Mouse Acrv1 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Acrv1 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Acrv1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Acrv1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Acrv1 gene (NCBI Reference Sequence: NM_007391 ; Ensembl: ENSMUSG00000032110 ) is located on Mouse chromosome 9. 4 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 4 (Transcript: ENSMUST00000034620). Exon 2~3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Acrv1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-339F21 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2~3 is not frameshift exon, and covers 78.16% of the coding region. The size of intron 1 for 5'-loxP site insertion: 847 bp, and the size of intron 3 for 3'-loxP site insertion: 1789 bp. The size of effective cKO region: ~2999 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Homology arm Exon of mouse Acrv1 cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(9499bp) | A(32.42% 3080) | C(20.33% 1931) | T(27.15% 2579) | G(20.1% 1909) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr9 + 36690959 36693958 3000 browser details YourSeq 70 12 119 3000 98.7% chr9 - 93193868 93194144 277 browser details YourSeq 25 223 257 3000 88.9% chr4 - 144884216 144884249 34 Note: The 3000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr9 + 36696958 36699957 3000 browser details YourSeq 333 2262 2860 3000 89.3% chr7 - 141914442 141915112 671 browser details YourSeq 281 2212 2999 3000 86.3% chr19 + 11825544 11826336 793 browser details YourSeq 209 2170 2548 3000 88.9% chr1 + 176172418 176172871 454 browser details YourSeq 205 2209 2548 3000 90.2% chr1 - 170066560 170066962 403 browser details YourSeq 203 2171 2541 3000 90.0% chr9 - 83525781 83526173 393 browser details YourSeq 202 2693 3000 3000 87.2% chr19 - 17569036 17569348 313 browser details YourSeq 202 2220 2927 3000 84.0% chr18 - 21515529 21516246 718 browser details YourSeq 197 2166 2548 3000 85.7% chr6 + 148837554 148837971 418 browser details YourSeq 195 2225 2548 3000 89.7% chr1 - 55200068 55602057 401990 browser details YourSeq 190 2315 2900 3000 86.8% chr4 - 97470257 97470868 612 browser details YourSeq 188 2181 2544 3000 89.8% chr17 + 83777734 83778129 396 browser details YourSeq 187 2192 2561 3000 89.1% chr1 - 51669111 51669517 407 browser details YourSeq 181 2502 2865 3000 86.4% chr17 + 93152342 93152773 432 browser details YourSeq 179 2533 2987 3000 79.9% chr16 + 20842935 20843426 492 browser details YourSeq 174 2171 2992 3000 90.3% chr2 + 138685718 138686556 839 browser details YourSeq 173 2653 2994 3000 89.5% chr2 + 181605308 181605860 553 browser details YourSeq 171 2177 2548 3000 89.9% chr10 - 86086434 86086912 479 browser details YourSeq 168 2541 2824 3000 85.6% chr18 - 19430202 19430485 284 browser details YourSeq 168 2255 2548 3000 90.5% chr2 + 72999315 72999812 498 Note: The 3000 bp section downstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Acrv1 acrosomal vesicle protein 1 [ Mus musculus (house mouse) ] Gene ID: 11451, updated on 12-Aug-2019 Gene summary Official Symbol Acrv1 provided by MGI Official Full Name acrosomal vesicle protein 1 provided by MGI Primary source MGI:MGI:104590 See related Ensembl:ENSMUSG00000032110 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Msa63; SP-10 Expression Restricted expression toward testis adult (RPKM 178.7) See more Orthologs human all Genomic context Location: 9 A4; 9 20.67 cM See Acrv1 in Genome Data Viewer Exon count: 5 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 9 NC_000075.6 (36693220..36698845) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 9 NC_000075.5 (36500805..36506422) Chromosome 9 - NC_000075.6 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 2 transcripts Gene: Acrv1 ENSMUSG00000032110 Description acrosomal vesicle protein 1 [Source:MGI Symbol;Acc:MGI:104590] Gene Synonyms Msa63, SP-10 Location Chromosome 9: 36,693,220-36,698,843 forward strand. GRCm38:CM001002.2 About this gene This gene has 2 transcripts (splice variants), 87 orthologues, 12 paralogues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Acrv1-201 ENSMUST00000034620.4 1101 261aa ENSMUSP00000034620.3 Protein coding CCDS22971 P50289 TSL:1 GENCODE basic APPRIS P1 Acrv1-202 ENSMUST00000184160.1 3265 No protein - Retained intron - - TSL:1 25.62 kb Forward strand 36.685Mb 36.690Mb 36.695Mb 36.700Mb 36.705Mb Genes (Comprehensive set... Acrv1-201 >protein coding Acrv1-202 >retained intron Contigs < AC155921.2 Genes < Gm49367-201lncRNA < Chek1-201protein coding (Comprehensive set... < 1700027I24Rik-201lncRNA < Chek1-202protein coding < 1700027I24Rik-202lncRNA Regulatory Build 36.685Mb 36.690Mb 36.695Mb 36.700Mb 36.705Mb Reverse strand 25.62 kb Regulation Legend CTCF Enhancer Open Chromatin Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding RNA gene processed transcript Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000034620 5.62 kb Forward strand Acrv1-201 >protein coding ENSMUSP00000034... MobiDB lite Low complexity (Seg) Cleavage site (Sign... CDD cd00117 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant synonymous variant Scale bar 0 40 80 120 160 200 261 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • PRODUCT SPECIFICATION Prest Antigen ACRV1 Product
    PrEST Antigen ACRV1 Product Datasheet PrEST Antigen PRODUCT SPECIFICATION Product Name PrEST Antigen ACRV1 Product Number APrEST80590 Gene Description acrosomal vesicle protein 1 Alternative Gene D11S4365, SP-10, SPACA2 Names Corresponding Anti-ACRV1 (HPA038718) Antibodies Description Recombinant protein fragment of Human ACRV1 Amino Acid Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: TSSQPNELSGSIDHQTSVQQLPGEFFSLENPSDAEALYETSSGLNTLSEH GSSEHGSSKHTVAEHTSGEHAE Fusion Tag N-terminal His6ABP (ABP = Albumin Binding Protein derived from Streptococcal Protein G) Expression Host E. coli Purification IMAC purification Predicted MW 25 kDa including tags Usage Suitable as control in WB and preadsorption assays using indicated corresponding antibodies. Purity >80% by SDS-PAGE and Coomassie blue staining Buffer PBS and 1M Urea, pH 7.4. Unit Size 100 µl Concentration Lot dependent Storage Upon delivery store at -20°C. Avoid repeated freeze/thaw cycles. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • TCTE1 Is a Conserved Component of the Dynein Regulatory Complex and Is Required for Motility and Metabolism in Mouse Spermatozoa
    TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa Julio M. Castanedaa,b,1, Rong Huac,d,1, Haruhiko Miyatab, Asami Ojib,e, Yueshuai Guoc,d, Yiwei Chengc,d, Tao Zhouc,d, Xuejiang Guoc,d, Yiqiang Cuic,d, Bin Shenc, Zibin Wangc, Zhibin Huc,f, Zuomin Zhouc,d, Jiahao Shac,d, Renata Prunskaite-Hyyrylainena,g,h, Zhifeng Yua,i, Ramiro Ramirez-Solisj, Masahito Ikawab,e,k,2, Martin M. Matzuka,g,i,l,m,n,2, and Mingxi Liuc,d,2 aDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; bResearch Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; cState Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People’s Republic of China; dDepartment of Histology and Embryology, Nanjing Medical University, Nanjing 210029, People’s Republic of China; eGraduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871, Japan; fAnimal Core Facility of Nanjing Medical University, Nanjing 210029, People’s Republic of China; gCenter for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030; hFaculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland; iCenter for Drug Discovery, Baylor College of Medicine, Houston, TX 77030; jWellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom; kThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 1088639, Japan; lDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; mDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; and nDepartment of Pharmacology, Baylor College of Medicine, Houston, TX 77030 Contributed by Martin M.
    [Show full text]
  • ACRV1 (NM 020069) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC214263 ACRV1 (NM_020069) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: ACRV1 (NM_020069) Human Tagged ORF Clone Tag: Myc-DDK Symbol: ACRV1 Synonyms: D11S4365; SP-10; SPACA2 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC214263 representing NM_020069 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGAACAGGTTTCTCTTGCTAATGAGTCTTTATCTGCTTGGATCTGCCAGAGGAACATCAAGTCAGCCTA ATGAGCTTTCTGGCTCCATAGATCATCAAACTTCAGTTCAGCAACTTCCAGGTGAGTTCTTTTCACTTGA AAACCCTTCTGATGCTGAGGCTTTATATGAGACTTCTTCAGGCCTGAACACTTTAAGTGAGCATGGTTCC AGTGAGCATGGTTCAAGCAAGCACACTGTGGCCGAGCACACTTCTGGAGAACATGCTGAGAGTGAGCATG CTTCAGGTGAGCCCGCTGCGACTGAACATGCTGAAGGTGAGCATACTGTAGGTGAGCAGCCTTCAGGAGA ACAGCCTTCAGGTGAACACCTCTCCGGAGAACAGCCTTTGAGTGAGCTTGAGTCAGGTGAACAGCCTTCA GATGAACAGCCTTCAGGTGAACATGGCTCCGGTGAACAGCCTTCTGGTGAGCAGGCCTCGGGTGAACAGC CTTCAGGCACAATATTAAATTGCTACACATGTGCTTATATGAATGATCAAGGAAAATGTCTTCGTGGAGA GGGAACCTGCATCACTCAGAATTCCCAGCAGTGCATGTTAAAGAAGATCTTTGAAGGTGGAAAACTCCAA TTCATGGTTCAAGGGTGTGAGAACATGTGCCCATCTATGAACCTCTTCTCCCATGGAACGAGGATGCAAA TTATATGCTGTCGAAATCAATCTTTCTGCAATAAGATC ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT ACAAGGATGACGACGATAAGGTTTAA This product is
    [Show full text]
  • 1 Retrotransposons and Pseudogenes Regulate Mrnas and Lncrnas Via the Pirna Pathway 1 in the Germline 2 3 Toshiaki Watanabe*, E
    Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway 2 in the germline 3 4 Toshiaki Watanabe*, Ee-chun Cheng, Mei Zhong, and Haifan Lin* 5 Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, 6 Connecticut 06519, USA 7 8 Running Title: Pachytene piRNAs regulate mRNAs and lncRNAs 9 10 Key Words: retrotransposon, pseudogene, lncRNA, piRNA, Piwi, spermatogenesis 11 12 *Correspondence: [email protected]; [email protected] 13 1 Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press 14 ABSTRACT 15 The eukaryotic genome has vast intergenic regions containing transposons, pseudogenes, and other 16 repetitive sequences. They produce numerous long non-coding RNAs (lncRNAs) and PIWI-interacting 17 RNAs (piRNAs), yet the functions of the vast intergenic regions remain largely unknown. Mammalian 18 piRNAs are abundantly expressed in late spermatocytes and round spermatids, coinciding with the 19 widespread expression of lncRNAs in these cells. Here, we show that piRNAs derived from transposons 20 and pseudogenes mediate the degradation of a large number of mRNAs and lncRNAs in mouse late 21 spermatocytes. In particular, they have a large impact on the lncRNA transcriptome, as a quarter of 22 lncRNAs expressed in late spermatocytes are up-regulated in mice deficient in the piRNA pathway. 23 Furthermore, our genomic and in vivo functional analyses reveal that retrotransposon sequences in the 24 3´UTR of mRNAs are targeted by piRNAs for degradation.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Molecular Classification of Patients with Unexplained Hamartomatous and Hyperplastic Polyposis
    ORIGINAL CONTRIBUTION Molecular Classification of Patients With Unexplained Hamartomatous and Hyperplastic Polyposis Kevin Sweet, MS, CGC Context Significant proportions of patients with hamartomatous polyposis or with Joseph Willis, MD hyperplastic/mixed polyposis remain without specific clinical and molecular diagnosis Xiao-Ping Zhou, MD, PhD or present atypically. Assigning a syndromic diagnosis is important because it guides management, especially surveillance and prophylactic surgery. Carol Gallione, PhD Objective To systematically classify patients with unexplained hamartomatous or hy- Takeshi Sawada, MD, PhD perplastic/mixed polyposis by extensive molecular analysis in the context of central Pia Alhopuro, MD rereview of histopathology results. Sok Kean Khoo, PhD Design, Setting, and Patients Prospective, referral-based study of 49 unrelated patients from outside institutions (n=28) and at a comprehensive cancer center (n=21), Attila Patocs, MD, PhD conducted from May 2, 2002, until December 15, 2004. Germline analysis of PTEN, Cossette Martin, PhD BMPR1A, STK11 (sequence, deletion), SMAD4, and ENG (sequence), specific exon screen- Scott Bridgeman, BSc ing of BRAF, MYH, and BHD, and rereview of polyp histology results were performed. John Heinz, PhD Main Outcome Measures Molecular, clinical, and histopathological findings in pa- tients with unexplained polyposis. Robert Pilarski, MS, CGC Results Of the 49 patients, 11 (22%) had germline mutations. Of 14 patients with Rainer Lehtonen, BSc juvenile polyposis, 2 with early-onset disease had mutations in ENG, encoding endo- Thomas W. Prior, PhD glin, previously only associated with hereditary hemorrhagic telangiectasia; 1 had hemi- zygous deletion encompassing PTEN and BMPR1A; and 1 had an SMAD4 mutation. Thierry Frebourg, MD, PhD One individual previously classified with Peutz-Jeghers syndrome had a PTEN dele- Bin Tean Teh, MD, PhD tion.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • TCTE1 Is a Conserved Component of the Dynein Regulatory Complex and Is Required for Motility and Metabolism in Mouse Spermatozoa
    TCTE1 is a conserved component of the dynein PNAS PLUS regulatory complex and is required for motility and metabolism in mouse spermatozoa Julio M. Castanedaa,b,1, Rong Huac,d,1, Haruhiko Miyatab, Asami Ojib,e, Yueshuai Guoc,d, Yiwei Chengc,d, Tao Zhouc,d, Xuejiang Guoc,d, Yiqiang Cuic,d, Bin Shenc, Zibin Wangc, Zhibin Huc,f, Zuomin Zhouc,d, Jiahao Shac,d, Renata Prunskaite-Hyyrylainena,g,h, Zhifeng Yua,i, Ramiro Ramirez-Solisj, Masahito Ikawab,e,k,2, Martin M. Matzuka,g,i,l,m,n,2, and Mingxi Liuc,d,2 aDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; bResearch Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; cState Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People’s Republic of China; dDepartment of Histology and Embryology, Nanjing Medical University, Nanjing 210029, People’s Republic of China; eGraduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871, Japan; fAnimal Core Facility of Nanjing Medical University, Nanjing 210029, People’s Republic of China; gCenter for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030; hFaculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland; iCenter for Drug Discovery, Baylor College of Medicine, Houston, TX 77030; jWellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom; kThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 1088639, Japan; lDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; mDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; and nDepartment of Pharmacology, Baylor College of Medicine, Houston, TX 77030 Contributed by Martin M.
    [Show full text]
  • Research Article Clinic-Genomic Association Mining for Colorectal Cancer Using Publicly Available Datasets
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 170289, 10 pages http://dx.doi.org/10.1155/2014/170289 Research Article Clinic-Genomic Association Mining for Colorectal Cancer Using Publicly Available Datasets Fang Liu,1 Yaning Feng,1 Zhenye Li,2 Chao Pan,1 Yuncong Su,1 Rui Yang,1 Liying Song,1 Huilong Duan,1 and Ning Deng1 1 Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China 2 General Hospital of Ningxia Medical University, Yinchuan 750004, China Correspondence should be addressed to Ning Deng; [email protected] Received 30 March 2014; Accepted 12 May 2014; Published 2 June 2014 Academic Editor: Degui Zhi Copyright © 2014 Fang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In recent years, a growing number of researchers began to focus on how to establish associations between clinical and genomic data. However, up to now, there is lack of research mining clinic-genomic associations by comprehensively analysing available gene expression data for a single disease. Colorectal cancer is one of the malignant tumours. A number of genetic syndromes have been proven to be associated with colorectal cancer. This paper presents our research on mining clinic-genomic associations for colorectal cancer under biomedical big data environment. The proposed method is engineered with multiple technologies, including extracting clinical concepts using the unified medical language system (UMLS), extracting genes through the literature mining, and mining clinic-genomic associations through statistical analysis.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Organization, Evolution and Functions of the Human and Mouse Ly6/Upar Family Genes Chelsea L
    Loughner et al. Human Genomics (2016) 10:10 DOI 10.1186/s40246-016-0074-2 GENE FAMILY UPDATE Open Access Organization, evolution and functions of the human and mouse Ly6/uPAR family genes Chelsea L. Loughner1, Elspeth A. Bruford2, Monica S. McAndrews3, Emili E. Delp1, Sudha Swamynathan1 and Shivalingappa K. Swamynathan1,4,5,6,7* Abstract Members of the lymphocyte antigen-6 (Ly6)/urokinase-type plasminogen activator receptor (uPAR) superfamily of proteins are cysteine-rich proteins characterized by a distinct disulfide bridge pattern that creates the three-finger Ly6/uPAR (LU) domain. Although the Ly6/uPAR family proteins share a common structure, their expression patterns and functions vary. To date, 35 human and 61 mouse Ly6/uPAR family members have been identified. Based on their subcellular localization, these proteins are further classified as GPI-anchored on the cell membrane, or secreted. The genes encoding Ly6/uPAR family proteins are conserved across different species and are clustered in syntenic regions on human chromosomes 8, 19, 6 and 11, and mouse Chromosomes 15, 7, 17, and 9, respectively. Here, we review the human and mouse Ly6/uPAR family gene and protein structure and genomic organization, expression, functions, and evolution, and introduce new names for novel family members. Keywords: Ly6/uPAR family, LU domain, Three-finger domain, uPAR, Lymphocytes, Neutrophils Introduction an overview of the Ly6/uPAR gene family and their gen- The lymphocyte antigen-6 (Ly6)/urokinase-type plas- omic organization, evolution, as well as functions, and minogen activator receptor (uPAR) superfamily of struc- provide a nomenclature system for the newly identified turally related proteins is characterized by the LU members of this family.
    [Show full text]
  • Comparative Transcriptomics Analyses Across Species, Organs and Developmental Stages Reveal Functionally Constrained Lncrnas
    bioRxiv preprint doi: https://doi.org/10.1101/607200; this version posted April 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Comparative transcriptomics analyses across species, organs and developmental stages reveal 2 functionally constrained lncRNAs 3 4 Fabrice Darbellay1,$,* and Anamaria Necsulea1,2,* 5 6 7 1School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 8 2Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 9 5558, F-69622 Villeurbanne, France 10 11 $Present address: Environmental Genomics and Systems Biology Division, Lawrence Berkeley 12 National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA. 13 14 15 *Corresponding authors: 16 Fabrice Darbellay ([email protected]) 17 Anamaria Necsulea ([email protected]) 18 19 Running title: Functionally constrained lncRNAs in embryonic development 20 21 Keywords: long non-coding RNAs; evolution; development; comparative transcriptomics. 22 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/607200; this version posted April 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 25 Abstract 26 Background Transcription of long non-coding RNAs (lncRNAs) is pervasive, but their functionality is 27 disputed. As a class, lncRNAs show little selective constraint and negligible phenotypic effects upon 28 perturbation.
    [Show full text]