, E. 58 Bai, Y. 151 Begue-Canton, M.L. 136 Bailey, G.B. 184 Beinert, H. 54, 55, 56 Bailey, J.L. 55 Belasco, J.G. 154, 196 Baird, J.B. 152 Bell, R.M. 2 Bak, T.G. 53 Bendall, D.S. 58 Baker, 1.1. 201 Bender, M.L. 2, 133, 135, 136, 152 Bakuleva, N.P. 143 Benisek, W.F. 197 Balboni, G. 73, 164 Benjamin, W.B. 170 Baldwin, R.L. 185 Benkovic, S.J. 2, 19, 123, 124, 150 Balinsky, J .B. 221 Bennett, J. 153 Ballou, C.E. 111 Bennett, R. 54 Ballou, D.P. 30,31,48,58 Bennett, Jr., W.S. 88 Balls, A.K. 132 Benson, R. W. 104, 210 Balny, C. 31 Benzene 1,2-dioxygenase 51 Baltimore, B.G. 201 Benzil 116 Baltzinger, M. 207 Benzil monooxime 116 Bamforth, C.W. 55 Berg, P. 203, 208 Bandurski, R.S. 56 Bergamini, M.V.W. 110 Baratova, L.A. 143 Berger, A. 137 Baratti, J. 152 Bergmann, F. 150 Barden, R.E. 215 Bergsten, P.C. 173 Bardsley, W. G. 54 Bergstrom, B. 151 Barker, H.A. 8, 78, 201 Berman, K. 113 Barlow, C.H. 42,46 Berman, K.M. 91 Barman, T.E. 118 Berman, M. 144 Barnard, E.A. 120 Bernard, C. 9 Barnett, J.E.G. 184, 201 Bernath, P. 54 Barnett, R.E. 145 Berndt, M.C. 116 Barns, R.J. 162 Bernhard, S.A. 35, 53, 152 Baron, A. 150 Bernhardt, F.-H. 58 Baron, D. 184 Bernhardt, R. 54 Baron, J. 46, 58 Bessman, S.P. 74 Barra, D. 40 Bethge, P.H. 129 Barrett, H. 91,117 Bhaduri, A.P. 30 Barshevskaya, T.N. 138 Biellmann, J.-F. 35,53 Bartfai, T. 150 Bigbee, W.L. 153 Bartmann, P. 206 Bilirubin-glucuronoside Basu, M. 111 glucuronosyltransferase 107 Basu, S. 111 Billing, B.H. 111 Bates, D.L. 6 Bingham, A. 154 Battersby, A.R. 180 Binkley, S.B. 184 Bauer, C.-A. 153 Birch, M. 99 Baugn, R.L. 183 Birktoft,1.1. 131, 152 Index 241 Bisaz, S. 118 Boursnell, J .H. 115 Bis(4-nitrophenyl)phosphate 122-123 Bovier-Lapierre, C. 150 2,3-Bisphospho-D-glycerate 197 Boyer, P.D. 53,74,104,143,146,150, Bisphosphoglycerate phosphatase 147 177,210 Bisphosphoglycerate synthase 97, 108 Bradley, S. 150 Bisphosphoglyceromutase lOS Brady, F.O. 57 Black, M.K. 98 Bramlett? R.N. 56 Black, S. 55 Branched-chain-amino-acid Blackmore, P.F. 72 aminotransferase 108 Blackwell, L.F. 53 Brand, K. 73, 74, 109 Blake, R.C. 46 Branden, C.I. 34 Blakeley, R.L. 58, 136, 181 Branden, R. 41 Blankenhorn, G. 27,30 Brandt, K.G. 55 Blaschkowski, H.P. 110 Branlant, G. 35 BUittler, W.A. 11,87,92,112, 198 Branzoli, U.
Recommended publications
  • A-PDF Split DEMO : Purchase from to Remove the Watermark
    A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark Figure 7.5 (a) Transition state for E2H-syn elimination. (b) Transition state for E2H-anti elimination. (c) Transition state for E,C elimination. tion state similar to that shown in Figure 7.5~is expected, since base attacks the molecule backside to the leaving group but frontside to the /3 hydrogen. Let us now turn to the experimental results to see if these predictions are borne out in fact. It has long been known that E2H reactions normally give preferentially anti elimination. For example, reaction of meso-stilbene dibromide with potassium ethoxide gives cis-bromostilbene (Reaction 7.39), whereas reaction of the D,L-dibromide gives the trans product (Reaction 7.40).lo2 A multitude of other examples exist-see, for example, note 64 (p. 355) and note 82 (p. 362). E2H reactions do, however, give syn elimination when: (1) an H-X di- hedral angle of 0" is achievable but one of 180" is not or, put another way, H and X can become syn-periplanar but not trans-periplanar ; (2) a syn hydrogen is much more reactive than the anti ones; (3) syn elimination is favored for steric reasons; and (4) an anionic base that remains coordinated with its cation, that, in turn, is coordinated with the leaving group, is used as catalyst. The very great importance of category 4 has only begun to be fully realized in the early 1970s. lo2 P. Pfeiffer, 2. Physik. Chem. Leibrig, 48, 40 (1904). 1,2-Elimination Reactions 371 An example of category 1 is found in the observation by Brown and Liu that eliminations from the rigid ring system 44, induced by the sodium salt of 2- cyclohexylcyclohexanol in triglyme, produces norborene (98 percent) but no 2-de~teronorbornene.~~~The dihedral angle between D and tosylate is O", but Crown ether present: No Yes that between H and tosylate is 120".
    [Show full text]
  • Quantum Effects in Radical B12 Enzymes
    Quantum Effects in Adenosylcobalamin-dependent Enzymes by M. Hossein Khalilian Boroujeni B.Sc., Chemistry, Razi University, 2014 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE COLLEGE OF GRADUATE STUDIES (Chemistry) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) April 2019 © M. Hossein Khalilian Boroujeni, 2019 The following individuals certify that they have read, and recommend to the College of Graduate Studies for acceptance, a thesis/dissertation entitled: Quantum Effects in Adenosylcobalamin-dependent Enzymes submitted by M. Hossein Khalilian Boroujeni in partial fulfillment of the requirements for the degree of Master of Science Examining Committee: Gino A. DiLabio, I. K. Barber School of Arts & Sciences Supervisor W. Stephen McNeil, I. K. Barber School of Arts & Sciences Supervisory Committee Member Kirsten Wolthers, I. K. Barber School of Arts & Sciences Supervisory Committee Member Michael Deyholos, I. K. Barber School of Arts & Sciences University Examiner ii Abstract The ability of radical enzymes to maintain tight control over the high reactive radical intermediates generated in their active sites is not completely understood. In this thesis, we report on a strategy that radical (B12-dependent) enzymes appear to exploit in order to manipulate and control the reactivity of one of their radical intermediate (5'-deoxyadenosyl radical) contained in the active site. The results of quantum mechanical calculations suggest that these enzymes utilize the little known quantum Coulombic effect (QCE), which causes the radical to acquire an electronic structure that contradicts the Aufbau Principle. This effect causes the energy of the singly-occupied molecular orbital (SOMO) of the radical to be well below that of the highest-occupied molecular orbital (HOMO), which renders the radical less reactive.
    [Show full text]
  • Histamine Degradation by Halophilic Archaea Wanaporn Tapingkae A
    Histamine Degradation by Halophilic Archaea Wanaporn Tapingkae A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Food Technology Prince of Songkla University 2009 Copyright of Prince of Songkla University i Thesis Title Histamine Degradation by Halophilic Archaea Author Miss Wanaporn Tapingkae Major Program Food Technology Major Advisor Examining Committee : ……..…………………………………. ……..…………..…………….Chairperson (Dr. Wonnop Visessanguan) (Asst. Prof. Dr. Tipparat Hongpattarakere) ……..…………………..……………….… Co-advisors (Dr. Wonnop Visessanguan) ……..…………………………………. ……..…………………..……………….… (Prof. Dr. Soottawat Benjakul) (Prof. Dr. Soottawat Benjakul) ……..…………………………………. ……..…………………..……………….… (Prof. Dr. Kirk L. Parkin) (Assoc. Prof. Dr. Somboon Tanasupawat) ……..…………………..……………….… (Assoc. Prof. Dr. Borwonsak Leenanon) The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Food Technology ………………………………………… (Assoc. Prof. Dr. Krerkchai Thongnoo) Dean of Graduate School ii ชือวทยานิ ิพนธ์ การยอยสลายฮ่ ีสตามีนโดยอาเคียที่ชอบเกลือ ผู้เขียน นางสาววรรณพร ทะพิงคแก์ สาขาวชาิ เทคโนโลยอาหารี ปี การศึกษา 2551 บทคดยั ่อ ปริมาณฮีสตามีนที่สูงก่อใหเก้ ิดผลเสียหายต่อทงคั ุณภาพและความปลอดภยของั นาปลาํ ดงนั นการทดลองนั ีจึงมีวตถั ุประสงคเพ์ ื่อคดแยกเชั ืออาเคียที่ชอบเกลือที่มีความสามารถยอย่ ฮีสตามีนในสภาวะที่มีเกลือสูง ศึกษาเอนไซมท์ ี่เกี่ยวของ้ และศึกษาความเป็นไปไดในการประย้ กตุ ์ ใชในกระบวนการผล้ ิตนาปลาํ จากเชืออาเคียที่ชอบเกลือ
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • Anaerobic Radical Enzymes for Biotechnology
    ChemBioEng Reviews Anaerobic radical enzymes for biotechnology Journal: ChemBioEng Reviews Manuscript ID cben.201800003.R1 Wiley - Manuscript type:For Review Peer Review Date Submitted by the Author: n/a Complete List of Authors: Jäger, Christof; University of Nottingham, Chemical and Environmental Engineering Croft, Anna; University of Nottingham, Chemical and Environmental Engineering Keywords: Radicals, Enzymes, Catalysis, Biotechnology, Anaerobic reactions Wiley-VCH Page 1 of 61 ChemBioEng Reviews 1 2 3 Christof M. Jäger* and Anna K. Croft* 4 5 6 7 8 9 Anaerobic radical enzymes for biotechnology 10 11 12 13 AUTHORS: Dr Christof Martin Jäger* and Dr Anna Kristina Croft* 14 15 16 ADDRESS: Department of Chemical and Environmental Engineering, University of 17 18 Nottingham, Nottingham, NG7 2RD, United Kingdom. [email protected], 19 For Peer Review 20 21 [email protected] 22 23 24 ABSTRACT: 25 26 27 28 Enzymes that proceed through radical intermediates have a rich chemistry that includes 29 30 functionalisation of otherwise unreactive carbon atoms, carbon-skeleton rearrangements, 31 32 aromatic reductions, and unusual eliminations. Especially under anaerobic conditions, 33 34 organisms have developed a wide range of approaches for managing these transformations 35 36 that can be exploited to generate new biological routes towards both bulk and specialty 37 38 39 chemicals. These routes are often either much more direct or allow access to molecules that 40 41 are inaccessible through standard (bio)chemical approaches. This review gives an overview 42 43 of some of the key enzymes in this area: benzoyl-CoA reductases (that effect the enzymatic 44 45 Birch reduction), ketyl radical dehydratases, coenzyme B12-dependant enzymes, glycyl 46 47 radical enzymes, and radical SAM (AdoMet radical) enzymes.
    [Show full text]
  • Functional Characterization of Seven Γ-Glutamylpolyamine Synthetase
    JOURNAL OF BACTERIOLOGY, Aug. 2011, p. 3923–3930 Vol. 193, No. 15 0021-9193/11/$12.00 doi:10.1128/JB.05105-11 Copyright © 2011, American Society for Microbiology. All Rights Reserved. Functional Characterization of Seven ␥-Glutamylpolyamine Synthetase Genes and the bauRABCD Locus for Polyamine and ␤-Alanine Utilization in Pseudomonas aeruginosa PAO1ᰔ Xiangyu Yao,1† Weiqing He,1,2† and Chung-Dar Lu1,3* Department of Biology, Georgia State University, Atlanta, Georgia 303031; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China2; and Department of Medical Laboratory Sciences and Biotechnology, China Medical University, Taichung, Taiwan 404023 Received 16 April 2011/Accepted 13 May 2011 Pseudomonas aeruginosa and many other bacteria can utilize biogenic polyamines, including diaminopropane (DAP), putrescine (Put), cadaverine (Cad), and spermidine (Spd), as carbon and/or nitrogen sources. Tran- scriptome analysis in response to exogenous Put and Spd led to the identification of a list of genes encoding putative enzymes for the catabolism of polyamines. Among them, pauA1 to pauA6, pauB1 to pauB4, pauC, and pauD1 and pauD2 (polyamine utilization) encode enzymes homologous to Escherichia coli PuuABCD of the ␥-glutamylation pathway in converting Put into GABA. A series of unmarked pauA mutants was constructed for growth phenotype analysis. The results revealed that it requires specific combinations of pauA knockouts to abolish utilization of different polyamines and support the importance of ␥-glutamylation for polyamine catabolism in P. aeruginosa. Another finding was that the list of Spd-inducible genes overlaps almost completely with that of Put-inducible ones except the pauA3B2 operon and the bauABCD operon (␤-alanine utilization).
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Microbial Biochemistry, 2Nd Edition
    Microbial Biochemistry . G.N. Cohen Microbial Biochemistry Second Edition Prof. G.N. Cohen Institut Pasteur rue du Docteur Roux 28 75724 Paris France [email protected] ISBN 978-90-481-9436-0 e-ISBN 978-90-481-9437-7 DOI 10.1007/978-90-481-9437-7 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010938472 # Springer Science+Business Media B.V. 2011 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword This book originates from almost 60 years of living in the company of micro- organisms, mainly with Escherichia coli. My scientific life has taken place almost exclusively at the Institut Pasteur in Paris, where many concepts of modern molecular biology were born or developed. The present work emphasizes the interest of microbial physiology, biochemistry and genetics. It takes into account the considerable advances which have been made in the field in the last 30 years by the introduction of gene cloning and sequencing and by the exponential development of physical methods such as X-ray crystallog- raphy of proteins. The younger generation of biochemists is legitimately interested in the problems raised by differentiation and development in higher organisms, and also in neuros- ciences.
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/75818 Please be advised that this information was generated on 2018-07-08 and may be subject to change. SULFATION VIA SULFITE AND SULFATE DIESTERS AND SYNTHESIS OF BIOLOGICALLY RELEVANT ORGANOSULFATES Een wetenschappelijke proeve op het gebied van de Natuurwetenschappen, Wiskunde en Informatica Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. mr. S. C. J. J. Kortmann, volgens besluit van het college van decanen in het openbaar te verdedigen op vrijdag 9 oktober 2009 om 13:00 uur precies door Martijn Huibers geboren op 21 november 1978 te Arnhem Promotor: Prof. dr. Floris P. J. T. Rutjes Copromotor: Dr. Floris L. van Delft Manuscriptcommissie: Prof. dr. ir. Jan C. M. van Hest Prof. dr. Binne Zwanenburg Dr. Martin Ostendorf (Schering‐Plough) Paranimfen: Laurens Mellaard Eline van Roest Het in dit proefschrift beschreven onderzoek is uitgevoerd in het kader van het project “Use of sulfatases in the production of sulfatated carbohydrates and steroids”. Dit project is onderdeel van het Integration of Biosynthesis and Organic Synthesis (IBOS) programma, wat deel uitmaakt van het Advanced Chemical Technologies for Sustainability (ACTS) platform van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). Cofinancierders zijn Schering‐Plough en Syncom. ISBN/EAN: 978‐94‐90122‐51‐5 Drukkerij: Gildeprint Drukkerijen, Enschede Omslagfoto: Martijn Huibers i.s.m. Maarten van Roest Omslagontwerp: Martijn Huibers en Gildeprint Drukkerijen Vermelding van een citaat (onderaan kernpagina's 1 tot en met 112) betekent niet per se dat de auteur van dit proefschrift zich daarbij aansluit, maar dat de uitspraak interessant is, prikkelend is, en/of betrekking heeft op de wetenschap in het algemeen of dit promotieonderzoek in het bijzonder.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0183866A1 Pohl Et Al
    US 2006O183866A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0183866A1 Pohl et al. (43) Pub. Date: Aug. 17, 2006 (54) BLOCKED MERCAPTOSILANE COUPLING (60) Provisional application No. 60/056,566, filed on Aug. AGENTS FOR FILLED RUBBERS 21, 1997. (76) Inventors: Eric R. Pohl, Mount Kisco, NY (US); Publication Classification Richard W. Cruse, Yorktown Heights, NY (US); Keith J. Weller, North (51) Int. Cl. Greenbush, NY (US); Robert J. CSF I32/00 (2006.01) Pickwell, Tonawanda, NY (US) (52) U.S. Cl. ...................... 525/326.1; 524/146; 524/167; 524/168; 524/173; 524/262: Correspondence Address: 524/265; 524/267: 524/302: DILWORTH & BARRESE, LLP 524/306; 524/307; 524/308; 333 EARLE OVINGTON BLVD. 524/309; 524/311:524/392: UNIONDALE, NY 11553 (US) 524/393; 524/401 (21) Appl. No.: 11/398,125 (57) ABSTRACT (22) Filed: Apr. 5, 2006 Blocked mercaptosilanes are provided in which the blocking Related U.S. Application Data group contains an unsaturated heteroatom or carbon chemi cally bound directly to sulfur via a single bond. This (60) Continuation of application No. 09/986,512, filed on blocking group optionally may be substituted with one or Nov. 9, 2001, which is a division of application No. more carboxylate ester or carboxylic acid functional groups. 09/284.841, filed on Apr. 21, 1999, now Pat. No. These silanes are used in manufacture of inorganic filled 6,414,061, filed as 371 of international application rubbers, with the silanes deblocked by a deblocking agent. No. PCT/US98/17391, filed on Aug.
    [Show full text]
  • Appl. Microbiol. Biotechnol. 78: 293-307
    Appl Microbiol Biotechnol (2008) 78:293–307 DOI 10.1007/s00253-007-1308-y APPLIED GENETICS AND MOLECULAR BIOTECHNOLOGY PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes Can Attila & Akihiro Ueda & Thomas K. Wood Received: 19 October 2007 /Revised: 26 November 2007 /Accepted: 28 November 2007 / Published online: 22 December 2007 # Springer-Verlag 2007 Abstract Previously, we identified the uncharacterized PA2130, and PA4549) and for small molecule transport predicted membrane protein PA2663 of Pseudomonas (PA0326, PA1541, PA1632, PA1971, PA2214, PA2215, aeruginosa PAO1 as a virulence factor using a poplar tree PA2678, and PA3407). Phenotype arrays also showed that model; PA2663 was induced in the poplar rhizosphere and, PA2663 represses growth on D-gluconic acid, D-mannitol, upon inactivation, it caused 20-fold lower biofilm forma- and N-phthaloyl-L-glutamic acid. Hence, the PA2663 gene tion (Attila et al., Microb Biotechnol, 2008). Here, we product increases biofilm formation by increasing the psl- confirmed that PA2663 is related to biofilm formation by operon-derived exopolysaccharides and increases pyover- restoring the wild-type phenotype by complementing the dine synthesis, PQS production, and elastase activity while PA2663 mutation in trans and investigated the genetic basis reducing swarming and swimming motility. We speculate of its influence on biofilm formation through whole- that PA2663 performs these myriad functions as a novel transcriptome and -phenotype studies. Upon inactivating membrane sensor. PA2663 by transposon insertion, the psl operon that encodes a galactose- and mannose-rich exopolysaccharide Keywords Biofilm . Pseudomonas aeruginosa . was highly repressed (verified by RT-PCR).
    [Show full text]
  • Oxidized Sulfur Functionalized Polymers Via Admet Polymerization
    OXIDIZED SULFUR FUNCTIONALIZED POLYMERS VIA ADMET POLYMERIZATION By TAYLOR WILLIAM GAINES A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2015 © 2015 Taylor William Gaines To Mom and Steve ACKNOWLEDGMENTS There are so many who have been contributors to my success and I would like thank all of them. This doctorate involved not only the four years in graduate school, but everything in life up until the degree’s competition. I have always tried to remember life’s little lessons. I cannot mention everyone who deserves thanks; otherwise, this section would comprise the entire document. But I believe those mentioned below have had the most profound effect on my life and especially my education. I must start by first thanking my grandparents, Iris and Tony Pritchard, who were essential to my early upbringing in western North Carolina. These two were hardworking, small town, blue-collar, and family oriented. My grandfather was in the automotive repair industry, and my grandmother worked 47 years for the same furniture company. They grew up in the depression, knew the value of hard work, family, and how to make a little money go a long way. I can honestly say they never met a stranger, and they were kind to everyone. I am most appreciative of the values these two instilled in me, including dedication, the importance of family, and the value of hard work. They loved us unconditionally and spoiled my brother and me, probably too much at times.
    [Show full text]