Thermochronological, Petrographic and Geochemical Characteristics of the Combia Formation, Amagá Basin, Colombia

Total Page:16

File Type:pdf, Size:1020Kb

Thermochronological, Petrographic and Geochemical Characteristics of the Combia Formation, Amagá Basin, Colombia Thermochronological, petrographic and geochemical characteristics of the Combia Formation, Amagá basin, Colombia Matthias Bernet, Juliana Mesa Garcia, Catherine Chauvel, Maria Ramírez Londoño, Maria Marín-Cerón To cite this version: Matthias Bernet, Juliana Mesa Garcia, Catherine Chauvel, Maria Ramírez Londoño, Maria Marín- Cerón. Thermochronological, petrographic and geochemical characteristics of the Combia Forma- tion, Amagá basin, Colombia. Journal of South American Earth Sciences, Elsevier, 2020, 104, 10.1016/j.jsames.2020.102897. hal-02990433 HAL Id: hal-02990433 https://hal.archives-ouvertes.fr/hal-02990433 Submitted on 17 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Thermochronological, petrographic and geochemical 2 characteristics of the Combia Formation, Amagá basin, Colombia 3 4 Matthias Bernet1*, Juliana Mesa Garcia2,3, Catherine Chauvel1,4 5 and Maria Isabel Marín-Cerón2, 6 1Institut des Sciences de la Terre, CNRS, Université Grenoble Alpes, Grenoble, 7 France 8 2Departemento de Geociencias, Universidad EAFIT, Medellín, Colombia 9 10 3present address: Geology Department, University of Michigan, Ann Arbor, MI, USA 11 12 4Université de Paris, Institut de Physique du Globe de Paris, CNRS,F-75005 Paris, 13 France 14 15 *corresponding author, email: [email protected], 16 ORCID: 0000-0001-5046-7520 17 18 19 Abstract 20 The Amagá basin between the Western and Central Cordilleras of the 21 Northern Andes of Colombia host the Neogene volcanic and volcaniclastic Combia 22 Formation. At this stage it is not clear how the formation of this unit is related to arc 23 volcanism and which role the Nazca plate subduction beneath the western margin of 24 South America plays. The timing, petrography and geochemical characteristics of 25 Combia Formation rocks were studied in the western and eastern parts of the 26 Amagá basin, in order to gain more information on the type of magma generation 27 and volcanic activity that led to the deposition of the Combia Formation. 28 Apatite and zircon fission-track dating largely confirm a 12-6 Ma age for the 29 deposition of the Combia Formation. Petrographic and major element analyses show 30 that mainly trachy-andesite ignimbrites with a calc-alkaline composition were 31 deposited in the western Amagá basin, whereas the volcanic rocks of the eastern 1 32 Amagá basin are lava flow and fall-out deposits of basaltic andesites or of tholeiitic 33 composition. Trace element and isotopic analyses show that slab dehydration and 34 sediment melting were important in primary magma generation in the mantle wedge, 35 but the primary magma was mixed with lower continental crustal melts, resulting in 36 characteristic isotope signatures in the western and eastern Amagá basin. All this 37 points to subduction driven arc volcanism with slab dehydration, sediment melting 38 magma mixing. 39 40 41 Introduction 42 The late Paleogene to present-day magmatism of northwestern South 43 America can be divided into four major phases of activity at about 24-20 Ma, 12-6 44 Ma, 6-3 Ma, and 3 Ma to the Present (e.g. Sierra, 1994; Toro et al., 1999; Gonzalez, 45 2001; Ramírez et al., 2006; Cediel et al., 2011; Pérez et al., 2013; Lesage et al., 46 2013). These different magmatic phases are related to the complex tectonic setting 47 in which the Caribbean, Nazca and South American plates interact with each other 48 (Fig. 1). The break-up of the Farallón plate into the Nazca and Cocos plates between 49 26 and 24 Ma (Marriner and Millward, 1984), the reorientation of subduction 50 direction (Pardo-Casas and Molnar, 1987), and collision of the Panamá-Choco block 51 with northwestern South America at about 25 Ma drove the first magmatic pulse (e.g. 52 McCourt et al., 1984; Aspden et al., 1987; Kellogg and Vega, 1995; Trenkamp et al., 53 2002; Cediel et al., 2003; Lonsdale, 2005; Restrepo-Moreno et al., 2010; Farris et 54 al., 2011). Second, since the late Paleogene the Nazca plate subduction zone was 55 subjected to changes in subduction angle and direction over time, resulting in 56 Miocene-Pliocene magmatic intrusions in the Western and Central Cordillera and 2 57 deposition of the Combia Formation in the Amagá basin (e.g. Pardo-Casas and 58 Molnar, 1987; Taboada et al., 2000; Cediel et al., 2003; Vargas and Mann, 2013). At 59 the same time, subduction of the Caribbean plate beneath the northern (Caribbean) 60 margin of South America caused isolated late Miocene-Pliocene volcanic activity in 61 the Eastern Cordillera (e.g. Vargas and Mann, 2013), such as in the Vetas-California 62 gold-mining district of the Santander Massif (Mantilla et al., 2013), or the Paipa-Iza 63 complex 150 km to the north-east of Bogotá (Fig. 1; Padro et al., 2005; Bernet et al., 64 2016). Today the main volcanic activity in Colombia is focused on the Central 65 Cordillera with for example the Nevado del Ruiz, Nevado del Tolima, Cerro Machín, 66 Nevado del Huila, Azufral, Cumbal, etc. well to the south of the study area (Fig. 1; 67 e.g. Marín-Cerón et al., 2010, 2019; Leal-Mejía, 2011). 68 Different techniques have been used for more than a century to understand 69 the genesis, age and evolution of the Combia Formation, including petrography, 70 heavy mineral analysis, X-ray diffraction, geochemistry, geochronology, 71 thermochronology and stratigraphic analyses (e.g. Grosse, 1926; Jaramillo, 1976; 72 Calle and González, 1980; Álvarez, 1983; Marriner and Millward, 1984; Rios and 73 Sierra, 2004; Pérez, 2005; López et al., 2006; Ramírez et al., 2006), but the 74 evolution of the Nazca plate subduction zone magmatism still remains poorly 75 constrained. Here we present a study of a suite of samples collected from three 76 sections, the Cerro Amarillo section in the eastern Amagá basin, and the Anzá- 77 Bolombolo and La Metida Creek sections in the western Amagá basin (Fig. 2), in 78 order to improve the knowledge gained so far about the Combia Formation. The 79 volcaniclastic, tuff/lapilli and flow deposits of the Combia Formation were examined 80 with a) apatite fission-track (AFT) and zircon fission-track (ZFT) thermochronology, 81 b) petrographic analyses, and c) major and trace element analysis, as well as Sr, Nd 3 82 and Pb isotope analyses. All this was done with the objective of a) characterizing 83 and comparing the eastern and western volcanic deposits, and b) to better 84 understand the mid-late Miocene evolution of the Nazca subduction zone 85 magmatism manifested between the Western and Central Cordilleras. 86 87 Geological setting 88 The Northern Andes of northwestern South America consist in Colombia of 89 the Western, Central and Eastern Cordilleras (Fig. 1). Each of these mountain belts 90 reflects a particular part of the long-term evolution of the Northern Andes, which is 91 characterized by magmatic episodes since the Precambrian, during the Triassic, 92 Jurassic, Late Cretaceous, and since the late Paleogene/Neogene until today 93 (Aspden et al., 1987). In general, these magmatic phases have been related to 94 Farallón/Nazca plate subduction beneath the western margin of the South American 95 plate (e.g. Marriner and Millward, 1984; McCourt et al., 1984; Cediel et al., 2003; 96 Saenz, 2003; Restrepo-Moreno et al., 2009; Rodríguez et al., 2012). Accretion of 97 tectonic blocks or terranes of oceanic affinity to the continental margin during the late 98 Mesozoic and early Cenozoic did not cause Andean-type subduction volcanism, 99 because of their relatively young age and high buoyancy preventing subduction 100 (Cediel et al., 2003), and forcing surface uplift and the formation of the Western and 101 Central Cordilleras during the Pre-Andean and Andean orogenies (e.g. Van der 102 Hammen, 1960; Taboada et al., 2000; Cediel et al., 2003). 103 The present-day Andean volcanism is commonly divided into four volcanic 104 zones, the Northern Volcanic Zone (NVZ), Central Volcanic Zone (CVZ), Southern 105 Volcanic Zone (SVZ), and Austral Volcanic Zone (AVZ) (e.g. Thorpe and Francis, 106 1979; Thorpe et al., 1982; Stern, 2004; Marín-Cerón et al., 2019). These segments 4 107 have been distinguished based on differences in petrographic features and 108 geochemical signatures, and they are separated from each other by volcanic gaps 109 (e.g. Thorpe and Francis, 1979; Stern, 2004). The NVZ is located in north-western 110 South America and encompasses the region of present-day volcanism in the 111 Northern Andes of Ecuador and Colombia. 112 113 Geology of the Amagá basin 114 The Amagá basin forms the northern part of the much larger Amagá-Cauca- 115 Patía basin located between the Western and Central Cordilleras of the Northern 116 Andes in western Colombia (Fig. 1; Sierra and Marín-Cerón, 2011). Dextral strike– 117 slip faulting along the Cauca and Romeral fault systems to the west and east 118 respectively is responsible for development of the Amagá basin, which is tectonically 119 a pull – apart basin (e.g. Cediel et al., 2003). Basin evolution started possibly during 120 the Eocene (?) – Oligocene, with surface uplift and erosion of the Central Cordillera 121 from the Late Cretaceous to Eocene and deposition of clastic sediments of the 122 Lower Amagá Formation in the basin (e.g.
Recommended publications
  • Threatened Birds of the Americas
    GOLDEN-PLUMED PARAKEET Leptosittaca branickii V/R10 This poorly known parrot is found very locally in temperate Andean forests in Colombia, Ecuador and Peru, in the first two of which it has suffered from much habitat loss; its nomadism, which may be related to a heavy dependence on Podocarpus cones, renders it highly problematic to conserve. DISTRIBUTION The Golden-plumed Parakeet is known from at least 70 specimens, and has been recorded from at least 30 localities scattered through the Andes in Colombia, Ecuador and Peru. Colombia The species is known from two regions on the west slope of the Central Andes (all coordinates, unless otherwise stated, are from Paynter and Traylor 1981), as follows: the Nevado del Ruiz–Nevado del Tolima region on the borders of Tolima, Risaralda, Quindío and Caldas departments (in and around Los Nevados National Park), localities being Hacienda Jaramillo, over 3,000 m, at 4°47’N 75°26’W, September 1918 (Carriker 1955a; nine specimens in CM, all labelled “Santa Ignacia”); above Santa Rosa de Cabal, recently (Hilty and Brown 1986); Laguneta, 3,050 m, at 4°35’N 75°30’W, April 1942 (specimen in ANSP); Alto Quindío Acaime Natural Reserve, 4°37’N 75°28’W, and the nearby Cañon del Quindío Natural Reserve, on the west slope of the Central Andes in Quindío, ranging into adjacent forest on the east slope in Tolima, and present throughout the year (E. Murgueitio R. in litt. 1987; also Renjifo 1991, L. M. Renjifo in litt. 1992, whence coordinates; see Ecology); Rincón Santo, Salento, 2,800 m, December 1989 (J.
    [Show full text]
  • Muon Tomography Sites for Colombian Volcanoes
    Muon Tomography sites for Colombian volcanoes A. Vesga-Ramírez Centro Internacional para Estudios de la Tierra, Comisión Nacional de Energía Atómica Buenos Aires-Argentina. D. Sierra-Porta1 Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Centro de Modelado Científico, Universidad del Zulia, Maracaibo-Venezuela, J. Peña-Rodríguez, J.D. Sanabria-Gómez, M. Valencia-Otero Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia. C. Sarmiento-Cano Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. , M. Suárez-Durán Departamento de Física y Geología, Universidad de Pamplona, Pamplona-Colombia H. Asorey Laboratorio Detección de Partículas y Radiación, Instituto Balseiro Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Bariloche-Argentina; Universidad Nacional de Río Negro, 8400, Bariloche-Argentina and Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. L. A. Núñez Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Departamento de Física, Universidad de Los Andes, Mérida-Venezuela. December 30, 2019 arXiv:1705.09884v2 [physics.geo-ph] 27 Dec 2019 1Corresponding author Abstract By using a very detailed simulation scheme, we have calculated the cosmic ray background flux at 13 active Colombian volcanoes and developed a methodology to identify the most convenient places for a muon telescope to study their inner structure. Our simulation scheme considers three critical factors with different spatial and time scales: the geo- magnetic effects, the development of extensive air showers in the atmosphere, and the detector response at ground level. The muon energy dissipation along the path crossing the geological structure is mod- eled considering the losses due to ionization, and also contributions from radiative Bremßtrahlung, nuclear interactions, and pair production.
    [Show full text]
  • Review and Reassessment of Hazards Owing to Volcano–Glacier Interactions in Colombia
    128 Annals of Glaciology 45 2007 Review and reassessment of hazards owing to volcano–glacier interactions in Colombia Christian HUGGEL,1 Jorge Luis CEBALLOS,2 Bernardo PULGARI´N,3 Jair RAMI´REZ,3 Jean-Claude THOURET4 1Glaciology and Geomorphodynamics Group, Department of Geography, University of Zurich, 8057 Zurich, Switzerland E-mail: [email protected] 2Instituto de Meteorologı´a, Hidrologı´a y Estudios Ambientales, Bogota´, Colombia 3Instituto Colombiano de Geologı´a y Minerı´a, Bogota´, Colombia 4Laboratoire Magmas et Volcans UMR 6524 CNRS, Universite´ Blaise-Pascal, Clermont-Ferrand, France ABSTRACT. The Cordillera Central in Colombia hosts four important glacier-clad volcanoes, namely Nevado del Ruiz, Nevado de Santa Isabel, Nevado del Tolima and Nevado del Huila. Public and scientific attention has been focused on volcano–glacier hazards in Colombia and worldwide by the 1985 Nevado del Ruiz/Armero catastrophe, the world’s largest volcano–glacier disaster. Important volcanological and glaciological studies were undertaken after 1985. However, recent decades have brought strong changes in ice mass extent, volume and structure as a result of atmospheric warming. Population has grown and with it the sizes of numerous communities located around the volcanoes. This study reviews and reassesses the current conditions of and changes in the glaciers, the interaction processes between ice and volcanic activity and the resulting hazards. Results show a considerable hazard potential from Nevados del Ruiz, Tolima and Huila. Explosive activity within environments of snow and ice as well as non-eruption-related mass movements induced by unstable slopes, or steep and fractured glaciers, can produce avalanches that are likely to be transformed into highly mobile debris flows.
    [Show full text]
  • 349660405003.Pdf
    Boletin de Geología ISSN: 0120-0283 Universidad Industrial de Santander Piedrahita, Daniel Alberto; Aguilar-Casallas, Camila; Arango- Palacio, Eliana; Murcia, Hugo; Gómez-Arango, Johana Estratigrafía del cráter y morfología del volcán Cerro Machín, Colombia Boletin de Geología, vol. 40, núm. 3, 2018, Septiembre-Diciembre, pp. 29-48 Universidad Industrial de Santander DOI: 10.18273/revbol.v40n3-2018002 Disponible en: http://www.redalyc.org/articulo.oa?id=349660405003 Cómo citar el artículo Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto vol. 40, n.° 3, septiembre-diciembre de 2018 ISSN impreso: 0120-0283 ISSN en línea: 2145-8553 Estratigrafía del cráter y morfología del volcán Cerro Machín, Colombia Daniel Alberto Piedrahita1,2*; Camila Aguilar-Casallas3; Eliana Arango-Palacio4; Hugo Murcia2,5; Johana Gómez-Arango6 DOI: http://dx.doi.org/10.18273/revbol.v40n3-2018002 Forma de citar: Piedrahita, D.A., Aguilar-Casallas, C., Arango-Palacio, E., Murcia, H., y Gómez-Arango, J. (2018). Estratigrafía del cráter y morfología del volcán Cerro Machín, Colombia. Boletín de Geología, 40(3), 29-48. DOI: 10.18273/revbol.v40n3-2018002. RESUMEN El Volcán Cerro Machín (VCM) se localiza en el flanco oriental de la Cordillera Central de Colombia a 17 km al occidente de la ciudad de Ibagué (Tolima). El VCM es un volcán Holocénico de composición dacítica, con evidencia de grandes erupciones (VEI 5). Estratigráficamente, en las paredes internas del cráter es posible observar una secuencia de depósitos de Corrientes de Densidad Piroclástica (CDPs) diluida con características de depósitos de oleadas basales.
    [Show full text]
  • Glaciares Colombianos 1
    INFORME DEL ESTADO DE LOS 1 GLACIARES COLOMBIANOS 2019 INFORME DEL ESTADO DE LOS 2 GLACIARES COLOMBIANOS 2019 Ministerio de Ambiente y Desarrollo Sostenible RICARDO JOSÉ LOZANO PICÓN Ministro Instituto de Hidrología, Meteorología y Estudios Ambientales YOLANDA GONZÁLEZ HERNÁNDEZ Directora General GILBERTO GALVIS BAUTISTA Secretario General NELSON OMAR VARGAS MARTÍNEZ Subdirector de Hidrología DIANA MARCELA VARGAS GALVIS Subdirectora de Estudios Ambientales ANA CELIA SALINAS MARTÍN Subdirectora de Ecosistemas e Información Ambiental ELIÉCER DAVID DÍAZ ALMANZA Subdirector de Meteorología DANIEL USECHE SAMUDIO Jefe de la Oficina de Servicios del servicio de Pronósticos y Alertas JUAN FERNANDO CASAS VARGAS Coordinador del Grupo de Comunicaciones y Prensa © Instituto de Hidrología, Meteorología y Estudios Ambientales Informe del estado de los glaciares colombianos 2019 JORGE LUIS CEBALLOS LIÉVANO JOSÉ ALEJANDRO OSPINA NIÑO FRANCISCO ROJAS HEREDIA Grupo de Suelos y Tierras Ideam Preparación editorial Grupo de Comunicaciones y Prensa Ideam Fotografía de carátula Sierra Nevada de Santa Marta Fuerza Aérea Colombiana (FAC), 2017 Fotografía de contracarátula Sierra Nevada de Santa Marta Fuerza Aérea Colombiana (FAC), 2017 Edición digital Bogotá, 2020 INFORME DEL ESTADO DE LOS 3 GLACIARES COLOMBIANOS 2019 Estación meteorológica móvil de altitud, glaciar Santa Isabel. Fotografía: J. L. Ceballos Contenido Presentación 5 Resultados del monitoreo glaciar 6 Área glaciar para el año 2019 7 Volcán Nevado Santa Isabel sigue en crisis 9 Volcán Nevado del Tolima
    [Show full text]
  • Recent Environment Surrounding Basic Researches Including
    IAVCEI News 2018 No: 3 INTERNATIONAL ASSOCIATION OF VOLCANOLOGY AND CHEMISTRY OF THE EARTH'S INTERIOR FROM THE PRESIDENT The next call for nominations for IAVCEI Awards is also just around the corner. Making a nomination of a deserving Dear Colleagues, colleague for this highly prestigious recognition can be something of truly lasting impact on the individual as well as their field. Please get your nomination thinking hats on What a meeting it was... The and be ready for the upcoming announcement. COV10 meeting at Naples was a stunning success, with record attendance and a superb swath of D. B. Dingwell, contributions ranging from Munich, 4 October 2018 mechanistic physico-chemical studies to social media impact studies. The participants were a 27TH IUGG GENERAL ASSEMBLY striking blend of young and old, MONTREAL, CANADA male and female, physical and 8 – 18 July 2019 Don Dingwell social scientist, and we saw President of the unprecedented levels of diversity. Welcome IAVCEI Thank you from of all of us to the relevant committees and to all Beyond 100: The next century in Earth and Space Science who organized sessions and other activities. We who were The 27th IUGG General Assembly will be held July 8-18, fortunate enough to be able to attend were treated to what 2019 at the Palais des Congrès in Montréal, Québec, Canada. must surely have been a glimpse into many areas of the This is a special opportunity for participants from Canada future of volcanic studies. Nevertheless, as I emphasized in and from around the world to come together and share their my introductory comments, volcanology can be far more.
    [Show full text]
  • Plan De Manejo PNN Nevado Del Huila
    PARQUE NACIONAL NATURAL NEVADO DEL HUILA PLAN DE MANEJO PARQUE NACIONAL NATURAL NEVADO DEL HUILA PARQUE NACIONAL NATURAL NEVADO DEL HUILA PLAN BASICO DE MANEJO 2007 -2011 PROGRAMA PARQUE NACIONAL NEVADO DEL HUILA MINISTERIO DEL AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL UNIDAD ADMINISTRATIVA ESPECIAL DEL SISTEMA DE PARQUES NACIONALES NATURALES DIRECCIÓN TERRITORIAL SUR ANDINA POPAYÁN 2007 2 PARQUE NACIONAL NATURAL NEVADO DEL HUILA ALVARO URIBE VELEZ Presidente de la República SANDRA SUAREZ Ministra de Ambiente, Vivienda y Desarrollo Territorial JULIA MIRANDA Directora General UAESPNN COMITÉ DE DIRECCIÓN Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales Elssye Morales de Alcalá Martha Valderrama Carlos Arroyo Marcela Cañon Carlos Mario Tamayo Adriana Lopez Cesar Rey Juan Manuel Savogal Nuria Villadiego Luis Alberto Ortíz Yaneth Noguera Directora Territorial Sur Andina 3 PARQUE NACIONAL NATURAL NEVADO DEL HUILA AUTORES Gloria Bibiana Ropain Alvarado Contratista Profesional Plan de Manejo Efraím Rodríguez Jefe de Programa a partir de julio 2005 Doris Lucia Ruales Piñeres Jefe de Programa codigo 2084 grado 21 Jeferson Rojas Profesional de Programa 3020 grado 09 ASESORIA Y APOYO Antonio Andrade Zambrano Técnico Administrativos código 4065 grado 11 Guillermo Medina Técnico Administrativos código 4065 grado 11 Diomar Castro Operario Calificado código 5300 grado 11 Jose Jair Cuspian Operario Calificado código 5300 grado 11 Regulo Paya Operario Calificado código 5300 grado 09 Aida Giraldo Asesor Plan de Manejo Patricia Tellez Guio. Contratista Profesional SIG Marcela Porras Rey Contratista Biología de la conservación Patricia Andrade Contratista Profesional Cuencas Hidrográficas Patricia Escobar Contratista Profesional Educación Ambiental Arelis Arciniegas Contratista Facilitador SSC Vicente Ordoñez Contratista Profesional SSC Milton Alvarez Contratista Comunicador ambiental Jorge A.
    [Show full text]
  • Estratigrafía Del Cráter Y Morfología Del Volcán Cerro Machín, Colombia
    vol. 40, n.° 3, septiembre-diciembre de 2018 ISSN impreso: 0120-0283 ISSN en línea: 2145-8553 Estratigrafía del cráter y morfología del volcán Cerro Machín, Colombia Daniel Alberto Piedrahita1,2*; Camila Aguilar-Casallas3; Eliana Arango-Palacio4; Hugo Murcia2,5; Johana Gómez-Arango6 DOI: http://dx.doi.org/10.18273/revbol.v40n3-2018002 Forma de citar: Piedrahita, D.A., Aguilar-Casallas, C., Arango-Palacio, E., Murcia, H., y Gómez-Arango, J. (2018). Estratigrafía del cráter y morfología del volcán Cerro Machín, Colombia. Boletín de Geología, 40(3), 29-48. DOI: 10.18273/revbol.v40n3-2018002. RESUMEN El Volcán Cerro Machín (VCM) se localiza en el flanco oriental de la Cordillera Central de Colombia a 17 km al occidente de la ciudad de Ibagué (Tolima). El VCM es un volcán Holocénico de composición dacítica, con evidencia de grandes erupciones (VEI 5). Estratigráficamente, en las paredes internas del cráter es posible observar una secuencia de depósitos de Corrientes de Densidad Piroclástica (CDPs) diluida con características de depósitos de oleadas basales. La presencia de líticos accidentales evidencia que durante la fragmentación fue involucrado el basamento. De esta manera es posible sugerir que la interacción agua/magma jugó un papel importante en la dinámica del último evento eruptivo, el cual constituye los depósitos que conforman el cráter. Análisis morfológicos evidencian un cráter de 2,4 km de diámetro con una abertura hacia el sector suroccidental, el cual alberga un domo de 490 m de altura que posiblemente durante su emplazamiento fue el causante de la destrucción del cráter. Aunque el VCM es sin duda un volcán poligenético (seis erupciones en los últimos 5000 años), las características sedimentológicas de los depósitos del cráter así como su morfología, sugieren una estructura monogenética de cono de toba.
    [Show full text]
  • Colombia Investment Grant for the Financing and Risk Transfer Program for Geothermal Power (Co-G1007)
    Colombia Financing and Risk Transfer Program for Geothermal Power – CTF Submission – Public version – Main doc Page 1 of 22 DOCUMENT OF THE INTER-AMERICAN DEVELOPMENT BANK COLOMBIA INVESTMENT GRANT FOR THE FINANCING AND RISK TRANSFER PROGRAM FOR GEOTHERMAL POWER (CO-G1007) PROPOSAL FOR OPERATION DEVELOPMENT This document was prepared by the project team consisting of: Joan Prats, IFD/CMF, Team leader; Jose Ramón Gómez, ENE/CCO, Alternate Team Leader; Claudio Alatorre, INE/CCS; Enrique Rodríguez Flores, ENE/CPE; Jose Juan Gomes, Ramón Guzmán, Isabel Haro, Isabelle Braly-Cartillier, Sebastián Vargas, Cecilia Bernedo, IFD/CMF; Alvaro Concha, CMF/CCO; Escarlata Baza, LEG/SGO; Colin McKee, VPS/ESG; Mónica Rojas, CAN/CCO; Miguel Angel Orellana, Claudia Cárdenas García and Gabriele del Monte, FMP/CCO. Colombia Financing and Risk Transfer Program for Geothermal Power – CTF Submission – Public version – Main doc Page 2 of 22 CONTENT PROJECT SUMMARY ......................................................................................................... 5 I. DESCRIPTION AND RESULTS MONITORING ................................................................. 6 A. Background, Problem Addressed and Justification ....................................... 6 B. Objectives, Components and Cost .............................................................. 13 C. Key Results Indicators ................................................................................ 16 II. FINANCING STRUCTURE AND MAIN RISKS ...............................................................
    [Show full text]
  • Los Volcanes De Colombia Y Su Representación En Diversos Contextos
    vol 40, n ° 3, septiembre-diciembre de 2018 ISSN impreso: 0120-0283 ISSN en línea: 2145-8553 Los volcanes de Colombia y su representación en diversos contextos John J. Sánchez1*; Luisa M. Calvache2 DOI: http://dx.doi.org/10.18273/revbol.v40n3-2018007 Forma de citar: Sánchez, J.J., y Calvache, L.M. (2018). Los volcanes de Colombia y su representación en diversos contextos. Boletín de Geología, 40(3), 127-179. DOI: 10.18273/revbol.v40n3-2018007. RESUMEN En Colombia existe un número importante de volcanes que por siglos han sido vistos como símbolos, pero no como amenazas, lo cual infortunadamente ha demostrado ser una problemática en tiempos de crisis. Se reportan observaciones de diferentes formas de representación del concepto de volcán en Colombia. Más de 228 observaciones fueron recopiladas durante recorridos de campo y por medio de consultas sistemáticas usando motores de búsqueda y correo electrónico durante el período 2010-2017, conservando evidencia gráfica de todos los casos. Se encuentra que al menos 19 volcanes (tanto activos como inactivos) han sido representados en 28 contextos en 71, localidades principalmente alrededor de las zonas de influencia volcánica. Las representaciones pueden ser de diferente cobertura espacial: local, regional, nacional; pueden ser directas o indirectas; o pueden tener carácter temporal variable: efímero, como en los casos de murales, anuncios y logotipos, o pueden durar por siglos, porque en muchos casos están plasmadas en símbolos de unidades administrativas, como en el caso de los escudos de municipios y departamentos. Las representaciones son importantes porque reflejan sentido de pertenencia de las comunidades hacia su entorno, imprimen el concepto de volcán en el imaginario colectivo, y pueden influenciar la percepción del concepto de amenaza y el proceso de toma de decisiones durante tiempos de crisis volcánica.
    [Show full text]
  • Co-Eruptive Subsidence at Galeras Identified During An
    Journal of Volcanology and Geothermal Research 202 (2011) 228–240 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Co-eruptive subsidence at Galeras identified during an InSAR survey of Colombian volcanoes (2006–2009) M.M. Parks a,⁎, J. Biggs b, T.A. Mather a, D.M. Pyle a, F. Amelung c, M.L. Monsalve d, L. Narváez Medina e a COMET+, Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK b COMET+, Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK c Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL 33149, USA d Colombian Institute of Geology and Mining (INGEOMINAS), Bogotá DC, Colombia e Colombian Institute of Geology and Mining (INGEOMINAS), Pasto, Colombia article info abstract Article history: Establishing a time series of deformation is one of the keys to understanding and predicting the magmatic Received 28 September 2010 behaviour of active volcanoes. Satellite techniques represent an increasingly useful tool for measuring Accepted 21 February 2011 volcanic deformation over timescales spanning days to decades. Colombia contains numerous young or active Available online 4 March 2011 volcanoes, many of which are inaccessible. We use L-band (23.6 cm wavelength) radar data acquired between 2006 and 2009, to survey 15 active volcanoes along the Colombian segment of the Northern Volcanic Zone. Keywords: Analysis of 100 interferograms showed that the majority of volcanoes were not deforming. However, Galeras fl L-band InSAR independent interferograms display an average subsidence of 3 cm on the northeast ank of Galeras, deformation coinciding with the January 2008 eruption.
    [Show full text]
  • Glaciares Colombianos: Evolución Reciente Y Estado Actual
    Boletín de Geología Vol. 29, No. 2, julio - diciembre de 2007 GLACIARES COLOMBIANOS: EVOLUCIÓN RECIENTE Y ESTADO ACTUAL Ceballos, J. 1; Tobón E. 2. RESUMEN Las montañas nevadas colombianas, han experimentado durante el Holoceno, importantes avances y retrocesos en su masa glaciar como respuesta fundamental a cambios climáticos. A partir de análisis con sensores remotos (fotografías aéreas e imágenes de satélite) se ha podido reconstruir la evolución de área desde el Neoglacial para los seis masas glaciares actuales del país, teniendo una extensión para el periodo 2002 – 2003 de 55 km2, lo cual representa una disminución cercana al 80% durante los últimos 150 años. Actualmente la pérdida de área se estima entre el 1 y 3% anual. En cuanto a la pérdida de espesor de hielo se ha observado en un periodo de 10 meses un promedio de tres metros aproximadamente en el volcán nevado Santa Isabel (Cordillera Central). Estos datos anuncian la inevitable desaparición del hielo en la alta montaña colombiana en tan solo algunas décadas. Palabras clave: Glaciar, ablación, balance de masa, retroceso glaciar. GLACIERS IN COLOMBIA: RECENT EVOLUTION AND PRESENT CONDITION ABSTRACT The snow-covered mountains Colombian, have experimented during the Holoceno, important advances and backward movements in their mass glacier like fundamental answer to climatic changes. From analysis with remote sensors (aerial photographies and satellite images) it has been possible to reconstruct the evolution of area from Neoglacial for the six masses present glaciers of the country, being had an extension for period 2002 - 2003 of 55 km2, which represents a diminution near 80% during last the 150 years.
    [Show full text]