Free Astronomy Magazine November-December 2020

Total Page:16

File Type:pdf, Size:1020Kb

Free Astronomy Magazine November-December 2020 cover EN.qxp_l'astrofilo 28/10/2020 17:55 Page 1 THE FREE MULTIMEDIA MAGAZINE THAT KEEPS YOU UPDATED ON WHAT IS HAPPENING IN SPACE Bi-monthly magazine of scientific and technical information ✶ November-December 2020 Small molecules, big questions–the detection of Venusian phosphine • A planet-forming disc torn apart by its three central stars • Hubble maps a giant halo around the Andromeda galaxy • A spectacular supernova time-lapse • Hubble captures crisp new image of Jupiter and Europa The Anthropocene as an interstellar messenger Good morning Earth. This is ET radio! www.astropublishing.com ✶✶www.facebook.com/astropublishing [email protected] colophon EN_l'astrofilo 29/10/2020 11:43 Page 2 ESO Calendar 2021 Now Available https://www.eso.org/public/usa/shop/product/calendar_2021/ The 2021 edition of one of our most popular products, the ESO Calendar, is now available and can be purchased from the online ESOshop and in the ESO Supernova Planetarium & Visitor Centre. The calendar’s cover features a spectacular starscape around the relatively unknown central object, Gum 15, a nebula in which stars are being born. The image also features one of the closest supernova remnants to Earth, which exploded between 11,000 and 12,300 years ago and is located 800 light-years away from our cosmic home. For the month of March, the bright band of the Milky Way arcs above the ALMA antennas on the Chajnantor plateau. One of the closest stellar nurseries to Earth, the Orion Nebula, is the chosen image for July and the massive 3-tonne blank for the Extremely Large Telescope’s (ELT) secondary mirror is the star of September. Finally, in December the viewer will feel they are speeding towards the centre of our galaxy, thanks to a clever photographic technique used on an observation of the Milky Way. These are just a few highlights, we invite you to view the individual pages of the ESO Calendar 2021 here. The calendar has a total of 14 pages, and is available for 9.50 EUR in the ESOshop — but stock is limited so don’t delay! colophon EN_l'astrofilo 29/10/2020 11:43 Page 3 S U M M A R Y BI-MONTHLY MAGAZINE OF SCIENTIFIC AND TECHNICAL INFORMATION Small molecules, big questions – the detection of Venusian phosphine FREELY AVAILABLE THROUGH On the local morning of September 14th, the Royal Astronomical Society tweeted an announcement for THE INTERNET an afternoon press briefing about a significant discovery. Within hours, “phosphine” and “Venus” were being proposed by some on social media as the discussion topic. In combination with shared links to the... November-December 2020 4 A planet-forming disc torn apart by its three central stars A team of astronomers have identified the first direct evidence that groups of stars can tear apart their planet-forming disc, leaving it warped and with tilted rings. This new research suggests exotic planets, 16 not unlike Tatooine in Star Wars, may form in inclined rings in bent discs around multiple stars. The... Hubble maps a giant halo around the Andromeda galaxy In a landmark study, scientists using NASA’s Hubble Space Telescope have mapped the immense enve- lope of gas, called a halo, surrounding the Andromeda galaxy, our nearest large galactic neighbor. Scien- 20 tists were surprised to find that this tenuous, nearly invisible halo of diffuse plasma extends 1.3 million... The Anthropocene as an interstellar messenger It seems incredible, but in an age when humans communicated remotely using horseback couriers, car- rier pigeons, fires and mirrors, the first signals were already being transmitted into space. The Roman, 24 Chinese and Spanish empires unwittingly added traces of their existence to the light reflected from the... English edition of the magazine lA’ STROFILO Hubble captures crisp new image of Jupiter and Europa This latest image of Jupiter, taken by the NASA/ESA Hubble Space Telescope on 25 August 2020, was cap- Editor in chief tured when the planet was 653 million kilometres from Earth. Hubble’s sharp view is giving researchers Michele Ferrara 34 an updated weather report on the monster planet’s turbulent atmosphere, including a remarkable new... Scientific advisor Prof. Enrico Maria Corsini Good morning Earth. This is ET radio! Publisher Astro Publishing di Pirlo L. The patchy search for alien civilizations in the Milky Way continues tirelessly. Nearly all surveys are fo- Via Bonomelli, 106 cused on radio waves, and will continue to be in the future, thanks largely to the planning of gigantic 25049 Iseo - BS - ITALY networks of radio telescopes, such as the Square Kilometer Array, soon to be built in Australia and... email [email protected] 38 Internet Service Provider Aruba S.p.A. A spectacular supernova time-lapse Via San Clemente, 53 24036 Ponte San Pietro - BG - ITALY The NASA/ESA’s Hubble Space Telescope has tracked the fading light of a supernova in the spiral galaxy NGC 2525, located 70 million light-years away. Supernovae like this one can be used as cosmic tape mea- Copyright sures, allowing astronomers to calculate the distance to their galaxies. Hubble captured these images... All material in this magazine is, unless 48 otherwise stated, property of Astro Publishing di Pirlo L. or included with permission of its author. Reproduction or retransmission of the materials, in whole or in part, in any manner, with- out the prior written consent of the copyright holder, is a violation of copy- right law. A single copy of the materi- als available through this course may be made, solely for personal, noncom- mercial use. Users may not distribute such copies to others, whether or not in electronic form, whether or not for a charge or other consideration, with- out prior written consent of the copy- right holder of the materials. The publisher makes available itself with having rights for possible not charac- terized iconographic sources. Advertising - Administration Astro Publishing di Pirlo L. Via Bonomelli, 106 25049 Iseo - BS - ITALY email [email protected] phosphine EN_l'Astrofilo 28/10/2020 17:57 Page 4 4 ASTROCHEMISTRY Small molecules,bi detection of Venus by Damian G. Allis NASA Solar System Ambassador On the local morning of September 14 th, the Royal Astronomical Society tweeted an announcement for an afternoon press briefing about a significant discovery. Within hours, “phosphine” and “Venus” were being proposed by some on social media as the discussion topic. In combination with shared links to the January 2020 Astrobiology article “Phosphine as a Biosignature Gas in Exoplanet Atmospheres,” some were already anticipating a most remarkable event. NOVEMBER-DECEMBER 2020 phosphine EN_l'Astrofilo 28/10/2020 17:57 Page 5 ASTROCHEMISTRY 5 big questions–the usian phosphine usian phosphine n artist’s vi- n international team from the UK, ing and multi-disciplinary discovery to A sion of elec- USA, and Japan, led by Prof. Jane fruition was obvious to all in attendance. trical discharges A Greaves of Cardiff University, re- No topic in science generates more specu- in the hot sky of leased their open access article “Phosphine lation than extraterrestrial life, and the Venus. Lightning gas in the cloud decks of Venus” in Nature discoverers will go down in history for and volcanism Astronomy as the press briefing was tak- that achievement − this would clearly be a could be the ori- gin of the re- ing place. The cautious excitement of milestone as the names “Gagarin” and cently discovered Greaves, Dr. Anita Richards (Jodrell Bank “Armstrong/Aldrin/Collins” conjure. One phosphine in the Centre for Astrophysics), and Dr. William assumes the most benevolent intentions planet’s atmos- Bains and Prof. Sara Seager (MIT) over of such a briefing, especially with the pre- phere. [J. Peter] bringing such a potentially groundbreak- senters stating that their work is of a mo- NOVEMBER-DECEMBER 2020 phosphine EN_l'Astrofilo 28/10/2020 17:57 Page 6 6 ASTROCHEMISTRY lecular detection and an interpretation in duced by lightning and volcanism, both eft, a false- the absence of any known non-biological common on Venus. That said, the atmos- Lcolor enhance- explanations. That said, one can only imag- pheric and geochemical routes to phos- ment of an origi- ine the instinct to be the first to make such phine could only account for a fraction of nal photograph a discovery, however preliminary, known to the amount detected based on our current of the opaque Venus cloud the world as soon as possible. understanding of both phenomena. The cover taken by What has followed is a story of measure- possible explanation put forth by the au- Mariner 10 during ment, interpretation, reserved speculation, thors applies the predominant method of its gravity-assist and controversy − not over the discovery of phosphine production on Earth – biochem- maneuver en phosphine, but over its indication as a pos- ical processes in low-oxygen conditions. route to Mercury sible biological marker, which has driven As is obvious from the many design fea- in February, 1974. discussion beyond just the astronomical tures of the few successful Venera and Pio- [NASA/JPL] community. What is most Right, the surface clear is how little we still of Venus as cap- know about our own tured by the solar system, as a simple Magellan space- molecule can lead to craft. [Magellan Project/NASA/JPL] heated debate because On the side, an of our incomplete under- artistic enlarge- standing of the chemistry ment of a tiny and geology of our near- region of the est planetary neighbors. Venusian atmos- What we know and do phere, showing not yet know about the the geometry of production of phosphine, the phosphine molecule. [ESO] PH3 , on Venus are central to the past few weeks of speculation.
Recommended publications
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Experimentalphysik I: Mechanik
    Experimentalphysik I: Mechanik Prof. Dr. Thomas Muller¨ , Dr. Frank Hartmann Vorlesung Wintersemester 2001/2002 Letzte Aktualisierung und Verbesserung: 5. M¨arz 2004 Skript der Vorlesung Experimentalphysik I von Herrn Prof. Dr. Thomas Muller¨ im Wintersemester 2001/2002 von Marco Schreck. Dieses Skript erhebt keinen Anspruch auf Vollst¨andigkeit und Korrektheit. Kommentare, Fehler, Vorschl¨age und konstruktive Kritik bitte an [email protected]. Inhaltsverzeichnis 1 Einleitung 5 1.1 Grundbegriffe der Physik . 5 1.1.1 Dimensionsbetrachtungen . 7 1.2 Messungen und Datenauswertung . 9 1.2.1 Zentraler Grenzwertsatz . 10 1.2.2 Fehlerfortpflanzung . 10 1.3 Physikalische Gr¨oßen/Einfuhrung¨ in die Vektorrechnung . 11 2 Klassische Mechanik 17 2.1 Mechanik von Massenpunkten . 17 2.1.1 Bewegung in einer Dimension . 17 2.1.2 2-dimensionale Bewegung . 20 2.1.3 Dreidimensionale Bewegung . 20 2.1.4 Sonderfall Kreisbewegung . 22 2.1.5 Sonderfall: Konstante Kreisbewegung . 23 2.2 Die Newtonschen Gesetze . 25 2.2.1 Anwendungen von Newtons Gesetzen . 26 2.2.2 Das Federpendel . 33 2.2.3 Reibung . 36 2.2.4 Rotationsdynamik . 37 2.2.5 Arbeit und Energie . 41 2.3 Systeme von Massenpunkten . 55 2.3.1 Schwerpunkt und Impuls (CM=center of mass) . 55 2.3.2 Elastische und unelastische St¨oße . 61 2.4 Rotationen . 66 2.4.1 Rotationskinematik . 66 2.4.2 Rotationsdynamik . 68 2.4.3 Rotierende Bezugssysteme . 76 2.4.4 Rollen . 77 2.4.5 Mechanische Stabilit¨at . 81 3 Gravitation 85 3.1 Das Gravitationsgesetz . 85 3.1.1 Der historische Weg zum Gravitationsgesetz .
    [Show full text]
  • SAC's 110 Best of the NGC
    SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Dynamics of Barred Galaxies
    Reports on Progress in Physics 56 (1993) 173-255 Dynamics of Barred Galaxies J A Sellwood1,2 and A Wilkinson3 1Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2Department of Physics and Astronomy, Rutgers University, PO Box 849, Piscataway, NJ 08855-0849, USA 3Department of Astronomy, The University, Manchester M13 9PL, England Abstract Some 30% of disc galaxies have a pronounced central bar feature in the disc plane and many more have weaker features of a similar kind. Kinematic data indicate that the bar constitutes a major non-axisymmetric component of the mass distribution and that the bar pattern tumbles rapidly about the axis normal to the disc plane. The observed motions are consistent with material within the bar streaming along highly elongated orbits aligned with the rotating major axis. A barred galaxy may also contain a spheroidal bulge at its centre, spirals in the outer disc and, less commonly, other features such as a ring or lens. Mild asymmetries in both the light and kinematics are quite common. We review the main problems presented by these complicated dynamical systems and sum- marize the effort so far made towards their solution, emphasizing results which appear secure. Bars are probably formed through a global dynamical instability of a rotationally supported galactic disc. Studies of the orbital structure seem to indicate that most stars in the bar follow regular orbits but that a small fraction may be stochastic. Theoretical work on the three-dimensional structure of bars is in its infancy, but first results suggest that bars should be thicker in the third dimension than the disc from which they formed.
    [Show full text]
  • The Black Hole Mass Function Derived from Local Spiral Galaxies
    PUBLISHED IN THE ASTROPHYSICAL JOURNAL, 789:124 (16PP),2014 JULY 10 Preprint typeset using LATEX style emulateapj v. 12/16/11 THE BLACK HOLE MASS FUNCTION DERIVED FROM LOCAL SPIRAL GALAXIES BENJAMIN L. DAVIS1 , JOEL C. BERRIER1,2,5,LUCAS JOHNS3,6 ,DOUGLAS W. SHIELDS1,2, MATTHEW T. HARTLEY2,DANIEL KENNEFICK1,2, JULIA KENNEFICK1,2, MARC S. SEIGAR1,4 , AND CLAUD H.S. LACY1,2 Published in The Astrophysical Journal, 789:124 (16pp), 2014 July 10 ABSTRACT We present our determination of the nuclear supermassive black hole mass (SMBH) function for spiral galax- ies in the local universe, established from a volume-limited sample consisting of a statistically complete col- lection of the brightest spiral galaxies in the southern (δ< 0◦) hemisphere. Our SMBH mass function agrees well at the high-mass end with previous values given in the literature. At the low-mass end, inconsistencies exist in previous works that still need to be resolved, but our work is more in line with expectations based on modeling of black hole evolution. This low-mass end of the spectrum is critical to our understanding of the mass function and evolution of black holes since the epoch of maximum quasar activity. A limiting luminos- ity (redshift-independent) distance, DL = 25.4 Mpc (z =0.00572) and a limiting absolute B-band magnitude, MB = −19.12 define the sample. These limits define a sample of 140 spiral galaxies, with 128 measurable pitch angles to establish the pitch angle distribution for this sample. This pitch angle distribution function may be useful in the study of the morphology of late-type galaxies.
    [Show full text]
  • Trash to Treasure: Extracting Cosmological Utility from Sparsely Observed Type Ia Supernovae by Benjamin Ernest Stahl a Disserta
    Trash to Treasure: Extracting Cosmological Utility from Sparsely Observed Type Ia Supernovae by Benjamin Ernest Stahl A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Alexei V. Filippenko, Co-chair Associate Professor Daniel Kasen, Co-chair Professor Saul Perlmutter Professor UroˇsSeljak Spring 2021 Trash to Treasure: Extracting Cosmological Utility from Sparsely Observed Type Ia Supernovae Copyright 2021 by Benjamin Ernest Stahl 1 Abstract Trash to Treasure: Extracting Cosmological Utility from Sparsely Observed Type Ia Supernovae by Benjamin Ernest Stahl Doctor of Philosophy in Physics University of California, Berkeley Professor Alexei V. Filippenko, Co-chair Associate Professor Daniel Kasen, Co-chair Type Ia supernovae (SNe Ia) are magnificent explosions in the Cosmos that are thought to result from the thermonuclear runaway of white dwarf stars in multistar systems (see, e.g., Jha et al. 2019, for a recent review). Though the exact details of the progenitor system(s) and explosion mechanism(s) remain elusive, SNe Ia have proven themselves to be immensely valuable in shaping our understanding of the physical laws that govern the evolution of the Universe (i.e., physical cosmology). This value is manifested chiefly in two empirical facts: (i) SNe Ia are incredibly luminous (reaching the equivalent of several billion Suns), and (ii) the relatively similar peak luminosities that all \normal" SNe Ia reach can be further homogenized by exploiting a correlation with the rate of photometric evolution (e.g., Phillips 1993). Together, these facts make SNe Ia excellent extragalactic distance indicators, and their use as such led to the discovery of the accelerating expansion of the Universe (Riess et al.
    [Show full text]
  • EXPLORING the UNIVERSE: NEAR EARTH SPACE SCIENCE to EXTRA-GALACTIC ASTRONOMY (A Tribute to Professor S
    ABSTRACT BOOK An International Conference on EXPLORING THE UNIVERSE: NEAR EARTH SPACE SCIENCE TO EXTRA-GALACTIC ASTRONOMY (A tribute to Professor S. N. Bose on his 125th Birth Anniversary) S N BOSE NATIONAL CENTRE FOR BASIC SCIENCES KOLKATA, INDIA 14-17 NOVEMBER, 2018 PLENARY TALKS PLENARY TALK Email: HomiBhabha Road, Colaba, Mumbai 400005 Institute of Fundamental ResearchTata R Rao A and AstroSat Beyond Astrophysics: High Energy this area including X-ray timing and polarisation measurements, that are likely to make impact in presented and its impact on High Energy Astrophysics will be reviewed. Recent New developments results in from AstroSat, India's first multi-wavelength astronomical observatory, will be the near future are discussed. are future near the [email protected] ABSTRACT K L Exploring the space with vacuum-ultraviolet radiation A T Y R A N Bing-Ming Cheng E L P National Synchrotron Radiation Research Center No. 101, Hsin Ann Rd, East District, Hsinchu City, Taiwan 300 Email: [email protected] ABSTRACT Vacuum-ultraviolet (VUV) spectroscopy and photochemistry of interstellar molecules and materials in gaseous and condensed states attract much interest recently. The information yields detailed knowledge about chemical transformations in astro-environments and can be reconciled to the observations in space. For this purpose, we have performed experiments of spectroscopy and photochemistry using VUV light conducted from a storage ring at National Synchrotron Radiation Research Center (NSRRC) in Taiwan. Taking the advantage of the unique property of synchrotron, we are exploring the VUV spectroscopy and photochemistry for interstellar molecules and materials with exciting prospects. In this presentation, we will discuss the VUV spectroscopies and photochemical processes of interstellar molecules containing N2, O2, HCl, H2O, CH4, C2H2 and NH3.
    [Show full text]
  • Logarithmic Spiral Arm Pitch Angle of Spiral Galaxies
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2015 Logarithmic Spiral Arm Pitch Angle of Spiral Galaxies: Measurement and Relationship to Galactic Structure and Nuclear Supermassive Black Hole Mass Benjamin Lee Davis University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Cosmology, Relativity, and Gravity Commons, and the External Galaxies Commons Recommended Citation Davis, Benjamin Lee, "Logarithmic Spiral Arm Pitch Angle of Spiral Galaxies: Measurement and Relationship to Galactic Structure and Nuclear Supermassive Black Hole Mass" (2015). Theses and Dissertations. 1041. http://scholarworks.uark.edu/etd/1041 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Logarithmic Spiral Arm Pitch Angle of Spiral Galaxies: Measurement and Relationship to Galactic Structure and Nuclear Supermassive Black Hole Mass Logarithmic Spiral Arm Pitch Angle of Spiral Galaxies: Measurement and Relationship to Galactic Structure and Nuclear Supermassive Black Hole Mass A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Space and Planetary Sciences by Benjamin Davis Pittsburg State University Bachelor of Science in Mathematics, 2008 Pittsburg State University Bachelor of Science in Physics, 2008 May 2015 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Dr. Julia Kennefick Dr. William Harter Thesis Director Committee Member Dr. Daniel Kennefick Dr. Claud Lacy Committee Member Committee Member Dr. Larry Roe Dr.
    [Show full text]
  • A Abell 21, 20–21 Abell 37, 164 Abell 50, 264 Abell 262, 380 Abell 426, 402 Abell 779, 51 Abell 1367, 94 Abell 1656, 147–148
    Index A 308, 321, 360, 379, 383, Aquarius Dwarf, 295 Abell 21, 20–21 397, 424, 445 Aquila, 257, 259, 262–264, 266–268, Abell 37, 164 Almach, 382–383, 391 270, 272, 273–274, 279, Abell 50, 264 Alnitak, 447–449 295 Abell 262, 380 Alpha Centauri C, 169 57 Aquila, 279 Abell 426, 402 Alpha Persei Association, Ara, 202, 204, 206, 209, 212, Abell 779, 51 404–405 220–222, 225, 267 Abell 1367, 94 Al Rischa, 381–382, 385 Ariadne’s Hair, 114 Abell 1656, 147–148 Al Sufi, Abdal-Rahman, 356 Arich, 136 Abell 2065, 181 Al Sufi’s Cluster, 271 Aries, 372, 379–381, 383, 392, 398, Abell 2151, 188–189 Al Suhail, 35 406 Abell 3526, 141 Alya, 249, 255, 262 Aristotle, 6 Abell 3716, 297 Andromeda, 327, 337, 339, 345, Arrakis, 212 Achird, 360 354–357, 360, 366, 372, Auriga, 4, 291, 425, 429–430, Acrux, 113, 118, 138 376, 380, 382–383, 388, 434–436, 438–439, 441, Adhara, 7 391 451–452, 454 ADS 5951, 14 Andromeda Galaxy, 8, 109, 140, 157, Avery’s Island, 13 ADS 8573, 120 325, 340, 345, 351, AE Aurigae, 435 354–357, 388 B Aitken, Robert, 14 Antalova 2, 224 Baby Eskimo Nebula, 124 Albino Butterfly Nebula, 29–30 Antares, 187, 192, 194–197 Baby Nebula, 399 Albireo, 70, 269, 271–272, 379 Antennae, 99–100 Barbell Nebula, 376 Alcor, 153 Antlia, 55, 59, 63, 70, 82 Barnard 7, 425 Alfirk, 304, 307–308 Apes, 398 Barnard 29, 430 Algedi, 286 Apple Core Nebula, 280 Barnard 33, 450 Algieba, 64, 67 Apus, 173, 192, 214 Barnard 72, 219 Algol, 395, 399, 402 94 Aquarii, 335 Barnard 86, 233, 241 Algorab, 98, 114, 120, 136 Aquarius, 295, 297–298, 302, 310, Barnard 92, 246 Allen, Richard Hinckley, 5, 120, 136, 320, 324–325, 333–335, Barnard 114, 260 146, 188, 258, 272, 286, 340–341 Barnard 118, 260 M.E.
    [Show full text]
  • Experimentalphysik I: Mechanik
    Experimentalphysik I: Mechanik Prof. Dr. Thomas Muller¨ , Dr. Frank Hartmann Vorlesung Wintersemester 2001/2002 Letzte Aktualisierung und Verbesserung: 5. M¨arz 2004 Skript der Vorlesung Experimentalphysik I von Herrn Prof. Dr. Thomas Muller¨ im Wintersemester 2001/2002 von Marco Schreck. Dieses Skript erhebt keinen Anspruch auf Vollst¨andigkeit und Korrektheit. Kommentare, Fehler, Vorschl¨age und konstruktive Kritik bitte an [email protected]. Inhaltsverzeichnis 1 Einleitung 5 1.1 Grundbegriffe der Physik . 5 1.1.1 Dimensionsbetrachtungen . 7 1.2 Messungen und Datenauswertung . 9 1.2.1 Zentraler Grenzwertsatz . 10 1.2.2 Fehlerfortpflanzung . 10 1.3 Physikalische Gr¨oßen/Einfuhrung¨ in die Vektorrechnung . 11 2 Klassische Mechanik 17 2.1 Mechanik von Massenpunkten . 17 2.1.1 Bewegung in einer Dimension . 17 2.1.2 2-dimensionale Bewegung . 20 2.1.3 Dreidimensionale Bewegung . 20 2.1.4 Sonderfall Kreisbewegung . 22 2.1.5 Sonderfall: Konstante Kreisbewegung . 23 2.2 Die Newtonschen Gesetze . 25 2.2.1 Anwendungen von Newtons Gesetzen . 26 2.2.2 Das Federpendel . 33 2.2.3 Reibung . 36 2.2.4 Rotationsdynamik . 37 2.2.5 Arbeit und Energie . 41 2.3 Systeme von Massenpunkten . 55 2.3.1 Schwerpunkt und Impuls (CM=center of mass) . 55 2.3.2 Elastische und unelastische St¨oße . 61 2.4 Rotationen . 66 2.4.1 Rotationskinematik . 66 2.4.2 Rotationsdynamik . 68 2.4.3 Rotierende Bezugssysteme . 76 2.4.4 Rollen . 77 2.4.5 Mechanische Stabilit¨at . 81 3 Gravitation 85 3.1 Das Gravitationsgesetz . 85 3.1.1 Der historische Weg zum Gravitationsgesetz .
    [Show full text]